Chapter 6

Codes with burst distance and periodical burst errors

The contents of this chapter are based on the paper:

- Das, P. K. and Haokip, L. Codes with burst distance and periodical burst errors. Journal of Computational and Applied Mathematics, 411:114240, 2022.

Chapter 6

Codes with burst distance and periodical burst errors

This chapter presents a study on the burst- b distance d_{b} of a linear code and provides periodical burst error detection and correction capability for a linear code equipped with minimum burst- b distance d_{b}. An (n, k) linear code with minimum burst- b distance d_{b} is written as (n, k, d_{b}) linear code. In [79], Villalba et al. extend the study on burst- b distance and derive an extended Reiger-Singleton bound for an $\left(n, k, d_{b}\right)$ linear code as

$$
\begin{equation*}
b\left(d_{b}-1\right) \leq n-k . \tag{6.1}
\end{equation*}
$$

Codes with $b\left(d_{b}-1\right)=n-k$ are called Maximum Distance Separable (MDS) codes. A class of Maximum Distance Separable (MDS) codes is presented in [79] as below.

Lemma 6.1. [79] The code generated by the $b \times b d_{b}$ matrix G_{b} :

where 1's in each row are separated by exactly $b-1$ zeros, is a $\left(b d_{b}, b, d_{b}\right) M D S$ code.

Observe that the code given in Lemma 6.1 is a cyclic code and every codeword has
same burst- b weight d_{b}. So, the code is a constant burst- b weight code. We denote the above $\left(b d_{b}, b, d_{b}\right)$ code by \boldsymbol{C}_{b} code.

This chapter investigates the periodical burst error detection and correction capability of the code C_{b} and its dual code along with a decoding procedure of the code C_{b}. The contents of this chapter are organised as follows. Section 6.1 gives bounds on d_{b} for a linear code and a constant burst- b weight linear code. Then, we give the connection between an $\left(n, k, d_{b}\right)$ and $\left(n-b, k, d_{b}-1\right)$ codes along with the cardinality of $\left(n, k, d_{b}\right)$ code. We also provide a connection between linearly independent columns of the parity check matrix of any $\operatorname{MDS}\left(n, k, d_{b}\right)$ codes. Section 6.2 presents periodical burst error detection and correction capability of a linear $\left(n, k, d_{b}\right)$ code. The same is investigated for the MDS code C_{b}. Finally, Section 6.3 gives a decoding procedure for the code C_{b} in the case of periodical burst error.

6.1 Codes with burst-b distance

In this section, we give bounds on d_{b} for a linear code and a constant burst- b weight linear code. Then, we give the existence of a linear code with minimum distance $d_{b}-1$ from a linear code with minimum distance d_{b}. Further, an upper bound on the cardinality of a linear code with distance d_{b} is derived. The connection between linearly independent columns of the parity check matrix of any MDS code with burst- b distance is derived.

Theorem 6.2. Let C be an $\left(n, k, d_{b}\right)$ linear code over $G F(q)$. Then

$$
d_{b} \leq \frac{n q^{k-1}(q-1)}{q^{k}-1}
$$

Proof. From Result 1.12, the total number of nonzero components in all the codewords of C is

$$
\begin{equation*}
n q^{k-1}(q-1) . \tag{6.2}
\end{equation*}
$$

Again, the code has the minimum burst- b distance as d_{b}, so the number of nonzero components in each nonzero codeword is at least d_{b}. Therefore, the total number of
nonzero components in all the codewords of C is at least

$$
\left(q^{k}-1\right) d_{b}
$$

Hence

$$
\left(q^{k}-1\right) d_{b} \leq n q^{k-1}(q-1)
$$

This proves the theorem.

Remark 6.3. This upper bound of d_{b} coincides with Result 1.12 when the distance is taken in Hamming sense for a q-ary (n, k, d) linear code.

