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The current accessibility of remote sensing (RS) images has strengthened

the progress of schemes to retrieve high resolution images with complicated ex-

haustive structures and varying spatial resolutions. In last one decade, image

retrieval has received growing awareness in many real-world applications. The

objective of remote sensing image retrieval (RSIR) is to identify relevant images

based on their visual content. However correct retrieval of relevant RS images

is not an easy task. In one RS image, there may exist several specific features

that may elevate the complications of RSIR. For instance, within one RS image

scene there may exist different objects such as ‘Trees’, ‘Parking lot’, ‘Freeway’,

‘Building’ and ‘Vehicle’. And sometimes in a single scene one object may exists

with different scales. Although tremendous efforts in RSIR has been made, it is

still a tough task because of the presence of multiple complicated structures and

spatial patterns.

The Shearlet transform (ST) overcomes the limitations of wavelet trans-

forms and other directional transforms and delivers an optimal sparse description

of an image at different scales and different orientations. Therefore, it becomes an

effective alternative for analysing features of spatial images.

The transform domain statistical modelling based feature extraction tech-

37



Chapter 3. Feature descriptors based on NSST for remote sensing image
retrieval

niques have been quite popular in extracting global features of images. The low

dimensional feature extraction is the main strength of such techniques. The per-

formance of these techniques highly depends on the choice of accurate statistical

models used for approximating the transform coefficients. The accurate statistical

modelling of NSST coefficients using different distributions with reference to RSIR

needs to be studied.

The techniques such as SIFT [97], BoVW [162], LBP [98], CLBP [103],

multi-scale CLBP [104] and EMLBPs [123] etc. are local feature based methods

capable of capturing micro structural details present in the images. The tech-

niques such as GIST [134], Gabor [92], use of color histograms [112], DWT-GGD

[144], global morphological texture descriptors [120], etc captures global or gross

information from the images and are unable to describe dense local details. The

local and global descriptors encode inter-dependent information present in the im-

ages and their blend could enhance the image retrieval performance. In [140], the

both global and local features are combined in order to improve the discrimina-

tive power of features for retrieval of high resolution RS images. However, for an

improved RSIR system, it is important to select efficient visual local and global

features which can complement each other without putting much burden on the

feature dimensions.

In this chapter, we investigate on statistical modeling of high resolution RS

images with reference to RSIR applications. We also investigate on an appropriate

combination of global and local features for improved RSIR without putting much

burden on feature vector dimensions. We introduced the following two techniques

in this chapter:-

1. RSIR via Symmetric normal inverse Gaussian (SNIG) modeling of NSST

coefficients referred to as NSST-SNIG descriptor.

2. RSIR based on 3D-Local Ternary Pattern (3D-LTP) features and NSST do-

main statistical features (NSSTds) referred to as NSSTds-3DLTP descriptor.

3.1 RSIR via SNIG modeling of NSST coeffi-

cients

In this section, we have introduced one image feature descriptor for content based

RSIR in NSST domain by modeling its coefficients using SNIG distribution. The
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heavy-tailed non-Gaussian statistics of NSST detail subband coefficients of noise-

free RS images can be well modeled using SNIG distribution. The four parameter

SNIG distribution can be used to describe a variety of heavy tailed distributions. It

is demonstrated through the Kolmogorov-Smirnov (KS) goodness of fit test, that

the SNIG distribution most closely resembles the statistics of the detail NSST

coefficients. An Expectation-Maximization (EM) kind of approach is utilized to

estimate SNIG parameters in order to compute the Maximum Likelihood (ML)

estimate. The NSST is first applied onto the input RS image and then SNIG pa-

rameters are computed from the image NSST detail subbands to form the feature

vector.

3.1.1 Methodology

Before presenting a detailed discussion on proposed methodology, we present a

brief overview of NSST.

3.1.1.1 Non subsampled shearlet transform (NSST)

ST possess great directional sensitivity and provides optimal sparse representation

of higher-dimensional singularity compared to wavelets. Other multi geometric

analysis approaches like curvelet and contourlet transform are introduced to over-

come the constraints of wavelet. The continuous shearlet system [163] for any

ψ ∈ L2(R2) is given as-

ST (ψ) = ψλ,ωo,τ (x) = λ−3/4ψ(A−1
λ S−1

ωo (x− τ)) (3.1)

where λ > 0, ωo ∈ R, τ ∈ R2. The anisotropic dilation matrix Aλ and

shear transformation matrix Sωo are responsible for controlling the resolution and

orientation respectively and they can be represented as -

Aλ =

[
λ 0

0
√
λ

]
(3.2)
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and

Sωo =

[
1 ωo

0 1

]
(3.3)

According to the dilation matrix Aλ, the x-directional scaling is equal to

the square of the scaling in y-direction. Aλ is the dilation matrix and its general

form is expressed as follows:

Aλ = diag(λ, λa) (3.4)

where λ ∈ (0, 1) is for controlling the degree of anisotropy. For discrete

setting, a = 1/2, is considered. The shearing matrix Sωo controls the orientation

with the help of variables related to slopes rather than the angles. For integer

value of ωo , the integer lattice remains invariant.

(a) (b) (c) 

Figure. 3.1: The geometric impacts of parabolic scaling and shearing with fixed
parameter λ and several parameter ωo (a)ωo = 0 (b)ωo = 1/4 and(c) ωo = 1/2

Fig. 3.1 shows the geometric effects of parabolic scaling and shearing with

fixed parameters λ and ωo. The associated continuous ST of any f ∈ L2(R2) is

given by-

SHψf(λ, ωo, τ) =< f, ψλ,ωo,τ > (3.5)

SHψ maps the function f to the coefficients SHψf(λ, ωo, τ) related with

the variables scale λ > 0, the orientation ωo ∈ R and location τ ∈ R2.

To construct continuous ST connected with a reconstruction formula, ψ
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must be strongly localized and follow admissibility criterion given in [164] as -

∫
R2

|ψ̂(%1, %2)|2

%2
1

d%2d%1 ≤ ∞ (3.6)

Each f ∈ L2(R2) has the representation of the form given as,

f =

∫
Rn

∫ ∞
−∞

∫ ∞
0

(f, ψλ,ωo,τ )ψλ,ωo,τ
dλ

λ3
dωodτ (3.7)

An admissible shearlet is any function ψ, for which ψ̂ is supported away

from origin compactly. For conditions % = (%1, %2) ∈ R̂2, %1 6= 0 the classical

shearlet ψ is given as-

ψ̂(%1, %2) = ψ̂1(%1)ψ̂2(
%2

%1

) (3.8)

According to [165], ψ1 ∈ L2(R) follows the Calderon condition,

∑
j∈Z

|ψ̂1(2−j%)|2 = 1 ∀% ∈ R (3.9)

where supp ψ̂1 ⊂ [−2,−1/2] ∪ [1/2, 2] and ψ2 ∈ L2(R) function is consid-

ered as bump with supp ψ̂2 ⊂ [−1, 1] and

1∑
k=−1

|ψ̂2(%+ k)|2 = 1 ∀% ∈ [−1, 1] (3.10)

The classical shearlet is a function ψ, that behaves wavelet-like along one

axis and bump-like along another. At various scales λ, the frequency support of

each member of classical shearlet ψλ,ωo,τ ,relies on a pair of trapezoids. These are

aligned along a line of slope ωo and are symmetric with respect to the origin.

