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“Cesium Lead Bromide as a colorimetric and 
fluorometric sensing platform for selective 

detection of Uric Acid” 

 
Highlights:  The selected perovskite material explores as sensing material for 

detection of uric acid. Based on both fluorescence and colorimetric technique, the 

chapter discusses detailed studies on detection limit, stability towards real samples 

and mechanism of sensing process. 
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2.1 Introduction 

Uric Acid (UA) is an oxidized product of purine metabolism, and it is an important 

biological indicator for metabolic status and diseases related to purine (Figure 2.1) 

[1-3]. Normally, the physiological range of uric acid is 0.13-0.46 mM (26-60 ppm) in 

blood serum [4].  When the concentration of UA exceeds this optimal level, it is known 

as hyperuricemia, and several diseases such as gout, arthritis, chronic nephropathy, 

etc. can be possible in that state [5-7]. On the other hand, hypouricemia (the lower 

level of UA) causes diseases such as multiple sclerosis or Parkinson’s disease [8,9]. 

To maintain a healthy UA level in our blood serum, an accurate assessment of UA 

levels in urine or blood serum is of paramount importance to avoid UA-related 

diseases. 

 

Figure 2.1 Molecular structure of uric acid 

To detect UA at an accurate level, some common detection technologies including 

Raman spectroscopy, chromatography, capillary electrophoreses, etc. [10-15] are 

mostly used. However, most of these methods requires expensive techniques, highly 

time-consuming operations and thereby, these are not suitable for rapid detection 

processes. The strategy based on enzyme sensing and electrochemical sensing are 

another known methods for uric acid detection. These two sensors have problem in 

selectivity test, similar analytes such as ascorbic acid (AA) during the electrochemical 

detection method of uric acid. The identical oxidation peak potential of ascorbic acid  

and uric acid causes some difficulties to distinguish the UA from AA in 

electrochemical detection method. Also, during the enzyme sensing process, 

deposition takes a longer time thus making them unsuitable for the detection of UA 

[16]. In that context, sensing method showcasing facile, rapid, selective, and sensitive 

analytical method for the determination of the accurate concentration of UA in 

practical value is highly beneficial. The fluorescence chemo-sensors have attracted 

considerable attention due to their high sensitivity, rapid response, high selectivity, 

simple operation, low cost, and lower detection limits towards the guest analytes 
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[17-23]. During detection processes, the commonly adopted fluorescence 

mechanisms are Forster resonance electron transfer, and intramolecular charge 

transfer. Furthermore, various materials are used as fluorescence probes, such as 

metal-organic frameworks (MOF) [24,25],  polymers [25],  quantum dots [26],  

carbon dots [27], etc. 

          All inorganic halide perovskites have attracted much attention in recent years 

due to their diverse applications [28]. Among them, the cesium lead bromide 

(CsPbBr3) perovskites are most studied inorganic halide perovskites due to their 

relatively higher air-stable property compared to other inorganic-organic halide 

perovskites. They are associated with the advantage of higher photoluminescence 

quantum yield, narrow emission peak, high photoelectric conversion efficiency, long 

carrier lifetimes, and long diffusion coefficients [29]. Owing to their outstanding 

optoelectronic advantageous properties, they have wide applications in various 

fields such as light-emitting diodes [30], optoelectronic devices [31], photodetectors 

[32], and solar cells [33] (Figure 2.2). 

 

Figure 2.2 Applications of CsPbBr3 in various fields 

In addition, they are employed as a suitable candidate to develop as 

photoluminescent (PL) sensor probes due to the tunable optical and electronic 

properties of halide perovskites. Apart from being photoluminescence, they also act 

as chemiluminescent, electroluminescent, and colorimetric sensor probes for 

detecting humidity, gas molecules, metal ions, pesticides, etc. Among them, the PL 

sensing mode is one of the most frequently used methods for the detection of target 

analytes. The material can trigger some significant structural and compositional 
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changes in the precursor solutions and thereby, it shows to either turn on or off the 

response of the respective PL signal. Owing to the instability towards humid 

conditions and polar solvents, few works have been reported where halide 

perovskites are employed as a chemo/biosensor. Chen and co-workers reported 

MAPbBr3 nanoparticles in the SiO2 nanosphere as a PL turn-on method for its 

application towards methylamine gas where interaction between methylamine and 

HPbBr3/PbBr2@SiO2 was mentioned [36]. Deriving a similar concept about the 

bright luminescence featuring a higher quantum yield of CsPbBr3 perovskites, we 

hypothesized that CsPbBr3 perovskites could also be used as a fluorescence probe to 

detect analytes. Ma and co-workers demonstrated CsPbBr3 as an HCl vapor sensor 

probe [37]. Similarly, Feng and co-workers recently reported CsPbBr3 as a 

fluorescence sensor probe to detect total polar molecules in edible oils [38]. 