Theorem 6.4. Let C be a constant burst-b weight (n, k, d_{b}) linear code over $G F(q)$. Then

$$
\begin{equation*}
d_{b} \geq \frac{n q^{k-1}(q-1)}{\left(q^{k}-1\right) b} \tag{6.3}
\end{equation*}
$$

Proof. Since every codeword of the code C has burst- b distance d_{b}, the number of nonzero components in each nonzero codeword is at most $b d_{b}$. Therefore, the total number of nonzero components in all the codewords of C can be at most

$$
\left(q^{k}-1\right) b d_{b} .
$$

But the total number of nonzero components in all the codewords of C is given by (6.2). Hence

$$
\left(q^{k}-1\right) b d_{b} \geq n q^{k-1}(q-1) .
$$

This proves the theorem.

Remark 6.5. For constant burst-b weight $\left(n, k, d_{b}\right)$ linear code over $G F(q)$, Theorem 6.26 .4 give

$$
\begin{equation*}
\frac{n q^{k-1}(q-1)}{\left(q^{k}-1\right) b} \leq d_{b} \leq \frac{n q^{k-1}(q-1)}{q^{k}-1} . \tag{6.4}
\end{equation*}
$$

Remark 6.6. For constant burst-b weight code $C_{b}, k=b$ and $q=2$. Then

$$
\frac{n q^{k-1}(q-1)}{\left(q^{k}-1\right) b}=\frac{b d_{b} 2^{b-1}}{\left(2^{b}-1\right) b} \leq d_{b} . \quad\left[\because \quad \frac{2^{b-1}}{\left(2^{b}-1\right)} \leq 1\right]
$$

Further, for $b=1$

$$
\frac{n q^{k-1}(q-1)}{\left(q^{k}-1\right)}=\frac{d_{1} 2^{1-1}}{\left(2^{1}-1\right)}=d_{1},
$$

and for $b \geq 2$

$$
\frac{n q^{k-1}(q-1)}{\left(q^{k}-1\right)}=\frac{b d_{b} 2^{b-1}(2-1)}{\left(2^{b}-1\right)}=\frac{b d_{b} 2^{b-1}}{\left(2^{b}-1\right)} \geq d_{b} . \quad\left[\because \quad \frac{b 2^{b-1}}{\left(2^{b}-1\right)} \geq 1\right]
$$

Thus

$$
\frac{n q^{k-1}(q-1)}{\left(q^{k}-1\right)} \geq d_{b} .
$$

Therefore, the bound 6.4 is satisfied by the code C_{b}.
Theorem 6.7. If a q-ary $\left(n, k, d_{b}\right)$ linear code C exists with $d_{b} \geq 2$, there also exists an $\left(n-b, k, d_{b}-1\right)$ linear code C^{\prime}.

Proof. There exist codewords x and y of C such that $d_{b}(x, y)=w_{b}(x-y)=d_{b}$. From the d_{b} sets in which nonzero components of $x-y$ are confined, we choose a set of b consecutive components. Delete the b consecutive components of the set in each codeword of C, the resultant vectors will have burst- b weight at least $d_{b}-1(\geq 1)$ with one vector $x-y$ having exactly burst- b weight $d_{b}-1$, and they will form a subspace C^{\prime} of C with q^{k} elements. This code C^{\prime} is the required $\left(n-b, k, d_{b}-1\right)$ linear code C^{\prime}.

Theorem 6.8. The cardinality M of a linear code of length n with minimum burst-b distance d_{b} is bounded above by

$$
M \leq \frac{q^{n}}{\sum_{i=0}^{\left(d_{b}-1\right) / 2}\binom{n-i b+i}{i}(q-1)^{i} q^{i(b-1)}} .
$$

Proof. By [23], the number of $\left(d_{b}-1\right) / 2$ bursts of length up to b is given by

$$
\frac{q^{n}}{\sum_{i=0}^{\left(d_{b}-1\right) / 2}\binom{n-i b+i}{i}(q-1)^{i} q^{i(b-1)}}
$$