The continuous shearlet function SHψ is said to be isometry if it follows
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(  λ,ωo)=(1/4,0)
(  λ,ωo)=(1/32,1)

(  λ,ωo)=(1/32,0)

 

 

Figure. 3.2: The frequency support of the classical shearlets ψ̂λ,ωo,τ for different λ and
ωo

the condition given as-

H+
ψ = H−ψ = 1 (3.11)

where H+
ψ =

∫∞
0

∫
R

|ψ̂(%1, %2)|2

%2
1

d%2d%1 and H−ψ =∫ 0

−∞

∫
R

|ψ̂(%1, %2)|2

%2
1

d%2d%1.

The discrete shearlet system can be obtained by sampling the scale, shear

and translation parameters properly as (λ, ωo, τ) = (2−p,−k2−p/2, S−k2−p/2A2−pr)
and defined as

SH(ψ) = ψp,q,r = 23/4pψ(SqA2p − r), p, q ∈ Z, r ∈ Z2 (3.12)

In the same manner, the discrete ST can be defined as -

f → SHψf(p, q, r) =< f, ψp,q,r > (3.13)

Classical shearlet function that shows fast decay both in the spatial and

frequency domain is treated as a, well localized function. This property of classical

shearlets ensure the formation of a frame by discrete shearlet system and hence

results into optimal sparse approximations. The frequency tiling produced by

discrete shearlets ψ̂p,q,r is depicted in Fig. 3.3.

The Laplacian-pyramid algorithm and directional filter are used to obtain

the discrete ST [166]. The directional filter is built with small sized support to

reduce the impact of Gibbs phenomenon and computational complexity. The non-

subsampled Laplacian-pyramid filter (NSLP) was introduced in [167]. NSST is
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𝜚1 

𝜚2 

Figure. 3.3: The frequency tiling induced by the discrete shearlets ψ̂p,q,r

designed by replacing its Laplacian pyramid (LP) with NSLP to improve discrete

ST [168]. In contrast to the ST, the NSST is a shift-invariant ST which can be

expanded to multiple scale and direction. The pseudo-Gibbs situation as well

as shearlet type artifacts are reduced in the subsequent filtering. The iterative

process involved in NSLP is given as -

NSLPp+1I = (Ph1
p

p−1∏
q=1

Ph0
q)I (3.14)

where I, NSLPp+1 are the image and detail coefficients at scale p + 1

respectively. Ph0
q and Ph1

p are the low and high pass filters used in NSLP at scale

p and q respectively. The steps involved in NSST associated with NSLP is shown

below-

Algorithm:

1. Step 1: NSLP is applied to decompose Ip−1
λ into low pass and high pass

image Ipλ and Ipd respectively.

2. Step 2: Compute Îpd in pseudo-polar grid and matrix MIpd is obtained.

3. Step 3: Band pass filters is applied to matrix MIpd to obtain (Îpd,q)
Dp
q=1

4. Step 4: Two dimensional inverse fast Fourier transform is applied to obtain

the discrete ST coefficients (Ipd,q)
Dp
q=1 in pseudo polar grid.

The approximation and detail subbands obtained after decomposing one

RS image are shown in Fig. 3.5. High-frequency and low-frequency coefficients ex-

ist in the NSST detail and approximation subbands, respectively. High frequency

detail coefficients are displayed in Fig. 3.5(d-e) and 3.5(f-i) at the finest scale

(Scale 1) and the following coarsest scale, respectively.
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𝐼(𝑛1, 𝑛2) 𝐼𝑑
1 
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2 

Figure. 3.4: The illustration of the Laplcian filter and directional filtering

(a) Original im-
age

(b) Its grayscale
form

(c) Approxima-
tion subband

(d) 1st Detail
subband (Scale
1)

(e) 2nd Detail
subband (Scale
1)

(f) 1st Detail
subband (Scale
2)

(g) 2nd Detail
subband (Scale
2)

(h) 3rd Detail
subband (Scale
2)

(i) 4th Detail
subband (Scale
2)

Figure. 3.5: Subbands obtained through two-level NSST decomposition of a sample
RS image

3.1.1.2 Proposed methodology

Histogram plots of two RS images’ NSST detail subbands are shown in Fig. 3.6

From Fig. 3.6, it is seen that the statistics of image NSST detail subband

coefficients have a sharp peak near zero with quite heavy tails. This indicates that

most of the NSST coefficients in a subband are equal to zero and the subband

coefficients can be best modeled using some highly non-Gaussian distributions.

We present a RSIR scheme called NSST-SNIG which is based on statistical

modeling of NSST coefficients using SNIG distribution, in this subsection.

The block diagram of RSIR technique with the NSST-SNIG feature de-
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Figure. 3.6: (a-c) and (d-f) shows the plots corresponding to the NSST detail subbands
of image 1 and image 2 from WHU-RS19 respectively

scriptor is presented in Fig. 3.7.

The NSST coefficients’ heavy tail nature can be modelled by the SNIG

[169]. This distribution has four parameters and is closed-form flexible [170].

Considering the normal distribution N(µm, σ
2) with variance σ2, mean µm and

Inverse Gaussian distribution IG(κ, δ) with variance V (y) =
δ

κ3
and E(y) =

δ

κ
as mean, the probability density function (pdf) of inverse Gaussian (IG) can be

expressed as [170],

fIG(y) =
δ√
2π
e(δκ)y−3/2e

−1/2(
δ2

y
+κ2y)

(3.15)

If N(µm + βy, y) denotes the conditional distribution of c given y and if

y obeys itself as an IG(κ, δ) ,then the combined distribution that results is the

SNIG(α, β, µm, δ) with α =
√
κ2 + β2. The pdf of SNIG is [170]

h(c;α, β, µm, δ) =
α

π
e(δ
√
α2−β2−βµm)φ(c)−1/2K1(δαφ(c)1/2)e(βc) (3.16)
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Figure. 3.7: Block diagram of the NSST-SNIG based feature extraction approach

with

φ(c) = 1 + [
c− µm
δ

]2 (3.17)

The Kb(c) represents the 3rd kind modified Bessel function of order b.

The KS goodness of fit test is taken into account to support the usage

of SNIG in the modeling of NSST coefficients. For the ML estimate of SNIG

parameters, [170], an EM kind of method is utilized as follows:

In EM type of algorithm, there are two main steps. First one is E step

followed by M step. In case of E step, the set of parameters to be estimated are

considered as ϕ = (α, β, µm, δ). These ϕ(k) are the values of the parameters after

the kth iteration, then the pseudovalues Si and wi are calculated as

Si = E(yi|ci, ϕ(k)) =
δkφ(k)(ci)

1/2Ko(δ
(k)α(k)φ(k)(ci)

1/2)

α(k)K1(δ(k)α(k)φ(k)(ci)1/2)

wi = E(y−1
i |ci, ϕ(k)) =

α(k)K−2(δ(k)α(k)φ(k)(ci)
1/2)

δ(k)φ(k)(ci)1/2K−1(δ(k)α(k)φ(k)(ci)1/2)

for i = 1, 2, .....n. where φ(k)(c) = 1 + [
(c− µ(k)

m )

δ(k)
]2
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3.1. RSIR via SNIG modeling of NSST coefficients

Using the derived pseudovalues from the E-step, the M step adjusts the

parameters. Compute M̂ =
∑n

i=1

Si
n

and ∧̂ = n(
∑n

i=1(wi−M̂−1))−1. The following

equations are utilized to update the parameters:

δ(k+1) = ∧̂1/2

γ(k+1) =
δ(k+1)

M̂

β(k+1) =

∑n
i=1 ciwi − c̄

∑n
i=1 wi

n− S̄
∑n

i=1wi

µ(k+1)
m = c̄− β(k+1)S̄

α(k+1) = [(γ(k+1))2 + (β(k+1))2]1/2

where S̄ =
∑n

i=1

Si
n

.