            In this chapter, the work was focused on the bright green luminescent 

CsPbBr3 perovskites as a fluorescence and colorimetric sensing probe for 

detecting Uric acid (UA). Furthermore, the designed sensor probe was 

successfully applied to detect uric acid levels in real sample assay in human 

blood serum.  

2.2 Experimental 

2.2.1 Materials 

All chemicals were purchased from suppliers and used without purification. Cesium 

Bromide (CsBr) (99.9%, Alfa Aesar), Lead Bromide (PbBr2) (99.9%, TCI), Dimethyl 

Sulfoxide (DMSO) (99%, Alfa Aesar), Toluene (99%, Alfa Aesar), Uric Acid (Sigma 

Aldrich), Urea (Sisco Research Laboratories), Glycine (Alfa Aesar), Ascorbic Acid 

(Alfa Aesar), Uracil (Alfa Aesar), Alanine (Sigma Aldrich), Glucose (Sigma Aldrich), 

Adenine (Alfa Aesar), Cystine (Alfa Aldrich), NaCl (SRL), KCl (SRL), Creatinine (Sigma 

Aldrich), Hippuric Acid (TCI) were commercially available.  

2.2.2 Synthesis of inorganic halide perovskite (CsPbBr3) 

The CsPbBr3 perovskites was synthesized by using the traditional one-pot anti-

solvent method at room temperature [39]. 2.5 mmol (0.5320 g) of CsBr  and 2 mmol 

(0.734 g) of PbBr2  were mixed into 15 mL DMSO. The solution was then stirred for 

12 h to form a clear precursor solution. Later, the solution was quickly injected into 

150 mL of toluene under vigorous stirring. The passivated CsPbBr3 crystals were 
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centrifuged and washed with toluene and placed in a vacuum oven at 80 ℃ to obtain 

the dried and pure compound. 

2.2.3 Structural Characterization 

The fluorescence emission spectra were recorded using a Hitachi F-2700 

fluorescence spectrophotometer at room temperature.  The decay of fluorescence 

spectra was measured by using (Horiba Scientific, instrument) model. The surface 

morphologies of CsPbBr3 metal halide perovskites (MHPs) were analysed by using 

Gemini 500 FE-SEM instrument and energy dispersive compositional mappings were 

recorded by using SEM (JEOL-JSM-6390LV). The High-resolution Transmission 

Electron Microscope (HR-TEM) images were captured using (JEM-2100, JEOL, USA). 

XRD was measured with Bruker D8 advanced eco P-XRD system. FT-IR spectra of the 

samples were performed using a Nicolet Impact-410 IR spectrometer (USA) in the 

KBr medium at room temperature in the range of 4000–400 cm-1. A Shimadzu UV-

2550 spectrophotometer was used to record the electronic absorption spectra of the 

samples in the wavelength range of 200-800 nm. The chemical compositions were 

analysed by X-ray photoelectron spectroscopy (Perkin Elmer model 1257), 

instrument.  

2.2.4 Fluorescence measurements 

The relative photoluminescence quantum yield of the synthesized perovskite 

crystals was measured using Rhodamine B as a reference (Quantum Yield = 97% in 

ethanol) applying the following equation [40,41].                            

Φfx =  
𝜂𝑥

2

𝜂𝑅ℎ𝑜𝑑𝑎𝑚𝑖𝑛𝑒 𝐵𝑙𝑢𝑒
2  .

𝐴𝑅ℎ𝑜𝑑𝑎𝑚𝑖𝑛𝑒 𝐵𝑙𝑢𝑒

𝐴𝑥
.

