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RSIR Remore sensing image retrieval

SIFT Scale Invariant Feature Transform

SNIG Symmetric Normal Inverse Gaussian

SVD Singular Value Decomposition

SURF Speeded Up Robust Features

TCIA The cancer imaging archive

THFB Triplet half band filter bank

VLAD Vector of Locally Aggregated Descriptors

WC Wrapped Cauchy

ZM Zernike Moment

3D-LTP Three dimensional local ternary Pattern

3D-LBP Three dimensional LBP
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List of symbols

ST (.) Shearlet transform

λ Scale

ωo Orientation

τ Location parameter

Aλ Anisotropic dilation matrix

Sωo Shear transformation matrix

ψ̂(.) Classical shearlet ψ

I Image

NSLPp+1I Detail coefficient at scale p+ 1

Ph0
q Low pass filters used in NSLP at scale p

Ph1
p High pass filters used in NSLP at scale q

N(µm, σ
2) Normal distribution with variance σ2 and

mean µm

IG(κ, δ) Inverse Gaussian distribution with param-

eters κ and δ

δ Scaling parameter

fIG(y) Probability density function of IG

SNIG(α, β, µm, δ) Symmetric normal inverse Gaussian distri-

bution with α, β, µm, δ parameters

h(c;α, β, µm, δ) Probability density function of SNIG

Kb(c) 3rd kind modified Bessel function of order

b

ϕ Set of SNIG parameters

ϕk Values of parameters after kth iteration

F (c) Model CDF

F̃ (c) Empirical CDF

µA Mean extracted from NSST approximation

subband A

σA Standard deviation extracted from NSST

approximation subband A
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List of symbols

q1 Query image

Gr(q1) Size of ground truth

Ar(q1) Average rank for q1

NQ Total number of query image

Prave(q1) Average precision for each query q1

Pr(k) Precision at k

rel(k) It is a function that outputs 1 if the item

at kth rank is valid else 0

D(Iq, DBk) Distance between query image Iq and

database’s kth image

Fl Feature vector length

FDBkj The jth feature of kth image of database

FIqj The jth feature of query image Iq

Px(j)(x(j)) 2-state LM model for modelling the image

NSST detail coefficients at x(j)

P1(.)and P2(.) Two non negative functions

wj Weights to P1(.)

1− wj Weights to P2(.)

σ1(j) Standard deviation of P1(.)

σ2(j) Standard deviation of P2(.)

r1(j) Responsibility element

Nm(j) Square shaped local window with Nm co-

efficients inside it

s skewness

k kurtosis

I(Pc) Centre pixel value

I(Pi) Neighboring pixel

T Total number of neighbors

R Neighborhood radius

F1 Feature vector

F2 Feature vector

FV Final feature vector

EL(i, j) Local energy over a 3× 3 neighborhood at

each reference (i,j)

x(i, j) Image NSST coefficients at a reference po-

sition (i,j)

BBb(i, j) Binary bit of EL(i, j) in bth bit plane

B Bit depth

CNT
b (i, j)|b∈[0,7],T∈[1,8] Centre-neighbor dissimilarity information

xix



List of symbols

Dis(u, v) Dissimilarity relation between u and v

NNT
b (i, j)|b∈[0,7],T∈[1,8] Neighbor-neighbor dissimilarity informa-

tion

ADT,b(i, j)|b∈[0,7],T∈[1,8] Adder pattern obtained with

CNT
b (i, j)|b∈[0,7],T∈[1,8] and

NNT
b (i, j)|b∈[0,7],T∈[1,8]

EBBb
d Encoded bit plane value

LBPDAPd(i, j) LBPDAP value calculated for d=[0,1,2]

HLBPDAP
s1
d

Histogram of LBPDAP submap (s1) for

d=[0,1,2]

HLBPDAP
s2
d

Histogram of LBPDAP submap (s2) for

d=[0,1,2]

HLBPDAP
s3
d

Histogram of LBPDAP submap (s3) for

d=[0,1,2]

HLBPDAP
s4
d

Histogram of LBPDAP submap (s4) for

d=[0,1,2]

P (Ik) Precision for kth query image

R(Ik) Recall for kth query image

TD Total number of images in the database

EBb,b ∈ [0, 7] Encoded bit plane value obtained by dis-

similarity information between each neigh-

boring value and adjacent neighbors

BBa
b,k(i, j) Each neighbor (with respect to cen-

tre/reference bit BBb(i, j))

BBa,t
b,k(i, j) 8 adjacent neighbors

[Da,t
b,k(i, j)] Dissimilarity function calculated between

BBa
b,k(i, j) and BBa,t

b,k(i, j)

ζab,k(i, j) Summing operation to combine the 8 dis-

similarity bit [Da,t
b,k(i, j)]

EBb,k(i, j) Encoded bit plane value after weighing

ζab,k(i, j)

HNSST−LBNDP qk,s1
Histogram of LBNDP submap (Patch s1)

HNSST−LBNDP qk,s2
Histogram of LBNDP submap (Patch s2)

HNSST−LBNDP qk,s3
Histogram of LBNDP submap (Patch s3)

HNSST−LBNDP qk,s4
Histogram of LBNDP submap (Patch s4)

Ns Total number of subbands

NSST − LBNDP q
k (i, j) Quantized NSST-LBNDP value calculated

for k ∈ [1, Ns]
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List of symbols

ZMρκz ZM over a unit disk of order ρ and repeti-

tion κz

Vρκz(p, q) Zernike orthogonal basis function

V ∗ρκz(p, q) Complex conjugate of Vρκz(p, q)

Rρκz Radial polynomial

pt Normalized coordinate pertaining to loca-

tion (t, u)

qu Normalized coordinate pertaining to loca-

tion (t, u)

ρmax Maximum order

Tc Total number of ZM or order ρmax

s Scale

L Level of NSST decomposition

θ Direction

ξR+1
θ,s,n

Normalized energy values at radius R + 1

ξ
θ,s,n

Normalized energy values at radius R

Dθ,s,n Edge information with respect to each ref-

erence/centre in a given direction θ, scale

s and nth subband

Mi(x, y) Maximum to minimum subband edge dis-

tribution

maxi(p) ith maximum location in p array

NSST −MSLDEP θ,s(x, y) NSST-MSLDEP maps computed in scale s

and in θ direction

HNSST−MSLDEP θ,s(l) Histogram of NSST −MSLDEP θ,s in a

given direction θ and scale s

Fz Features obtained through lower order ZM

of an image

Is SVD applied on image I

U Orthogonal matrix of size M ×M
V Orthogonal matrix of size N ×N
S Diagonal matrix

σs1, ...σsn Singular values for the decomposition

F (r) Weibull distribution for random variable

ν > 0 shape parameter

η > 0 scale parameter
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