This algorithm’s initial values are calculated employing the moment-based

approach ([171]). The EM operation is applied repeatedly until the parameters

converges.

The empirical cumulative distribution function (ECDF) for a given dataset

and the specified model cumulative distribution function (CDF) are compared

using KS test statistics [171]. The KS test is defined as[171–173]

KSres = max
c∈N
|F (c)− F̃ (c)| (3.18)

where the model CDF and ECDF are represented by F (c) and F̃ (c), respectively.

The distribution whose value of KSres is lowest is regarded as having the best fit to

the data. The average KS statistics obtained from few RS image NSST subband

are presented in Table 3.1. In Fig. 3.8, the log histogram of one of the finest

NSST detail subbands for six images from three different databases are shown.

The distributions such as Bessel K form (BKF), laplacian and SNIG pdf’s are

fitted to this empirical histogram in logarithmic domain. Both Table 3.1 and Fig.

3.8 make it evident that SNIG is preferable to all other pdfs like Laplacian and
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Table 3.1: Average KS statistics for a few RS images

N
S
S
T

d
ec

om
p

os
it

io
n

pdf Laplacian BKF SNIG

L
ev

el
1

0.0417 0.0798 0.0298
0.0408 0.0844 0.0260
0.0381 0.0845 0.0285
0.0360 0.0986 0.0282
0.0406 0.0873 0.0284
0.0467 0.0140 0.0277
0.0418 0.0836 0.0285
0.0343 0.0883 0.0286

2
0.0489 0.0625 0.0271
0.0402 0.0767 0.0296
0.0458 0.0643 0.0267
0.0499 0.0632 0.0280

3

0.0514 0.0619 0.0326
0.0548 0.0506 0.0314

BKF for estimating the NSST coefficient statistics.

Features from one approximation subband and N1 total detail subbands

are combined to generate the feature vector as follows:

FV = [α1, β1, µm1 , δ1, ......................αN1 , βN1 , µmN1
, δN1 , µA, σA] (3.19)

where α1, β1, µm1 , and δ1 are the SNIG parameters from the 1st NSST

detail subband; similarly, αN1 , βN1 , µmN1
, and δN1 are parameters of N th

1 subband.

The µA is the mean of NSST approximation subband and σA is its standard

deviation.

After extracting the features, the similarity measurement is used to de-

tect similar images related to a particular query. The query and database image

features are compared for similarity. In the NSST-SNIG framework, d1 distance

is used to provide the best results when compared to other distance measures for

determining similarity.

The following is NSST-SNIG feature extraction algorithm in an image

retrieval framework:

Algorithm: RSIR approach with NSST detail subbands modeling using SNIG.

Require: Input: Query image: Output: nT number of images retrieved
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Figure. 3.8: The Laplacian, BKF and SNIG pdf’s fitted to the empirical histogram
in log state for one finest NSST subband of six different images (Two each from WHU-
RS19, AID and PatternNet)
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1. Load the input RS image and convert it to grayscale if it is a color image.

2. Decompose the RS images with NSST to obtain different subbands.

3. Model the NSST detail coefficients with SNIG distribution and estimate the

SNIG parameters using EM type of approach

4. Extract the µA and σA from approximation subband and combine it with

features obtained from step 3 to construct the final feature vector.

5. Compute d1 distance for similarity measurement between features of query

and database images.

6. Retrieve the final nT number of images based on the shortest matching

distance calculated.

3.1.2 Experimental results

In this subsection, the dataset used for the experiments, the performance assess-

ment metrics employed, and the similarity distance metrics employed are elabo-

rated before the discussion of the experimental outcomes achieved.

3.1.2.1 Datasets considered

For the experiments we have considered three publicly available RS image datasets-

WHU-RS19, Aerial image dataset (AID) and PatternNet dataset. The details

about these three datasets are presented in Table 3.2.

S.No. Database Total images No. of classes Image size
1. WHU-RS19 1005 19 600× 600
2. AID 10000 30 600× 600
3. PatternNet 30400 38 256× 256

Table 3.2: Databases used in the experiments

• WHU-RS19 dataset : This dataset is comprised of Google Earth satellite

images. These images have a resolution of up to 0.5 meters. This collection

includes a total of 19 distinct image classes taken from various locations
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3.1. RSIR via SNIG modeling of NSST coefficients

utilizing satellite images with varying resolutions, scale, orientation, and

illumination [174, 175]. In the Fig. 3.9, example image of each class of the

dataset is presented.

Figure. 3.9: The sample image taken from individual classes of WHU-RS19 dataset

• Aerial Image Dataset (AID): One of the most extensive collections of an-

notated aerial images, AID [176, 177] contains 10000 images in 30 classes.

The RS images in this dataset were created using multiple imaging sensors

at different times and under different imaging conditions. This results in

less intra-scale variance and more inter-class variation, while also making it

more difficult to correctly retrieve identical images. Each class has roughly

220-420 images with size 600 × 600. This extensive aerial dataset’s images

are taken from Google Earth imagery in a chosen manner. Fig. 3.10 presents

an example image for each AID class.

Figure. 3.10: The sample image taken from individual classes of AID dataset
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Figure. 3.11: The sample image taken from individual classes of PattenNet dataset

• PatternNet : PatternNet [178,179] is the largest high resolution RS dataset

available, with a total of 30400 photos evenly distributed into 38 different

image classes. These images have a size of 256× 256. This dataset’s images

were compiled from Google Earth imagery or the Google MAP API of several

US cities. In Fig. 3.11 examples of each class in this dataset are displayed.

3.1.2.2 Performance evaluation measures

The NSST-SNIG’s retrieval performance is measured using three performance as-

sessment metrics: average normalized modified retrieval rank (ANMRR), mean

average precision (MAP), and precision-recall (P-R) graph. The details of these

evaluation measures are discussed below.

1. ANMRR:

ANMRR is a popular performance evaluation measure for evaluating the

effectiveness of retrieval performance in MPEG-7 standard, particularly in

the field of RSIR techniques. ANMRR values vary from 0to1. A lower value

for the ANMRR is indicative of a high level of retrieval accuracy [180].

Gr(q1) specifies the dimensions of the ground truth images for each query

image (q1), and the ground truth image at the kth position is retrieved at

Rank(k). The admissible image ranks are then stated as K(q1), which is
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3.1. RSIR via SNIG modeling of NSST coefficients

twice Gr(q1), and images with higher ranks are penalized as follows:

Rank(o) =

Rank(o) if Rank(o) < K(q1)

1.25K(q1) if Rank(o) > K(q1)
(3.20)

For q1, the average rank (Ar) is given as:

Ar(q1) =
1

Gr(q1)

Gr(q1)∑
o=1

Rank(o) (3.21)

The normalization is computed to control the effect of varying number of

ground truths of query image and further averaged averaged for all query

images NQ to compute ANMRR:

ANMRR =
1

NQ

NQ∑
q1=1

Ar(q1)− 0.5[1 +Gr(q1)]

1.25K(q1)− 0.5[1 +Gr(q1)]
(3.22)

2. MAP:

The MAP is one method for aggregating the P-R curve into a single num-

ber that determines the rank position of every ground truth. Let us

consider,Prave(q1) represents the average precision for every query image

q1, which is simply the average of the precision values for all of the relevant

items:

Prave(q1) =

∑n
k=1 (Pr(k) ∗ rel(k))

No. of relevant images
(3.23)

where rel(k) denotes a function which outputs 1 if the item at kth rank is

valid or relevant else outputs 0. The Pr(k) denotes the precision at k. The

Prave values over all query items lastly provides the MAP:

MAP =

∑NQ
q1=1 Prave(q1)

NQ

(3.24)

The MAP value ranges between 0 and 100. A higher MAP value indicates

that the descriptor has greater retrieval performance[180,181]. The example

computation of MAP for two queries for top 10 retrieved cases are shown in

Fig. 3.12.