𝐹𝑥

𝐹𝑅ℎ𝑜𝑑𝑎𝑚𝑖𝑛𝑒 𝐵𝑙𝑢𝑒
. 𝛷𝑓𝑅ℎ𝑜𝑑𝑎𝑚𝑖𝑛𝑒 𝐵𝑙𝑢𝑒 

In this equation, η is the refractivity (η = 1.36 for ethanol and η = 1.49 for toluene), A 

is the absorbance which is lower than 0.01 to avoid internal filter effects [41] and F 

is the integral absorption area in the luminescence spectra. 

2.2.5 Stability study 

To measure the stability of synthesized perovskites, initially 0.1 mmol of CsPbBr3 

(0.057 g) was dispersed in 10 mL toluene and sonicated for 30 min to get a 

homogeneous mixture. Then, 3 mL of perovskite solution was taken in a cuvette and 

their respective luminescence peak was recorded under the excitation wavelength of 
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380 nm at different interval of time under 80% humid condition. Similarly, the 

subsequent photostability test was performed with dispersion 0.1 mmol of 

perovskite in a 10 mL toluene. Again, 3 mL from the above solution was taken as a 

stock solution. The solution was further illuminated under the wavelength of 365 nm 

UV-lamp for a period of 8 hours. Their changes in PL intensity were measured under 

the excitation wavelength of 380 nm. 

2.2.6 Fluorescence Assay of Uric-Acid using CsPbBr3-based sensor 

To carry out the selectivity and sensitivity of CsPbBr3 dispersion towards UA 

detection, a suspension of CsPbBr3 perovskite in toluene having a concentration of 

(0.57 g/100 mL) was prepared and sonicated for 30 mins to get a homogeneous 

suspension. Then, 3 mL of this suspension was placed in a quartz cuvette and to that 

50 μL volume of UA solution with known concentration was added. The fluorescence 

intensity of the suspension was measured by exciting the solution with a wavelength 

of 380 nm. 

2.2.7 The paper-based sensor of the perovskite CsPbBr3 for UA sensing 

To validate the visual detection of Uric Acid by CsPbBr3, a paper sensor was 

fabricated where 1 mL of dispersed perovskite solutions were first added to 

1cm×1cm cellulose paper. After a few minutes, various concentrations of UA were 

dripped into the following paper. The fluorescence colour response was observed 

under the UV emitting lamp of 365 nm wavelength. 

2.2.8 Detection of Uric Acid in real samples 

To investigate the practical applicability of the designed sensor, further the sensing 

abilities in human blood serum samples were studied. The blood serum samples 

were collected from Health Centre, Tezpur University with the complete agreement 

and obeying their assigned rules and regulations. Then, the samples were diluted 100 

times and mixed with different concentrations of UA for fluorescence measurements. 

The respective fluorescence spectra of the samples were measured with excitation 

wavelength of 380 nm. Further, the recovery rate of the blood samples was 

calculated. 
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2.3 Results and Discussion 

2.3.1 Structural Analysis 

2.3.1.1 XRD analysis 

Generally, CsPbBr3 perovskite exhibits cubic, orthorhombic, and tetragonal phases 

[42]. The X-ray diffraction (XRD) pattern of CsPbBr3 was recorded to analyze the 

crystal structure of the synthesized perovskites (Figure 2.3). The diffraction peaks 

(110), (112), and (220) indexed at 15.19, 21.48, and 30.58 agrees well with the 

standard orthorhombic phase of perovskite crystal [43].  

 

Figure 2.3 XRD spectra of CsPbBr3 crystal 

2.3.1.2 Energy Dispersive X-ray (EDX) analysis 

The elemental information of CsPbBr3 was analysed by EDX analysis. As depicted in 

Figure 2.4a, (EDX) analysis reveals the existence of elements Cs, Pb, and Br with their 

atomic percentage 1.4:1:3.6 with a close approximation to their stoichiometric ratios. 