By Result 1.18, the code can correct all $\left(d_{b}-1\right) / 2$ bursts of length up to b. As every codeword disturbed by such errors must produce distinct words, we have

$$
q^{n} \geq M \sum_{i=0}^{\left(d_{b}-1\right) / 2}\binom{n-i b+i}{i}(q-1)^{i} q^{i(b-1)}
$$

i.e.

$$
M \leq \frac{q^{n}}{\sum_{i=0}^{\left(d_{b}-1\right) / 2}\binom{n-i b+i}{i}(q-1)^{i} q^{i(b-1)}} .
$$

Theorem 6.9. Let C be an $\left(n, k, d_{b}\right)$ code over $G F(q)$ and $n-k$ is a multiple of b. Let H be the parity check matrix of C. Then C is an MDS code if and only if every set of $n-k$ columns that are formed from $\frac{n-k}{b}$ sets of b consecutive columns of H are linearly independent.

Proof. If C is an MDS code, then $b\left(d_{b}-1\right)=n-k$, which implies $d_{b}-1=\frac{n-k}{b}$, an integer. As every vector of burst- b weight $d_{b}-1$ cannot be a codeword, every linear combination of columns of H which consists of $d_{b}-1$ sets of b consecutive columns is nonzero. Also, the total number of columns in $d_{b}-1$ sets of b consecutive columns is $n-k$, so every set of $n-k$ columns that are formed from $\frac{n-k}{b}$ sets of b consecutive columns of H is linearly independent. Now, if every set of $n-k$ columns that are formed from $\frac{n-k}{b}$ sets of b consecutive columns are linearly independent, we cannot get a codeword whose nonzero components are confined to $\frac{n-k}{b}$ sets of b consecutive columns. The $\frac{n-k}{b}$ sets of b consecutive columns may be within the first $n-k$ columns of H or not. In either case, the burst- b distance of the code C is at least $\frac{n-k}{b}+1$, i.e.

$$
\begin{array}{r}
d_{b} \geq \frac{n-k}{b}+1 \\
\Longrightarrow b\left(d_{b}-1\right) \geq n-k .
\end{array}
$$

Again from Equation (6.1), we have $b\left(d_{b}-1\right) \leq n-k$. So, $b\left(d_{b}-1\right)=n-k$ and hence C is an MDS code.

6.2 Burst- b distance and periodical burst errors

In this section, we present periodical burst detection and correction of an $\left(n, k, d_{b}\right)$ linear code. Then we do the same investigation for code C_{b} and its dual code C_{b}^{\perp}.

Theorem 6.10. An $\left(n, k, d_{b}\right)$ code can detect all vectors of $\psi_{(s, b), n, q}$ that start from the $\left(n+1-\left(d_{b}-1\right)(s+b)\right)^{\text {th }}$ position.

Proof. Consider a vector of the error set $\psi_{(s, b), n, q}$ defined in Chapter 4 whose nonzero
components start from the $j^{\text {th }}$ position $(j=1,2, \ldots, n)$, so the errors are confined to the last $n-j+1$ positions.

By Euclidean division algorithm, for integers $n-i+1$ and $s+b$, there exist integers λ_{j} and r_{j} such that

$$
\begin{equation*}
n-j+1=\lambda_{j}(s+b)+r_{j}, \text { where } 0 \leq r_{j}<s+b \tag{6.5}
\end{equation*}
$$

So, every vector of $\psi_{(s, b), n, q}$, where the error starts from the $j^{\text {th }}$ position, has burst- b weight

$$
\left\{\begin{array}{l}
\left\lfloor\frac{n-j+1}{s+b}\right\rfloor \text { if } r_{j}+p \leq b \quad(p: \text { the last nonzero position of the first nonzero set }) \\
\left\lceil\frac{n-j+1}{s+b}\right\rceil \text { otherwise. }
\end{array}\right.
$$

An $\left(n, k, d_{b}\right)$ code can detect error vectors of $\psi_{(s, b), n, q}$ if its burst- b weight is less than or equal to $d_{b}-1$. So, if

$$
\begin{aligned}
& \\
& \quad d_{b}-1 \geq\left\lceil\frac{n-j+1}{s+b}\right\rceil \\
& \text { i.e., } \quad\left(d_{b}-1\right)(s+b) \geq n-j+1 \\
& \text { i.e., } \quad j \geq n+1-\left(d_{b}-1\right)(s+b),
\end{aligned}
$$

the code detects any error vector of $\psi_{(s, b), n, q}$ that starts from the $j^{\text {th }}$ position. Therefore, if the starting position of the error pattern of $\psi_{(s, b), n, q}$ is $n+1-\left(d_{b}-1\right)(s+b)$, the code detects such errors.