3. P-R curve

Precision and recall are both commonly employed for assessing the effec-

tiveness of image retrieval systems. Precision is the ratio of relevant images
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1 0.5 0.67 0.5 0.4 0.5 0.57 0.5 0.55 0.6 Precision 

Top 10 retrieved image 

Relevant images for a query 1 

1 0.5 0.67 0.5 0.4 0.33 0.29 0.25 0.33 0.30 Precision 

Top 10 retrieved image 

Relevant images for a query 2 

Average precision (Query 1) = 
1+0.67+0.5+0.57+0.55+0.6

6
=0.65  

Average precision (Query 2) = 
1+0.67+0.33

3
= 0.67 

Mean average precision (MAP)=  
0.65 + 0.67

2
= 0.67 

Figure. 3.12: Example computation of MAP considering two query images with
different number of relevant images in dataset

retrieved to the total number of images retrieved, whereas the term ‘recall’

refers to the ratio of relevant images that were successfully retrieved to the

total number of relevant images contained in the database. The descriptor

with the biggest area under the curve implies high precision and strong re-

call, which demonstrates more results relevancy and enhanced retrieval of

proper relevant images [180].

3.1.2.3 Distance measures used for similarity assessment

The distance between features extracted from query and database images is de-

termined by similarity measurement, which is essential in a CBIR system. After

the measurements are calculated, the distance values are organized in ascending

order. Different distance metrics, such as d1, Euclidean, Manhattan, Chi-square,

and Canberra, are used to determine how similar two images are.

• d1 distance

D(Iq, DBk) =

Fl∑
j=1

|
FDBkj − FIqj

1 + FDBkj + FIqj
| (3.25)
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• Euclidean distance

D(Iq, DBk) =

√√√√ Fl∑
j=1

(FDBkj − FIqj)2 (3.26)

• Manhattan distance

D(Iq, DBk) =

Fl∑
j=1

|FDBkj − FIqj | (3.27)

• Chi− square distance

D(Iq, DBk) =
1

2

Fl∑
j=1

(FDBkj − FIqj)
2

FDBkj + FIqj
(3.28)

• Canberra distance

D(Iq, DBk) =

Fl∑
j=1

|FDBkj − FIqj |
|FDBkj |+ |FIqj |

(3.29)

D(Iq, DBk) measures the distance between the query image Iq and the

database’s kth image. The feature vector has a length of Fl. The jth feature of the

kth image of the database and the query image, respectively, are FDBkj and FIqj .

3.1.2.4 Results obtained

In the experiments, 3 levels of decomposition with NSST in the 1,2,3 directions are

used, which yields 1 approximation and 14 detail subbands. In order to evaluate

how effectively the NSST-SNIG descriptor retrieves images, it is compared to

six other well-known low-dimensional local and global hand-crafted descriptors.

The WHU-RS19, AID and PatternNet datasets are considered to perform all the

experiments.

Table 3.3 presents the comparison of the performance of NSST-SNIG with

that of LBP[182, 183], Granulometry[184], Gabor L[185], Gabor RGB[186], and

FV[187] for WHU-RS19 dataset. It is observed that the NSST-SNIG outperforms

the other methods for WHU-RS19 both in terms of MAP and ANMRR. The Ta-

ble 3.4 presents the ANMRR and MAP values obtained for AID and PatternNet
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Table 3.3: Retrieval performance comparison of ANMRR and MAP in WHU-RS19

Dataset Methods MAP ANMRR FD

W
H

U
-R

S
19

LBP [182,183] 23.55 0.674 256
Granulometry [184] 21.41 0.717 78
Gabor L [185] 25.47 0.658 32
Gabor RGB [186] 27.00 0.649 96
FV [187] 19.33 0.726 512
NSST-SNIG 28.35 0.584 58

Table 3.4: Retrieval performance comparison for AID and PatternNet datasets in
terms of ANMRR and MAP

Dataset Methods MAP ANMRR Dataset Methods MAP ANMRR
AID LBP [182,183] 10.36 0.857 PatternNet LBP [182,183] 29.99 0.686

Granulometry [184] 9.04 0.877 Granulometry [184] 14.60 0.817
Gabor L [185] 10.79 0.916 Gabor L [185] 17.43 0.851
Gabor RGB [186] 11.69 0.843 Gabor RGB [186] 26.53 0.686
FV [187] 16.40 0.748 FV [187] 19.23 0.760
NSST-SNIG 12.40 0.707 NSST-SNIG 31.52 0.638

dataset. It is observed that for PatternNet, NSST-SNIG obtains clearly outper-

forming values compared to all other approaches taken for comparison. However

for AID dataset, the NSST-SNIG, shows inferior results compared to FV and

shows better values compared to other techniques. FV is very good at capturing

local details and AID dataset contains a great number of images that contain more

of local details compared to global textures which is directly evident from the re-

sults presented in Table 3.4 and Fig. 3.14. In addition, Table 3.3 also displays

the feature vector dimensions of the NSST-SNIG and all other methods compared

in this study. It is observed that NSST-SNIG outperforms LBP, Granulometry,

Gabor L, Gabor RGB, and FV in terms of all performance evaluation parameters

while having a lesser dimensionality of feature vectors. Even though the proposed

method has a slightly larger number of feature vectors than Gabor L, it works

much better than Gabor L.

The Fig.s 3.13, 3.14 and 3.15 presents the average precision values ob-

tained for each image classes of WHU-RS19, AID and PatternNet dataset respec-

tively. These average precision values are calculated considering 20 trials of 20

randomly selected images for top 20 retrieved images. The Fig.s 3.13-3.15 show

the superiority of proposed NSST-SNIG over other feature descriptors for most

of the individual classes. NSST-SNIG shows better performance for individual

classes beach, desert, football field, forest, meadow of WHU-RS19 dataset. For

AID dataset, the NSST-SNIG showed better average precision for image classes

such as bareland, beach, forest, meadow, medium residential, railway station and

sparse residential. For PatternNet dataset, the average precision value is found to
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Figure. 3.13: The per class average precision comparison of various schemes for
WHU-RS19
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Figure. 3.14: The per class average precision comparison of various schemes for AID
dataset

be better for image classes such as airplane, beach, forest, harbor, cemetary, cha-

parral, coastal mansion, christmas tree farm, dense residential, runway, shipping

yard, ferry terminal, mobile homepark, parking lot, sparse residential, swimming

pool and wastewater treatment plant. It is observed that the NSST-SNIG in most

of the cases performs better for the image classes having more amount of textures

as well as high scale attributes such as forest, dense residential, beach, bareland
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Figure. 3.15: The per class average precision comparison of various schemes for
PatternNet dataset

etc. and shows inferior results for the classes such as intersection, baseball, railway,

storage tank, parking, golf course, church etc. This shows that the NSST-SNIG

has limitations in capturing local image features.