The elemental image of perovskite also depicts the homogeneous distribution of all 

the elements in the synthesized crystals (Figure 2.4b). 
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Figure 2.4 (a) EDX spectra of CsPbBr3 with the inset image show the elemental 

ratios, and (b) Elemental mapping image of elements Cs, Pb, and Br 

2.3.1.3 X-ray Photoelectron spectroscopy (XPS) analysis 

The high-resolution X-ray photoelectron spectroscopy (XPS) were used for the 

detection of Cs, Pb, and Br elements in the perovskite CsPbBr3 lattice. The 

binding energy that appeared at 738 eV and 724 eV are corresponding to Cs 

3d3/2 and Cs 3d5/2, respectively (Figure 2.5a). The binding energies at 143.2 eV 

and 138.2 eV are attributed due to Pb 4f 5/2 and Pb 4f 7/2, respectively (Figure 

2.5b). The Br 3d peak is submerged into two sub-peaks Br 3d3/2 and Br 3d5/2 

corresponding to 68.94 and 67.52 eV, respectively (Figure 2.5c) [44]. 

 

Figure 2.5 XPS survey of (a) Cs 3d spectrum, (b) Pb 4f spectrum, (c)    Br 3d spectrum, 

and (d) prepared CsPbBr3 spectrum 
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2.3.2 Morphological analysis 

2.3.2.1 SEM analysis 

The morphology of the perovskite crystals was elucidated by SEM analysis. As shown 

in Figure 2.6, the synthesized CsPbBr3 crystals have an orthorhombic-shaped 

structure with an average crystal size of 1.6 μM. 

 

Figure 2.6 SEM image of CsPbBr3 

2.3.2.2 TEM analysis 

The crystal structure, lattice spacing, and size of the perovskite crystals were 

further confirmed by Transmission Electron Microscopy (TEM) analysis. The TEM 

image of CsPbBr3 represents an orthorhombic-shaped structure with an average 

particle size of 1.64 μm (Figure 2.7a). The selected area diffraction pattern (SAED) 

of the lattice structure with an interplanar spacing of 0.40 nm corresponds to the 

(110) plane of synthesized perovskite (Figure 2.7b). The TEM image indicates the 

high crystallinity of the microcrystals [45]. 

 

Figure 2.7 (a) TEM images of CsPbBr3 with the interplanar distances of lattice 

fringes are shown in the inset image, and (b) the selected area diffraction 

(SAED) pattern of CsPbBr3 
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2.3.3 Optical analysis 

The optical properties of CsPbBr3 were studied and it was observed that the 

perovskite exhibited a characteristic optical absorption peak at 440 nm (2.6 

eV) and had a sharp emission peak at 520 nm with 20 nm full-width half 

maxima (FWHM). From the inset image (Figure 2.8), the perovskite dispersion 

emitted a bright, green-coloured irradiation of a 365 nm UV lamp (right) and 

pale orange colour daylight (left). The calculated fluorescence quantum yield 

(PLQY) of the CsPbBr3 was 60%. In addition, the lifetime of CsPbBr3 in an 

excited state was calculated [46]. As shown in Figure 2.9, the decay curves are 

well-fitted in a bi-exponential decay. The respective graphs constitute two 

components with the faster component τ1 and the slower component τ2. From 

the literature [45], it is found that the faster component τ1 is due to the direct 

radiative excitation recombination from the conduction band to the valence 

band, and the slower component τ2 is due to the non-radiative excitation 

recombination from the conduction band to the surface defects or from defects 

to defects, respectively. The high value of τ1 revealed that the lifetime radiation 

was mainly due to direct excitation recombination and almost unrestricted by 

the non-radiative surface defects which might also be accountable for the 

higher value of quantum yield of MHPs. The calculated average lifetime of 

CsPbBr3 was found as 8.76 ns (Table 2.1). 

 

Figure 2.8 Luminescence and absorbance spectra of CsPbBr3 dispersion with the 

inset images display the colour of dispersion under the irradiation of UV-lamp (right) 

and day-light (left) 
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Figure 2.9 Time-resolved Photo-luminescence decay graph of CsPbBr3 

Table 2.1 Summary of luminescence results of passivated CsPbBr3 

 

2.3.4 Study of stability of CsPbBr3 

The stability of the CsPbBr3, the proposed sensor concerning time by recording the 

luminescence intensity in different time intervals within 25 min. Only 12.1% 

percentage degradation was found in the perovskite dispersion under 80% humid 

conditions (Figure 2.10a). Later the photostability test of the perovskite dispersion 

was investigated by illuminating a 365 nm UV-lamp for a limit of 8 hours. From PL 

intensity (Figure 2.10b), the calculated percentage degradation of CsPbBr3 was found 

as 53.89%. The respective results demonstrate the stability of the designed sensor in 

a normal environment. 