Taking $j=1$, we have $1=n+1-\left(d_{b}-1\right)(s+b)$, i.e., $d_{b}=\frac{n}{s+b}+1$. Therefore, we have the following corollary.

Corollary 6.11. An $\left(n, k, d_{b}\right)$ code detects all error vectors of $\psi_{(s, b), n, q}$ provided $d_{b} \geq\left\lceil\frac{n}{s+b}\right\rceil+1$.

Theorem 6.12. An $\left(n, k, d_{b}\right)$ code corrects all error vectors of $\psi(s, b), n, q$ that start from the $\left(\left\lceil n+1-\frac{\left(d_{b}-1\right)}{2}(s+b)\right\rceil\right)^{\text {th }}$ position.

Proof. By Result 1.18, an $\left(n, k, d_{b}\right)$ code can correct up to $\left(d_{b}-1\right) / 2$ bursts of length up to b each. Since every error vector of $\psi_{(s, b), n, q}$ that starts from $j^{\text {th }}$ position $(j=1,2, \ldots, n)$ has burst- b weight $\left\lceil\frac{n-j+1}{s+b}\right\rceil$ or less, an $\left(n, k, d_{b}\right)$ code can correct an error vector of $\psi_{(s, b), n, q}$ if its burst- b weight is less than or equal to $\left(d_{b}-1\right) / 2$. Now

$$
\frac{d_{b}-1}{2} \geq\left\lceil\frac{n-j+1}{s+b}\right\rceil
$$

$$
\begin{array}{ll}
\text { implies } & \frac{\left(d_{b}-1\right)}{2}(s+b) \geq n-j+1 \\
\text { implies } & j \geq n+1-\frac{\left(d_{b}-1\right)}{2}(s+b),
\end{array}
$$

Therefore, if the starting position of an error vector of $\psi_{(s, b), n, q}$ is $\left\lceil n+1-\frac{\left(d_{b}-1\right)}{2}(s+\right.$ $b)\rceil$, the code corrects such errors.

Again taking $j=1$, we have $1=\left\lceil n+1-\frac{\left(d_{b}-1\right)}{2}(s+b)\right\rceil$, i.e., $d_{b} \geq 2\left\lceil\frac{n}{s+b}\right\rceil+1$. This gives the following corollary:

Corollary 6.13. An $\left(n, k, d_{b}\right)$ code can correct vectors of $\psi_{(s, b), n, q}$ provided $d_{b} \geq$ $2\left\lceil\frac{n}{s+b}\right\rceil+1$.

Theorem 6.14. The code $C_{b}\left(d_{b} \geq 2\right)$ detects all
(i) vectors of the error set $\psi_{(s, b), n, q}$ for any $s \geq b$, and
(ii) vectors of the error set $\psi_{(s, b), n, q}$ that start from $(b+1)^{\text {th }}$ position for any s.