Fig. 3.16(a-c) presents the P-R curve for WHU-RS19, AID and PatternNet

dataset. From these curves, it is observed that the P-R curve for NSST-SNIG

shows the superiority over LBP, Granulometry, Gabor L, Gabor RGB, and FV

for both WHU-RS19 and PatternNet datasets. In case of AID, except for FV, the

NSST-SNIG shows similar trend over all other descriptors.

In Table 3.5, the total retrieval time required for the three considered RS

datasets are presented. The total retrieval time for a certain dataset is calculated

by estimating how long it would take to match the query image with each image

in the dataset. The feature dimensions play a major role in this calculation. It

has been observed that the total retrieval time for NSST-SNIG is less than LBP,

Granulometry, Gabor RGB and FV, as these techniques posses higher feature

dimension compared to NSST-SNIG. Similar trend is observed for all the datasets.

A few instances of image queries from various classes and their related

retrieved results utilizing the proposed NSST-SNIG descriptor (for WHU-RS19)

are shown in Fig. 3.17.The proposed descriptor is able to correctly retrieve im-

ages from certain classes (beach, bridge, desert, farmland, river, and pond) when

given an image from that class as a query with the exception of the classes in-
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Figure. 3.16: The P-R curve for (a)WHU-RS19, (b)AID and (c) PatternNet dataset
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Table 3.5: Comparison of total retrieval time (in seconds) of the NSST-SNIG with
other techniques

M
et

h
o
d

L
B

P

G
ra

n
u
lo

m
et

ry

G
ab

or
L

G
ab

or
R

G
B

F
V

N
S
S
T

-S
N

IG

WHU-RS19 2.74 1.77 1.42 2.19 4.59 1.54
AID 8.71 3.49 2.51 6.41 11.01 4.32
PatternNet 10.45 7.12 4.28 7.86 19.47 6.08

Figure. 3.17: Images retrieved for some of the classes of WHU-RS19 dataset(The
black-bordered query image is on the left, while the top five retrieval results are on the
right.)

60



3.2. RSIR based on 3D-LTP features and NSST domain statistical features

dustrial, viaduct and mountain, which provides one incorrect retrieved result. For

‘industrial’ class, one image from ‘residential’ class is wrongly retrieved. For the

image class ‘viaduct’, one image from ’Railway’ class is wrongly retrieved. Again,

one image from ‘forest’ gets retrieved incorrectly for query image from ‘moun-

tain’ class. It is observed that for image classes, beach, bridge, desert, farmland,

river, and pond, the NSST-SNIG descriptor retrieves images correctly, however,

the NSST-SNIG performs poorly on the classes industrial, viaduct, and mountain,

with at least one incorrect retrieval result observed in each of these classes (Fig.

3.17).

3.2 RSIR based on 3D-LTP features and NSST

domain statistical features

The combination of suitable local and global features is found to be successful in

enhancing the retrieval/classification results as they both carry complementary

details. Some techniques fail to capture discriminative information from high

resolution images where the presence of few major structural details dominate the

image class. In these circumstances, blending of local and global features has been

observed to work better. Different approaches are presented where combination

of local and global features are utilized for extraction of discriminative details

from images [141, 142]. In [188], it is discussed that the retrieval performance

improvement is not always guaranteed by the combination of visual attributes.

Complementary visual attributes should be extracted from high resolution images

in order to improve retrieval efficiency without increasing the feature dimension.

In this work, the features of high-resolution RS images are extracted using

a combination of global NSST - domain statistical features (NSSTds) and local

three dimensional local ternary pattern (3D-LTP) features. We use a 2-state LM

distribution to model the statistics of NSST detail subband coefficients and the

EM approach is employed to compute its three parameters. In order to include

more statistical information of NSST coefficients, in addition to 2-state LM pa-

rameters we also compute kurtosis and skewness from detail subbands and mean as

well as standard deviation from approximation subband. We then concatenate all

of these statistical parameters together to form NSSTds features. The many char-

acteristics of NSST, including multiscale, localization, and adjustable directional

sensitivity, make it an appropriate option for providing an accurate approxima-

tion of an image. A new 3D-LTP is introduced for the purpose of capturing the
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dense local details. Spatial RGB planes of the input image are used to calculate

the 3D-LTP. The suggested inter-channel 3D-LTP captures both color and local

texture information. At last, a blended feature description i.e. NSSTds-3DLTP

is suggested to improve the discriminative power of features by combining global

(NSSTds) and local (3D-LTP) features.

3.2.1 Methodology

This subsection elaborates on the proposed NSSTds-3DLTP framework for RSIR

application. The framework comprise of two important parts: The first mod-

ule creates global NSSTds features using statistical parameters from the NSST

domain, while the second module computes local 3D-LTP features using RGB

channels.

The block diagram of NSSTds-3DLTP based framework is presented in

Fig. 3.18.

3.2.1.1 Calculation of NSST domain statistical features (NSSTds)

By comparing the similarity between statistical models, the texture discrimina-

tion problem can be addressed with substantially less dimensions when statistics

of transform coefficients are statistically modelled using statistical distributions.

This method is highly successful and relatively simpler to use. For image retrieval,

the distribution of image transform coefficients has been modelled using paramet-

ric distributions [181, 188]. Frequent use of statistical modeling of images in the

wavelet transform domain is observed in the literature. Applications for image

retrieval have effectively used various non-Gaussian distributions like generalized

Gamma [189], Laplacian, Cauchy etc. Images having linear singularities cannot

be described well by the discrete wavelet transform. The MGA tools like shearlet,

which was also discussed in previous section, give a solution for the aforemen-

tioned issue because these transforms offer an excellent sparse representation for

singularities of higher dimensions.

In earlier research, it was shown that the RS images’ NSST detail coef-

ficients conform to strongly non-Gaussian statistics and the SNIG distribution is

preferable to other non- Gaussian distributions like laplacian and BKF models

for modeling the NSST detail coefficients. The ability of LM model to capture

the large tails of non-Gaussian empirical data is well established [171]. When
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two Laplacian distributions are combined, the tails degenerate more slowly than

the tail of a single Laplacian distribution. The likelihood of correctly estimating

each parameter decreases with the increase in number of parameters to be evalu-

ated, even though a mixture of three or more Laplacian distributions may produce

heavier tails than either a single Laplacian distribution or a mixture of two Lapla-

cian distributions. As a result, we considered about using a 2-state LM model to

simulate the statistics of NSST subband coefficients of RS images[171,190].

The 2-state LM distribution or model refers to the mixing of two inde-

pendent Laplacian distributions. Let Px(j)(x(j)) indicate a 2-state LM model for

modeling the image NSST detail coefficients x(j), where j=1,2........NT and NT is

the no. of set of coefficients [171]:

Px(j)(x(j)) = ω(j)P1(x(j)) + (1− ω(j))P2(x(j)) (3.30)

where ω(j) and (1− ω(j)) represent the weights of two distinct Laplacian

pdf’s P1(x(j)) and P2(x(j)) respectively.

When P1(x(j)) = 1
σ1(j)

√
2
e
−
√
2|x(j)|
σ1(j) and P2(x(j)) = 1

σ2(j)
√

2
e
−
√
2|x(j)|
σ2(j) , (3.30)

can be expressed as:

Px(j)(x(j)) = ω(j)
1

σ1(j)
√

2
e

−
√

2|x(j)|
σ1(j) + (1− ω(j))

1

σ2(j)
√

2
e

−
√

2|x(j)|
σ2(j) (3.31)

To estimate the parameters of the 2-state LM distribution, the parameters

σ1, σ2, and ω are first initialized where σ1, σ2 are the standard deviations of P1 and

P2 respectively. The EM computation procedures are then iteratively performed

until the condition of convergence is satisfied [171,190].