 

Figure 2.10 (a) Stability of CsPbBr3 dispersion concerning time under 80% humid 

conditions and (b) Photostability of CsPbBr3 dispersion under the illumination of 365 

nm wavelength UV-lamp 

Material FWHM 
PLQY 

(%) 

λmax 

(absorption) 

λmax 

(luminescence) 

Band 

gap 

CsPbBr3 20 nm 60 530 nm 520 nm 2.6 eV 
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2.3.5 Sensitivity of CsPbBr3 towards UA 

The easy preparatory method and excellent optical performance make CsPbBr3 

moiety a potential fluorescence probe toward target molecules. The sensing 

experiments were performed with the addition of a different amount of UA into a 

perovskite dispersion in toluene (0.1 mmol of CsPbBr3 into 10 mL toluene). 3 mL of 

the above suspension was placed in a quartz cuvette and 50 μL of UA solution with 

known concentration is added to that solution. The fluorescence spectra were 

measured with an excitation wavelength of 380 nm. It was found that the 

fluorescence intensity of CsPbBr3 gradually quenched with the addition of UA 

concentration ranging from 0.0031 to 1.33 μM (Figure 2.11a). Since there was no 

significant shift of the emission peak, the study implied that the possibility of 

intermolecular charge transfer was less during the sensing process [47]. The 

quenching efficiency was further calculated using the Stern-Volmer equation: 

𝐼0

𝐼
= 1 + 𝐾𝑠𝑣[𝐶𝑈𝐴] 

In the above equation, I0 is the initial PL intensity of CsPbBr3 without adding the 

analyte UA, and I is the luminescence intensity of CsPbBr3 with the addition of UA. 

CUA is the added concentration of UA and Ksv is the Stern Volmer constant of the 

analyte. It was seen that the PL intensity and UA concentration were well fitted in the 

linear equation I0/I = 1.36 + 4.14 [CUA] with a correlation efficiency of 0.98 (Figure 

2.11b). From the titration data, the limit of detection was calculated (3σ/K, where σ 

is the standard deviation for blank samples of repeat times n = 8 and K is the slope of 

the calibration curve) and found as 62.7 ppb. The calculated LOD of the system for 

UA detection is much lower compared to some other reported sensor probes (Table 

2.2). The  Stern-Volmer constant for titration data was found to be 4.14×106 M-1. 
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Figure 2.11 (a) Change in the PL spectra of CsPbBr3
 
with the addition of UA, and (b) 

Stern-Volmer plots of the respective titration 

Table 2.2 A Comparative study of a few fluorescence sensor probe systems for 

detection of UA 

Entry Sensor probe LOD (μM) Ref 

1 CsPbBr3 0.373 This work 

2 Cu2+ @ MIL-91 (Al: Eu) 1.6 48 

3 N-MWCNTs/ PtNPs 2.1 49 

4 Xerogel <10 50 

5 AuNCs 6.6 51 

6 Uricase/HRP-CdS QDs 125 52 

7 NaYF4:Yb3+, Tm3+ 6.7 53 

8 Carbon quantum dot/o-phenylenediamine 0.5 54 

9 Heparin sulfur quantum dot 0.56 55 

10 Silicon nanoparticles 0.75 56 

11 
Hydroxy functionalized boron nitride 

nanosheet 
0.016 57 

12 Fe, Co, N – co-doped Carbon dot   0.05 58 

12 Yb3+, Er3+ and Tm3+ co-doped NaYF4 2.86 59 

14 Carbon dot entrapped in Cr-MOF 1.3 60 

15 Eu-MOF 0.689 61 

16 UiO-PSM 0.0023 62 

17 COOH-nanoflakes 1 63 
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18 
CdTe capped with (glutathione,3-

mercaptopropionic acid, and thio-glycerol) 
0.1 64 

19 Luminol-terbium 0.028 65 

20 Carbon-dot with MnO2 0.045 66 

21 Carbon-dot with MONT 4.3 67 

22 3-mercaptopropionic acid capped ZnS: Zn-CuS 0.044 68 

 
In the fluorescence sensing process, the measurement of response time is an 

important parameter. The response time was evaluated after the addition of 

0.57 μM of UA to the CsPbBr3 dispersion. After adding the UA, the fluorescence 

intensity of CsPbBr3 decreased rapidly and became stable after the 30 s (Figure 

2.12). Hence, the response time for the target analyte UA was found 30 s. A 

minimum of 30 min incubation period is required in the clinical enzyme-based 

diagnosis of UA [69]. Therefore, it indicates that the CsPbBr3 sensor probe have 

a faster response to UA and better potential sensor to be used in clinical 

diagnosis. 

