Contents

Abstract	i-ii
Declaration	iii
Certificate	iv
Certificate of the Examiner	V
Acknowledgement	vi
Contents	viii-xii
List of Figures	xiii-xvi
List of Tables	xvii-xviii
Nomenclature	xix-xxii

Chapter 1: Introduction

1.1	Introduction	2			
1.2	Motivation	4			
1.3	Research objectives	5			
1.4	Thesis Organization	5			
	Bibliography	9			
Chaj	Chapter 2: Literature Review				
2.1	Introduction	12			
2.2	Citrus fruits	12			
2.3	Bitterness in citrus fruits	13			
2.4	Assessment of delayed Bitterness: methods and techniques	16			
2.5	Debittering methods	20			

2.5.1 Biochemical Basis for debittering 2	20
---	----

	2.5.2 Physical methods	21
	2.5.3 Chemical method	22
	2.5.4 Biological methods	23
2.6	Drawbacks	23
2.7	Sensors	24
	2.7.1 Chemical Sensors	24
	2.7.2 Resistive sensors/ chemiresistors	25
	2.7.3 Capacitive Sensors	26
	2.7.4 Optical sensors	27
	2.7.5 Electrochemical sensors	27
	2.7.6 IDE capacitive sensor:	28
2.8	Summary	29
	Bibliography	30
Chap	oter 3: The IDE sensor and its design	
3.1	Introduction	38
3.2	Electric Fields and physical principle of sensing	39
3.3	Simulation and Design Parameters	42
3.4	Summary	48
	Bibliography	49

Chapter 4: Synthesis and Characterization of CeO2 and MgSiO3 materials, sensor fabrication and measuring unit

4.1	Introduction	51

4.2	Materials and Methodology	
	4.2.1 Materials	53
	4.2.2 Synthesis of CeO ₂ NPs	53
	4.2.3 Characterization of synthesized of CeO ₂ NPs	54
	4.2.4 Preparation of MgSiO ₃ .xH ₂ O –PVA composite	59
	4.2.5 Characterization of MgSiO ₃ .xH ₂ O –PVA composite	59
4.3	Sensor fabrication	61
4.4	Sensor's output measurement set-up	63
4.5	Summary	67
	Bibliography	68
Chapter 5: Detection of limonin using CeO2 NPs based IDE capacitive sensor		
5.1	Introduction	74

5.2	Materials and Methodology	74
	5.2.1 Materials	74
	5.2.2 CeO ₂ /PVA composite	74
	5.2.3 Preparation of Citrus fruit juice extracts	75
	5.2.4 HPLC analysis	75
	5.2.5 Sensing mechanism	75
5.3	Results and Discussion	77
	5.3.1 Calibration	77
	5.3.2 Performance analysis	79
	5.3.2.1 Sensitivity	79
	5.3.2.2 Selectivity and detection limit	80
	5.3.2.3 Limonin detection and accuracy study	82

	5.3.2.4 Response time	85
	5.3.2.5 Reusability and Shelf life	86
5.4	Comparison with reported methods/devices	88
5.5	Summary	90
	Bibliography	91

Chapter 6: Detection of limonin and its reduction usingMgSiO₃ based capacitive sensor

6.1	Introduction	95
6.2	Materials and Methodology	96
	6.2.1 Materials	96
	6.2.2 Preparation of samples and chemical (HPLC) analysis:	97
	6.2.3 Preparation of MgSiO3.xH ₂ O –PVA composite:	97
	6.2.4 Sensor and its calibration	98
	6.2.5 Sensory Evaluation: Screening, and training of panelist	99
	6.2.6 Determination of TPC, TFC and anti-oxidant activity	99
6.3	Results and Discussion	101
	6.3.1 Sensing mechanism and performance	101
	6.3.2 Calibration curves of IDE capacitive sensor and sensitivity	102
	6.3.3 Selectivity and detection limit of IDE sensor	104
	6.3.4 Real-time analysis for bitterness assessment	106
	6.3.5 Reusability and Reproducibility Study	108
	6.3.6 Debittering of juices using fabricated sensor and its measurement	110
	6.3.7 Toxicity study	111
	6.3.8 Sensory	115

	6.3.9 TPC, TFC and anti-oxidant activity	115		
6.4	Comparative study of the developed sensor with the already existing sensors	116		
6.5	Summary	120		
	Bibliography	121		
Chapter 7: Conclusions and Future Direction of Research				
7.1	Conclusions	125		
7.2	Future Direction of Research	128		

129

List of Publication