Expectation procedure: Here, the responsibility element r1(j) is calculated

for each iteration using:

r1(j)← ω(j)P1(x(j))

ω(j)P1(x(j)) + (1− ω(j))P2(x(j))
(3.32)

and

r2(j)← (1− r1(j)) (3.33)
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Table 3.6: Average KS test values for a few RS images

N
S
S
T

d
ec

om
p

os
it

io
n

pdf Laplacian BKF SNIG LMM

L
ev

el
1

0.041 0.079 0.029 0.013
0.048 0.084 0.026 0.014
0.038 0.084 0.028 0.013
0.036 0.098 0.028 0.013
0.040 0.087 0.028 0.016
0.046 0.014 0.027 0.014
0.041 0.083 0.028 0.016
0.034 0.088 0.028 0.015

2

0.048 0.062 0.027 0.016
0.040 0.076 0.029 0.019
0.045 0.064 0.026 0.017
0.049 0.063 0.028 0.018

3 0.051 0.061 0.032 0.013
0.054 0.050 0.031 0.012

The elements of responsibility must guarantee that r1(j) + r2(j) = 1.

Maximization operation: Here, ω(j) is calculated using:

ω(j)← 1

Nm

∑
i∈Nm(j)

r1(i) (3.34)

where Nm(j) stands for a square-shaped local window that contains Nm

coefficients and is positioned at x(j). The σ1(j) and σ2(j) values are derived using:

σ2
1(j) =

∑
i∈Nm(j)

r1(i)|x(j)|2∑
i∈Nm(j)

r1(i)
(3.35)

σ2
2(j) =

∑
i∈Nm(j)

r2(i)|x(j)|2∑
i∈Nm(j)

r2(i)
(3.36)

With the Laplacian, BKF, and SNIG as viable models, we conduct a KS

goodness-of-fit test to support the usage of the 2-state LM model for modelling

the statistics of NSST coefficients.

The average KS test statistics for RS images are shown in Table 3.6. We

use a 3-level NSST decomposition (with 1, 2, and 3 directions) to execute the KS

test. Twenty random images from different classifications were used in the KS
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test, including ‘Airport’,‘Beach’,‘Farmland’,‘Bridge’,‘Commercial’,‘Footballfield’,

‘Desert’,‘Industrial’,‘Forest’, ‘Park’,‘Meadow’,‘River’,‘Pond’ and ‘Railway’. The

2-state LM model has the smallest KS test result for the majority of subbands,

which suggests that it more closely resembles the actual subband coefficients than

the Laplacian, BKF and SNIG distributions.

In addition to the KS test, we used the histogram plots (Fig. 3.19) of

different detail subbands of the NSST, where Laplacian, BKF, SNIG, and LM

model pdf’s are fitted in log domain, to show that the 2-state LM distribution

is a good fit for modelling the image NSST detail coefficients. As shown in Fig.

3.19, the 2-state LM distribution performs better than other statistical models in

approximating the statistics of high frequency detail coefficients. In comparison

to the Laplacian, BKF, and SNIG distributions, the 2-state LM model provides

the best match, as demonstrated by both Fig. 3.19(through log histogram plots)

and Table 3.6(through KS test statistic).

Three parameters (σ1, σ2, and ω) of 2-state LM model can be used to

fully characterize the pdf of NSST coefficients in each subband. To explain the

specific NSST subband coefficients, we employ two additional statistical parame-

ters: skewness (s) and kurtosis (κ). The skewness and kurtosis give information

about the symmetry and peakedness of the distribution, respectively. We use the

following equations to get the sample skewness and kurtosis for a given sample of

n values:

s =
1
n

∑n
i=1 (xi − x)

3[
1
n

∑n
i=1 (xi − x)

2
]3/2

(3.37)

κ =
1
n

∑n
i=1 (xi − x)

4[
1
n

∑n
i=1 (xi − x)

2
]2 (3.38)

where xi and x denotes the ith value of x and the sample mean respectively.

To describe the statistics of an approximation subband, we use the mean

((µA) and the standard deviation (σA).

σ =

√√√√ 1

n

n∑
i=1

(xi − x)

2

(3.39)
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Figure. 3.19: Log histogram of one finest NSST subband of six different images (Two
each from WHU-RS19, AID and PatternNet) where Laplacian, BKF, SNIG, and LM
pdfs fitted to empirical histogram in log domain
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µ =
1

n

(
n∑
i=1

xi

)
(3.40)

We compute skewness (s), kurtosis (κ) and 2-state LM distribution param-

eters from detail subbands along with the estimated mean and standard deviation

from the approximation subband. Finally we concatenate them together to form

the NSSTds descriptor as : F1 = [(σ1(i), σ2(i), ω(i), s(i), κ(i)), µA, σA]i∈(1,Ns) (Ns is

the total no. of detail subbands.

3.2.1.2 Computation of Inter-channel 3D-LTP features

The NSST introduced in the previous section captures the global information.

The image’s fine arrangement and observable components, which are normally

best described using local features, are overlooked by the global feature-based

description. For example, a few land use and land cover classes are predominantly

represented by discrete objects like baseball fields and storage tanks. To address

this problem, we introduce a novel 3D-LTP-based method [191], which is directly

applied to the spatial RGB color channels.

The following benefits motivated us to extend LTP to 3D-LTP:

1. Given R, G and B planes of a color image, the 3D-LTP uses the association

between a reference intensity value in a given plane and its neighboring

intensities in the next neighboring plane w.r.t the same reference position in

order to capture the color cue details.

2. As 3D-LTP is able to extract the above mentioned local associationship

between the inter R,G and B planes, this procedure acts as a high pass

filter which enables the catching of local intensity differences in a particular

direction.

The widely used and traditional LBP technique, as described in [192],

computes an LBP value by comparing a center pixel to all of its neighbors in a

circular neighborhood, and then assigning a 0/1 to each neighbor based on the

difference between the center pixel and neighboring pixels as follows:

LBPR,T =
T∑
i=1

2i−1f (I(pi)− I(pc)) (3.41)
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f(x) =

1 x ≥ 0

0 else
(3.42)

where I(pc) is the center pixel value, I(pi) are the neighboring values, T

denotes the total no. of neighbors and R is the neighborhood radius.

Tan and Triggs proposed LTP [105],in which the function f(x) is obtained

as follows:

f(x, I(pc), th) =


+1 x ≥ I(pc) + th

0 |x− I(pc)| < th

−1 x ≤ I(pc) − th

(3.43)

where x = (I(pi)− I(pc)).