 

Figure 2.12 Response time measurement of CsPbBr3 towards UA sensing 

To study the effect of pH during UA titration, fluorescence intensities of 

CsPbBr3 were measured at different pH conditions (pH = 2, 7, and 12). In  case 

pH=2 (acidic condition), the sensor probe failed to perform any detection, and 

this can be understood as degradation of CsPbBr3 in an acidic medium because 

of the leaching of Br- ion (Figure 2.13a). However, the method demonstrated 

the positive activity in pH = 7 (neutral conditions).  Thus, the optimum pH for 

the sensing study can be maintained at pH = 7. Similarly, the designed sensing 
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protocol was also functional to detect the analyte uric acid in a basic medium 

(pH = 12). 

In addition, the sensing performance was also examined in 0.1 M different 

buffer solutions {(acidic: HCl + KCl, pH = 2), (neutral: phosphate, pH = 7), and 

(basic: NaHCO3 and Na2CO3 pH = 10.6). Like the pH results, the sensing 

performance was failed in an acidic buffer because of leaching of Br- ion. 

Gratifyingly, our design was compatible with neutral and basic buffer 

conditions (Figure 2.13b).   

 

Figure 2.13 (a) Effect of pH on the PL quenching of CsPbBr3 towards UA, and 

(b) Effect of different buffer solutions on the sensing performance of CsPbBr3 

2.3.6 Selective sensing of passivated CsPbBr3 

In sensor development, selectivity is always one of the challenging problems. 

To study the selectivity of CsPbBr3 towards UA detection, various common 

biomolecules such as purines (adenine), amino acids (glycine, alanine, cystine, 

aspartic acid), glucose, hippuric acid, creatinine, and inorganic chloride salts 

(Na+, K+) were selected as the potential interfering counterparts. The 

fluorescence response was recorded in the presence of the interfering analytes 

with the same concentrations as UA was tested. The tested counterparts 

showed an extremely weak influence on CsPbBr3 emission as compared to UA 

(Figure 2.14). These selective results suggested that CsPbBr3 owes high 

selectivity and sensitivity towards UA molecules in biological samples without 

separating the UA from the tested interfering analyte and therefore, the 

sensing method is highly selective. 
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Figure 2.14 Selectivity profile of CsPbBr3 towards UA and different 

biologically relevant interfering molecules and metal ions 

2.3.7 Sensing mechanism of CsPbBr3 towards UA 

The reason behind the high selectivity and sensitivity of CsPbBr3 towards UA was 

explored in the above-mentioned discussion. Since, upon addition of UA to the 

perovskite dispersion, there is no remarkable shifting of absorption and emission 

peak excludes the possibility of any charge transfer between the two interacting 

partners. Therefore, intermolecular charge transfer (ICT) will not be the cause of 

quenching. Also, it was observed that there was not any spectral overlap between the 

emission spectra of fluorophore CsPbBr3 and the absorption spectra of the analyte 

UA in (Figure 2.15a). From these observations, the probability of the Förster 

resonance energy transfer (FRET) mechanism is very less in the sensing process [47]. 

 Later, FT-IR spectra of different concentrations of UA-incorporated CsPbBr3 

were investigated. The characteristic absorption peaks at 1613 cm-1 and 1290 cm-1  

appeared due to the stretching vibration of the C=O and C-N amide functional groups 

of uric acid (Figure 2.15b) depicts the adsorption of UA over CsPbBr3 surface [69]. In 

(Figure 2.15a) it was seen that with increasing concentrations of UA to the CsPbBr3 

solution (0.1 mmol), the intensity of the respected UV peak gradually decreased. A 

similar response was also observed in the solid-state absorption spectra. From the  

XRD spectra (Figure 2.16b), it could be distinctly observed the disappearance of the 

peak corresponding to the (110) plan may be due to the possibility of structural 

degradation of CsPbBr3. The structural degradation was also confirmed by FE-SEM 

images (Figure 2.17a-b). It is observed that the homogeneous orthorhombic-shaped 
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crystals of CsPbBr3 changes to some non-uniform aggregation morphologies after the 

addition of UA. 