Proof. As $n=b d_{b}$ and $s \geq b$, then $\left\lceil\frac{n}{s+b}\right\rceil+1 \leq\left\lceil\frac{b d_{b}}{2 b}\right\rceil+1=\left\lceil\frac{d_{b}}{2}\right\rceil+1 \leq d_{b}$ for $d_{b} \geq 2$. From Corollary 6.11, the code C_{b} detects all error vectors of $\psi_{(s, b), n, q}$ for any $s \geq b$. Further, if the error vector of $\psi_{(s, b), n, q}$ starts from the $(b+1)^{\text {th }}$ position for any s, then n becomes $\left(d_{b}-1\right) b$ and $\frac{b}{s+b} \leq 1$, so

$$
\left\lceil\frac{n}{s+b}\right\rceil+1=\left\lceil\frac{b\left(d_{b}-1\right)}{s+b}\right\rceil+1 \leq d_{b}-1+1=d_{b}
$$

This proves the part (ii) by Corollary 6.11.
Theorem 6.15. The number of vectors of the error set $\psi_{(s, b), n, q}$ that go undetected by the code C_{b} is 2^{b}.

Proof. From Theorem 6.14, a vector of $\psi_{(s, b), n, q}$ may go undetected if it starts within the first b positions and $s<b$. Every codeword of C_{b} is a linear combination of rows of G_{b}, so every codeword can be written as

$$
\begin{aligned}
& \left(a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{j} X^{j}\right)+X^{b}\left(a_{0}+a_{1} X+a_{2} X^{2}+\ldots\right. \\
& \left.\quad+a_{j} X^{j}\right)+\cdots+X^{\left(d_{b}-1\right) b}\left(a_{0}+a_{1} X+a_{2} X^{2}+\cdots+a_{j} X^{j}\right),
\end{aligned}
$$

where $a_{i} \in G F(2)$ and $0 \leq j \leq b-1$.
Clearly, every nonzero codeword is a vector of $\psi_{(s, b), n, q}$ that starts within the first b
positions and $s<b$. Therefore, the number of vectors of $\psi_{(s, b), n, q}$ that go undetected by C_{b} is 2^{b}.

Theorem 6.16. The code C_{b} corrects all
(i) vectors of the error set $\psi_{(s, b), n, q}$ for any $s \geq 3 b$, and
(ii) vectors of the set $\psi_{(s, b), n, q}$ that start from $\left(\left\lceil\frac{\left(d_{b}+1\right) b}{2}\right\rceil+1\right)^{\text {th }}$ position for any s.

Proof. Since the difference between any two vectors of $\psi_{(s, b), n, q}$ for $s \geq 3 b$ is a vector which contains at least b consecutive zeros, so the difference cannot be a codeword of C_{b}. Therefore, the code C_{b} corrects all error vectors of $\psi_{(s, b), n, q}$ for any $s \geq 3 b$. This can be verified from Corollary 6.13 also:

As $n=b d_{b}$ and $s \geq 3 b$, then $2\left\lceil\frac{n}{s+b}\right\rceil+1 \leq 2\left\lceil\frac{b d_{b}}{4 b}\right\rceil+1=2\left\lceil\frac{d_{b}}{4}\right\rceil+1 \leq d_{b}$ for $d_{b} \geq 3$.
Further, if an error vector of $\psi_{(s, b), n, q}$ starts from $\left(\left\lceil\frac{\left(d_{b}+1\right) b}{2}\right\rceil+1\right)^{t h}$ position, then n becomes $b d_{b}-\left\lceil\frac{\left(d_{b}+1\right) b}{2}\right\rceil \leq \frac{b\left(d_{b}-1\right)}{2}$. So

$$
2\left\lceil\frac{n}{s+b}\right\rceil+1 \leq 2\left\lceil\frac{b\left(d_{b}-1\right)}{2(s+b)}\right\rceil+1 \leq d_{b} . \quad\left(\because \frac{b}{s+b} \leq 1\right)
$$

This proves the part (ii).
Theorem 6.17. The dual code C_{b}^{\perp} of C_{b} is also $a\left(b d_{b}, b\left(d_{b}-1\right), 2\right) M D S$ code.

Proof. Since the code C_{b} is of order $\left(b d_{b}, b\right)$, the order of its dual code C_{b}^{\perp} is $\left(b d_{b}, b\left(d_{b}-1\right)\right)$ and its generator matrix H_{b} is given by
where I_{b} represents the identity matrix of order b.
Clearly, the minimum burst- b distance of C_{b}^{\perp} is $d_{b}^{\prime}=2$. So, for the dual code C_{b}^{\perp}, $n=b d_{b}, k=b\left(d_{b}-1\right)$ and $d_{b}^{\prime}=2$. Now $b\left(d_{b}^{\prime}-1\right)=b=n-k$. Therefore, the dual code C_{b}^{\perp} is also an MDS code.