Fig. 3.20 presents the example computation of LBP and LTP.
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Figure. 3.20: Illustration of LBP and LTP computation for an example image

Since LTP provides a three-valued code to the difference between the cen-

ter pixel and its surrounding pixels, it is able to capture image details better than

LBP.
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The extension to 3D-LTP encodes the local texture information of a color

image in addition to the color cue information. As seen in the example com-

putation in Fig. 3.21, the inter-channel 3D-LTP generates six pattern images

from an RGB color image. The center/reference pixel in the R channel and its G

channel neighbors are taken into account during the R channel’s encoding. The

center/reference pixel in the G channel is examined along with its neighbors from

the B channel, whereas the center/reference pixel in the B channel is examined

along with its neighbors from the R channel. The 3D-LTP-formed pattern images

are shown in Fig. 3.22. An upper and a lower LTP are obtained by calculating

the inter channel LTP for each R-G, G-B, and B-R combination. As a result,

three upper LTPs and three lower LTPs are produced by the R-G, G-B, and B-R

combinations, for a total of six pattern representations.
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Figure. 3.21: A sample example for 3D-LTP calculation

In 3D-LTP, in order to reduce the feature dimensions, we simply recognize

and examine the‘uniform’ patterns. The term ‘uniform’ in this context refers to the

uniform appearance of 3D LTP, that is, patterns with two or fewer discontinuities

in circular binary representation; other patterns are referred to as ‘non-uniform’

[182,183]. Given that it only contains two bitwise 0/1 transitions, 00010000 is an

example of a uniform pattern, whereas 00101001 is a non-uniform pattern with
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several spatial transitions. These ‘uniform’ patterns have been shown to represent

the majority of patterns that correspond to important characteristics like edges,

textures, etc. There are 58 different ‘uniform’ patterns for an image with R=1

and T=8.

(a) (b) (c) (d) (e)

(f) (g)

Figure. 3.22: The resultant pattern maps generated from an example image us-
ing 3D-LTP operation (a) Original image (b) Upper-LTP pattern map generated from
R-channel, (c)Lower-LTP pattern map generated from R-channel,(d) Upper-LTP pat-
tern map generated from G-channel,(e) Lower-LTP pattern image generated from G-
channel,(f) Upper-LTP pattern map generated from B-channel,(g)Lower-LTP pattern
map generated from B-channel

3.2.1.3 Fusion of NSSTds and 3D-LTP features

To achieve the best results when describing a scene with intricate patterns and

spatial structures, it is common to combine complementary aspects such as local

and global features. We provide a blended feature representation based on NSSTds

and 3D-LTP for retrieving RS images.

F1 = [(σp1(i), σp2(i), ω(i), s(i), κ(i)), µA, σA]i∈(1,Ns) and F2 are the statistical

features (NSSTds) extracted from NSST subbands and ‘uniform’ 3DLTP features

extracted from RGB channels. This two feature vectors are concatenated together

to form the final feature vector as F = [F1, F2].

By decomposing the RS images with 4-level NSST with 3,3,4,4 directions,

a total of 48 detail and 1 approximation subband is obtained. From the detail

subbands, 5×48 = 240 features are extracted. Hence a total 242 (240+2) features

are obtained from both detail and approximation subband. From 3DLTP, six

pattern maps are obtained (3.22). From this six pattern images, a total of (59×
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6) = 354 features are generated. Hence, the final fused NSSTds-3DLTP descriptor

possess a feature dimension of length 242 + 354 = 596 .

The steps of NSSTds-3DLTP feature extraction operation in an image

retrieval structure are summarized as follows :

Algorithm: RSIR with modeling the NSST detail coefficients with 2-state LMM

distribution Require: Input: Query image; Output: nT ‘ number of images re-

trieved.

1. Load the RS image and convert it into grayscale image if the input image is

a colored one.

2. Decompose the gray scale query image using NSST

3. Concatenate the extracted 2-state LMM parameters, kurtosis, and skewness

from each NSST detail subband with the mean and standard deviation from

the approximation subband to create the feature vector F1.

4. Calculate the 3D-LTP features based on the R,G,B color channels of the

original RS image to produce the feature vector F2.

5. Combine NSST-domain statistical features (NSSTds) and the 3D-LTP based

features to create the final feature vector set. F = [F1, F2] after normaliza-

tion

6. Retrieve similar images using d1 as the similarity measurement distance

3.2.2 Experimental results and discussion

This section offers experimental results that show how effectively the NSSTds-

3DLTP perform in a image retrieval framework.Prior to providing the database

data, the experimental circumstances are presented. The experimental findings

and analyses are then provided, in which the NSSTds-3DLTP is compared with a

number of well-known descriptors. The experiments make use of three datasets of

RS images that are openly accessible. The datasets’ specifics are shown in Table

3.2.
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The effectiveness of the NSSTds-3DLTP is assessed for each database in

terms of MAP and ANMRR in comparison to Gabor RGB [193], Granulometry

[184], LBP [98], FV [194], VLAD [195], and MRELBP [129] (Table 3.7-3.8). .

Table 3.7: Retrieval performance comparison of NSSTds-3DLTP with other schemes
for WHU-RS19

Dataset Descriptors MAP ANMRR

WHU-RS19

Gabor RGB [186] 31.69 0.570
Granulometry [184] 23.39 0.670
LBP [182,183] 24.06 0.663
FV [187] 38.06 0.532
VLAD [195] 41.28 0.561
MRELBP [129] 38.91 0.520
NSSTds 38.71 0.499
3D-LTP 32.85 0.576
NSSTds-3DLTP 44.98 0.451

Table 3.8: Retrieval performance comparison of NSSTds-3DLTP with other schemes
for AID and PatternNet

Dataset Descriptors MAP ANMRR Dataset Descriptors MAP ANMRR
AID Gabor RGB [186] 11.69 0.843 PatternNet Gabor RGB [186] 26.53 0.686

Granulometry [184] 9.04 0.877 Granulometry [184] 14.60 0.817
LBP [182,183] 10.36 0.857 LBP[182,183] 29.99 0.686
FV [187] 16.40 0.748 FV [187] 19.23 0.760
VLAD [195] 19.61 0.734 VLAD [195] 28.98 0.638
MRELBP [129] 18.19 0.679 MRELBP [129] 29.53 0.618
NSSTds 24.62 0.680 NSSTds 29.93 0.672
3D-LTP 17.54 0.775 3D-LTP 32.32 0.653
NSSTds-3DLTP 29.53 0.657 NSSTds-3DLTP 35.23 0.615

According to Tables 3.7-3.8, for the WHU-RS19 and AID databases, the

global NSSTds features outperform the local 3D-LTP features in terms of ANMRR

and MAP, whereas for the PatternNet dataset, both NSSTds and 3D-LTP features

perform fairly similarly. The proposed NSSTds features’ fine performance is due

to the use of accurate statistical model which further allows better capturing of

texture features of RS images and their ability to capture crucial features, particu-

larly over a range of different scales and orientations. The proposed fused NSSTds-

3DLTP surpasses all other approach for each database, including MRELBP, which

is a recent technique and is able to for its capacity to capture both global and local

properties (Table 3.7-3.8). The combined NSSTds-3DLTP show notable improve-

ment over NSSTds and 3DLTP alone both in terms of ANMRR and MAP. In terms

of [MAP,ANMRR] ,the NSSTds-3DLTP shows improvement over Gabor RGB,

Granulometry, LBP, FV, VLAD, and MRELBP descriptors by ([41.93,20.87]%,

[92.30,32.68]%,[86.14,31.97]%,[18.18,15.22]%,[8.96,19]%, [15.60,13.26]% respec-

tively )(for WHU-RS19 dataset), ([152.60, 22.06]%, [226.65,25.08]%, [185.03,

23.33]%, [80.06, 12.16]%, [50.58, 10.49]%, and [62.34,3.24]%) respectively (for

AID dataset), ([32.79, 10.34]%, [141.30, 24.72]%, [17.47, 10.34]%, [83.20, 19.07]%,
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[21.56, 3.60]%, and [19.30,0.48]%) respectively (for PatternNet dataset). The sub-

feature 3D-LTP not only encodes the color cue but also extracts the local texture

data, in contrast to the most of other methods, which are either local or global.