 

Figure 2.15 (a) Spectral overlap between the emission spectrum of (0.1 mmol) of 

CsPbBr3 with the absorbance of (0.1 mmol) of UA and (b) FT-IR spectra of CsPbBr3 

titrated with various concentrations of UA 

 

 

Figure 2.16 (a) The absorbance of CsPbBr3 (0.1 mmol) in toluene in the presence of 

various concentrations of UA, (b) XRD spectra of CsPbBr3 after exposure to 1.33 μM 

of UA, and (c) solid-state UV-Vis absorption of CsPbBr3 titrated with various 

concentrations of UA 
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Figure 2.17 (a) FE-SEM image of CsPbBr3, and (b) FE-SEM image of structural 

degradation after adding UA to CsPbBr3 

Moreover, the elemental mapping images of CsPbBr3 after exposing UA was 

examined. The results displayed the images of elements C, N, and O uniformly 

distributed in the CsPbBr3-UA crystal lattice (Figure 2.18).  

 

Figure 2.18 Elemental mapping images of CsPbBr3-UA 

Further, the mechanism of the sensing process was further investigated 

through the time-resolved photoluminescence spectra (TRPL) under the 

excitation wavelength of 380 nm (Figure 2.19). In this study, it was noticed that 

the decay plots of the fluorescence were well-fitted in a bi-exponential decay. 

The calculated average lifetime of CsPbBr3 was found 8.76 ns, but with the 
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addition of 0.66 μM and 1.33 μM UA; the value decreased to 8.64 ns and 8.15 

ns (Table 2.3). Their respective line charts are also plotted (Figure 2.20). The 

less lifetime of the CsPbBr3 in presence of UA indicates the sensor undergoes 

the dynamic quenching process. The H-bonding interaction most likely takes 

place between CsPbBr3 and UA indicating some non-radiative decay pathways 

(Figure 2.21). The Br- ion of CsPbBr3 interacts with the H-atom of UA and leads 

to some anionic vacancies. And similarly, the interaction of Pb2+ with the N and 

O atoms of UA creates some cationic vacancies. These vacancies trigger the 

charge recombination and thereby, leading to the quenching of the emission 

peak at 520 nm [24,33,70]. 

 

Figure 2.19 Time-resolved photoluminescence (TRPL) spectra of CsPbBr3 (0.1 

mmol) in the absence and presence of various concentrations of UA 

Table 2.3 Concentration-dependent lifetime values 

 

System τ1 (ns) τ2 (ns) τav (ns) 

CsPbBr3 21.19 10.95 8.76 

CsPbBr3 + 0.66M 10.8 21.7 8.64 

CsPbBr3 + 1.33M 1.01 20.3 8.15 
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2.3.8 Colorimetric sensing studies 

Furthermore, the study is extended its scope towards colorimetric method for 

the sensing process. During the analysis period, it was observed that gradual 

colour change occurred after adding different concentrations of UA ranging 

from concentration (0 μM to 0.57 μM) to the perovskite dispersion under the 

illumination of a 365 nm UV-lamp (Figure 2.22). The change in colour indicates 

some electronic changes after UA addition which may be due to interactions 

between surface ions of CsPbBr3 and UA leading to some anion and cation 

vacancies. From the naked eye colour changing experience, it could be 
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Figure 2.20 Line chart of the respective lifetimes of systems 

Figure 2.21 Dynamic quenching of the fluorophore of CsPbBr3 via quencher UA  
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concluded that the designed perovskite system can be also used as colorimetric 

method. 

 

Figure 2.22 Photographs of perovskite solution under the UV emitting lamp of 365 

nm wavelength after applying a volume of 3 mL (0.1 mmol CsPbBr3) with different 

concentrations of UA 

2.3.9 Sensing study of CsPbBr3 on paper substrate 

After the colorimetric method, a paper sensor technique was fabricated to detect UA 

by using a round paper with a diameter of 1cm×1cm. 1 mL of CsPbBr3 dispersion (0.1 

mmol in 10 mL toluene) was dispersed on a paper substrate and exposed to air for 

drying. Later, a solution of 1.33 μM UA was added to the CsPbBr3-exposed paper. As 

shown in Figure 2.23, a specific color changes from green to blue was observed like 

the liquid phase observation. From this experiment, the present sensor also can be 

able to detect UA in paper substrate with naked eye without needing any 

sophisticated analytical instruments. 