Theorem 6.18. If $d_{b}=2$, the dual code C_{b}^{\perp} of C_{b}
(i) detects all vectors of the error set $\psi_{(b, b), n, q}$ and
(ii) corrects all vectors of the set $\psi_{(b, b), n, q}$ that start from the $(b+1)^{\text {th }}$ position.

Proof. From the previous theorem, we have that the length and the minimum burst-b distance of C_{b}^{\perp} are $b d_{b}$ and $d_{b}^{\prime}=2$ respectively. Now taking $s=b$, we have

$$
\left\lceil\frac{n}{s+b}\right\rceil+1=\left\lceil\frac{b d_{b}}{2 b}\right\rceil+1=\left\lceil\frac{d_{b}}{2}\right\rceil+1 \leq d_{b}^{\prime}
$$

So, by Corollary 6.11, the code C_{b}^{\perp} detects all vectors of $\psi_{(b, b), n, q}$ provided $d_{b}=2$. Again

$$
\left\lceil n+1-\frac{\left(d_{b}^{\prime}-1\right)}{2}(s+b)\right\rceil=\left\lceil 2 b+1-\frac{(2-1)}{2}(b+b)\right\rceil=b+1 .
$$

So, by Theorem 6.12, the dual code C_{b}^{\perp} corrects all vectors of $\psi_{(b, b), n, q}$ that start from the $(b+1)^{t h}$ position.

6.3 Decoding of the MDS code C_{b}

In this section, we give a decoding method for periodical burst error by the code C_{b}. Suppose that v is a sent codeword of C_{b} and $w=\left(w_{1}, w_{2}, \ldots, w_{b d_{b}}\right)$ is received after any vector of $\psi_{(s, b), n, q}$ (where $s \geq 3 b$) which is $e=\left(e_{1}, e_{2}, \ldots, e_{b d_{b}}\right)$. Then the sent codeword is $v=w-e$. In the following, we describe how to get the error from the received vector w. Now the syndrome of w is

$$
\begin{aligned}
S= & w H_{b}^{\perp} \\
= & e H_{b}^{\perp} \\
= & \left(e_{1}+e_{b+1}, e_{2}+e_{b+2}, \ldots, e_{b}+e_{2 b}, e_{1}+e_{2 b+1}, e_{2}+e_{2 b+2}, \ldots, e_{b}+e_{3 b},\right. \\
& \left.\ldots, \ldots, e_{1}+e_{\left(d_{b}-1\right) b+1}, e_{2}+e_{\left(d_{b}-1\right) b+2}, \ldots, e_{b}+e_{d_{b} b}\right) \\
& =\left(s_{1}, s_{2}, \ldots, s_{b}, s_{b+1}, s_{b+2}, \ldots, s_{2 b}, \ldots, \ldots, s_{\left(d_{b}-2\right) b+1}, s_{\left(d_{b}-2\right) b+2}, \ldots, s_{\left(d_{b}-1\right) b}\right) .
\end{aligned}
$$

If the periodical burst error starts from $j^{\text {th }}$ position $(1 \leq j \leq b)$, all the three b-tuples $\left(s_{1}, s_{2}, \ldots, s_{b}\right),\left(s_{b+1}, s_{b+2}, \ldots, s_{2 b}\right),\left(s_{2 b+1}, s_{2 b+2}, \ldots, s_{3 b}\right)$ of b consecutive components of S will be nonzero tuples and also $e_{j+b}=e_{j+b+1}=\cdots=e_{j+4 b-1}=0$. Taking the
majority of the three sets of b consecutive components gives us $\left(e_{1}, e_{2}, \ldots, e_{b}\right)$. Then subtracting $\left(e_{1}, e_{2}, \ldots, e_{b}\right)$ from each set of b consecutive components of S gives the remaining $\left(d_{b}-1\right) b$ components of e, i.e.