Additionally, the NSSTds subfeature may record image data at various sizes and

orientations. The NSSTds-3DLTP creates a highly discriminative representation

by combining the complementing traits of NSSTds and 3D-LTP.
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Figure. 3.23: The per class average precision comparison of the NSSTds-3DLTP with
other techniques for WHU-RS19 dataset

The average precision of all descriptors, including NSSTds, 3D-LTP,

NSSTds-3DLTP, for various classes and databases is shown in Figs. 3.23, 3.24

and 3.25. The average precision value is computed using the top 20 images

that were correctly retrieved after 20 trials, with 20 images being randomly cho-

sen from each image class. When compared to other techniques, such as global

NSSTds and local 3D-LTP, the NSSTds-3DLTP features perform the best in the

majority of the individual classes, as shown in Figs. 3.23, 3.24 and 3.25. As ob-

served in Fig. 3.23-3.25, the global NSSTds features alone perform well on classes

like ‘forest’,‘river’,‘bareland’,‘residential’,‘school’,‘mountain’, and ‘parking’, which

are more texture-based and have image-scale properties. However, the local 3D-

LTP alone exhibits good performance when compared to the global NSSTds on

classes like an intersection, railroad, baseball diamond, freeway, storage tank, golf

course,medium residential, church, pond, bridge, commercial etc. that contain a

distinctive arrangement of structures without which the images cannot be cor-
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Figure. 3.24: The per class average precision comparison of the NSSTds-3DLTP with
other techniques for AID
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Figure. 3.25: The per class average precision comparison of the NSSTds-3DLTP with
other techniques for PatternNet dataset
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rectly retrieved. These findings demonstrate that local and global features both

contain information that is mutually beneficial, and their combination is predicted

to increase the discriminative power of features. Using fused NSSTds-3DLTP de-

scriptors, retrieval of difficult images like tennis court, dense residential, sparse

residential, stadium, playground, etc. is greatly enhanced.

(a) Forest (b) Moun-
tain

(c) River (d) Residen-
tial

(e) Bareland (f) School

(g) Golf
Course

(h) Intersec-
tion

(i) Railway (j) Baseball
field

(k) Freeway (l) Bridge

Figure. 3.26: Image classes for which global NSSTds alone (first-row) and local 3D-
LTP alone (second-row) produce superior results when compared to one other.

Table 3.9: Comparison of feature dimensions of various techniques
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Dimension 96 78 256 512 512 800 596

Table 3.9 lists all other methods and the proposed method’s feature di-

mension. It is clear from Table 3.9 that the feature dimensions of NSSTds-3DLTP

are lower than MRELBP and larger than those of other approaches. In compar-

ison to NSSTds-3DLTP, the Gabor RGB, granulometery, LBP, FV, and VLAD

algorithms have smaller feature dimensions, yet they perform significantly worse.

With relatively fewer feature dimensions, the NSSTds-3DLTP surpasses the most

recent MRELBP.

In Table 3.10, the total retrieval time is presented for NSSTds-3DLTP

as well as other feature descriptors considered for comparison. The NSSTds-

3DLTP is much faster than MRELBP but slower than other descriptors. However,

the performance of all other descriptors is much inferior to the NSSTds-3DLTP

scheme.
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Figure. 3.27: The P-R curve obtained for different datasets
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Table 3.10: Total retrieval time (in seconds) comparison of the NSST-SNIG with other
techniques
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WHU-RS19 2.19 1.77 2.74 4.59 5.10 10.23 5.85
AID 6.41 3.49 8.71 11.01 11.86 15.31 12.10
PatternNet 7.86 7.12 10.28 19.47 20.12 25.12 21.05

The P-R curves for each technique are shown in Fig. 3.27(a-c) for the

WHU-RS19, AID, and PatternNet databases, respectively, to further highlight

the superiority of the proposed fused features over all other existing techniques,

including NSSTds and 3D-LTP alone. According to Fig. 3.27(a), the P-R curve

derived using NSSTds-3DLTP for the WHU-RS19 dataset encompasses the largest

area and shows the best results, followed by VLAD, FV, NSSTds, MRELBP, 3D-

LTP, Gabor RGB, LBP, and Granulometery descriptors. NSSTDs-3DLTP displays

the best results for the AID dataset, followed by NSSTds, VLAD, FV, 3D-LTP,

MRELBP, Gabor RGB, LBP, and Granulometry (Fig. 3.27(b)). In the same way,

NSSTds-3DLTP yields the best results for PatternNet, followed by MRELBP, 3D-

LTP, LBP, NSSTds, VLAD, FV, Gabor RGB, and Granulometry (Fig. 3.27(c)).

Results from Table 3.7 and Table 3.8 of the referenced literature are noted to be

consistent with the P-R curve results.

A few instances of image queries from various classes and their related re-

trieved results utilizing the proposed NSSTds-3DLTP descriptor (for WHU-RS19)

are shown in Fig. 3.28. The images from the classes beach, bridge, desert, farm-

land, industrial,river, mountain and pond from the WHU-RS19 dataset, when

given as input query images, exhibit correct retrieval results, with the exception

of the viaduct class, which provides one incorrect retrieved result, i.e. an image

from Railway class is wrongly retrieved here, as can be seen in Fig. 3.28.

3.3 Summary

In this chapter, two NSST-based feature descriptors are proposed for RSIR. The

first one is a low dimensional global feature based approach that uses NSST domain

statistical parameters for construction of feature vector. We have demonstrated
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Figure. 3.28: Retrieved images obtained for few input query images taken from
multiple classes, using NSSTds-3DLTP (Input query image, correct retrieved results and
wrong retrieved results are enclosed in Black, Green and Red coloured boxes respectively
for more clarity.)
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that the NSST detail subbands coefficients can be best approximated using SNIG

distribution when compared to other probable non-Gaussian distribution such as

BKF and Laplacian. We have extracted SNIG parameters and the simple mean

along with standard deviation are extracted from the approximation subband to

form the final feature vector. The parameter estimation of SNIG distribution is

carried out using an EM type algorithm. Due to the use of NSST and an accurate

statistical distribution that approximates the NSST coefficient statistics along

with other effective statistical features, the proposed NSST-SNIG outperforms

many low dimensional well known feature descriptors with less retrieval time.

The high resolution RS images have quite complex and highly varied scene

contents where many schemes cannot provide the discriminative information in

many situations as the crucial structural details present in the image sometimes

influences the corresponding image class. The blend of local and global features

solves this problem to achieve desired performance. We introduce a technique

that blends the global NSST domain statistical features and spatial domain local

texture features for improved retrieval of RS images. As the performance of low

dimensional transform domain statistical modelling based methods relies mostly

on the choice of accurate statistical models, in the next work we demonstrate

that the 2 -state LM model as the most appropriate statistical distribution when

compared to BKF, Laplacian and also SNIG distribution. We extract 2 -state

LM model parameters along with kurtosis and skewness to form the final feature

vector which we refer ro as global NSSTds features. We introduce an extension

of LTP which is referred as 3D-LTP in order to extract both local intensity vari-

ation information across the RGB planes and the color information too. We fuse

both the local 3D-LTP and global NSSTds features in order to encode the wide

variations in an image scene. From the extensive experiments, we observe that

the fused features i.e. NSSTds-3DLTP provides powerful discriminative features

and outperform many state of the art schemes including MRELBP which is well

known example of fusion of global and local features.
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