 

Figure 2.23 Photographs of test - paper under the UV emitting lamp of 365 nm 

wavelength after applying a fixed volume of 1 mL (0.1 mmol CsPbBr3) with and 

without a concentration of 1.33 μM of UA 
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2.3.10 Control experiment in water 

The applicability of the designed sensor was further validated in the aqueous 

environment. The sensing experiments were performed with the addition of 

UA dispersion in a water-toluene biphasic mixture. Firstly, UA (0.1 mmol) was 

dispersed in 10 mL water, and 1 mL of the solution was further mixed with 2 

mL toluene in a volume ratio of (1:2). The respective luminescence intensity 

was measured with an excitation wavelength of 380 nm. In this study, it was 

noticed that the luminescence intensity of 3 mL CsPbBr3 solution (0.1mmol in 

10 mL toluene) was quenched gradually with the addition of target analyte UA 

dispersion (Figure 2.24a). In addition, a control experiment was performed to 

check the applicability of the method in the aqueous environment, where 

gradually added of H2O and toluene in the same volume ratio to the perovskite 

suspension in toluene. Up to 250 μL the luminescence intensity of perovskite 

was increased in contrast to the change upon the addition of UA (Figure 2.24b).  

 

Figure 2.24 Validation of the designed sensor (a) upon the addition of 

different volumes of UA (dispersed in water) and toluene mixed in a volume 

ratio of 1:2 (b) upon the addition of different volumes of water and toluene 

mixture mixed (c) The PL intensity of CsPbBr3 with the addition of different 

volumes of water 
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The difference in fluorescence behaviour proves the applicability of CsPbBr3 

dispersion toward UA detection in aqueous environments. The stability of the 

sensor was also investigated by measuring fluorescence intensity with the 

addition of different volumes of water to the perovskite dispersion. The 

addition of water also shows similar results where the intensity of the PL peak 

increased (Figure 2.24c). The results also indicate the aqueous stability of the 

proposed sensor probe. The increased PL intensity may be attributed due to 

the improved crystallization process of CsPbBr3 in the bi-phasic medium [71]. 

2.4 Validation of the proposed sensor in real samples 

The practical ability of the proposed sensor was further investigated in real 

sample assay. For this purpose, human blood serum samples (collected from 

the Health Centre of Tezpur University) were used to validate our proposed 

sensor in fluorescence assay. Prior to analysis, the samples were further 

diluted with 100-fold dilution. To the diluted serum, different known 

concentrations of UA were added. The details of the results are outlined (Table 

2.4). The calculated favourable recoveries of 100%, 105.26%, and 97.36 % 

were obtained. This part of analysis suggested about the good reliability of the 

proposed sensor for detecting UA in real samples for clinical diagnosis. 

Table 2.4 Determination of UA in human blood serum using CsPbBr3 

Dilution Added UA (µM) Found UA (µM) Recovery % RSD % 

 0.0095 0.01 105.26 0.54 

100-fold 0.02 0.02 100 1.1 

 0.38 0.37 97.26 5.2 

 
2.5 Conclusion 

In summary, this chapter discussed the synthesis of the inorganic halide 

perovskite CsPbBr3 and its application as fluorescence sensor to detect uric 

acid. The developed sensing method exhibited high selectivity and sensitivity. 

The quenching mechanism of CsPbBr3 for UA was explained by the dynamic 

quenching mechanism. The designed sensor was significantly able to detect UA 
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in the range 0.0031-1.33 μM with an ultralow detection limit of 62.7 ppb and a 

fast response time of the 30s. Thia perovskite showed a specific colour change 

with exposure to the increasing concentrations of UA which is demonstrated 

as a colorimetric sensor probe for the detection of UA. A paper sensor was also 

fabricated to detect UA. The practical applicability of the sensor probe was 

further studied by the detection of UA in human blood serum. From the 

favourable recoveries, this chapter shows an alternative probe that can be 

applied in biomedical fields to detect UA-related diseases in clinical diagnosis. 
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