$$
\begin{aligned}
& \left(e_{b+1}, e_{b+2}, \ldots, e_{2 b}, e_{2 b+1}, e_{2 b+2}, \ldots, e_{3 b}, \ldots \ldots, e_{\left(d_{b}-1\right) b+1}, e_{\left(d_{b}-1\right) b+2}, \ldots, e_{d_{b} b}\right) \\
= & (\underbrace{s_{1}, s_{2}, \ldots, s_{b}}_{b}, \underbrace{s_{b+1}, s_{b+2}, \ldots, s_{2 b}}_{b}, \ldots \ldots, \underbrace{s_{\left(d_{b}-2\right) b+1}, s_{\left(d_{b}-2\right) b+2}, \ldots, s_{\left(d_{b}-1\right) b}}_{b}) \\
& -(\underbrace{e_{1}, e_{2}, \ldots, e_{b}}_{b}, \underbrace{e_{1}, e_{2}, \ldots, e_{b}}_{b}, \ldots \ldots, \underbrace{e_{1}, e_{2}, \ldots, e_{b}}_{b}) \\
= & (\underbrace{s_{1}-e_{1}, s_{2}-e_{2}, \ldots, s_{b}-e_{b}, \underbrace{s_{b+1}-e_{1}, s_{b+2}-e_{2}, \ldots, s_{2 b}-e_{b}}_{b}, \ldots \ldots \ldots,}_{b} \\
& \underbrace{s_{\left(d_{b}-2\right) b+1}-e_{1}, s_{\left(d_{b}-2\right) b+2}-e_{2}, \ldots, s_{\left(d_{b}-1\right) b}-e_{b}}_{b}) .
\end{aligned}
$$

If the periodical burst error starts from $j^{\text {th }}$ position $(j \geq b+1)$, then

$$
\begin{aligned}
S & =w H_{b}^{\perp} \\
& =e H_{b}^{\perp} \\
& =\left(e_{b+1}, e_{b+2}, \ldots, e_{2 b}, e_{2 b+1}, e_{2 b+2}, \ldots, e_{3 b}, \ldots, \ldots, e_{\left(d_{b}-1\right) b+1}, e_{\left(d_{b}-1\right) b+2}, \ldots, e_{d_{b} b}\right) \\
& =\left(s_{1}, s_{2}, \ldots, s_{b}, s_{b+1}, s_{b+2}, \ldots, s_{2 b}, \ldots, \ldots, s_{\left(d_{b}-2\right) b+1}, s_{\left(d_{b}-2\right) b+2}, \ldots, s_{\left(d_{b}-1\right) b}\right) .
\end{aligned}
$$

Thus, if the periodical burst starts from $j^{\text {th }}$ position $(j>b)$, at least one b tuple of $\left\{\left(s_{1}, s_{2}, \ldots, s_{b}\right),\left(s_{b+1}, s_{b+2}, \ldots, s_{2 b}\right),\left(s_{2 b+1}, s_{2 b+2}, \ldots, s_{3 b}\right)\right\}$ of b consecutive components of S will be a zero tuple. Then, the error vector e will be $e=$ $(\underbrace{00 \ldots 0}_{b} s_{1} s_{2} \ldots s_{b\left(d_{b}-1\right)})$.

Example 6.19. For $b=4$ and $d_{4}=6$, the parity check matrix of C_{4} is given by

$$
H_{4}=\left[\begin{array}{l}
100010000000000000000000 \\
010001000000000000000000 \\
001000100000000000000000 \\
000100010000000000000000 \\
100000001000000000000000 \\
010000000100000000000000 \\
001000000010000000000000 \\
000100000001000000000000 \\
100000000000100000000000 \\
010000000000010000000000 \\
001000000000001000000000 \\
000100000000000100000000 \\
100000000000000010000000 \\
010000000000000001000000 \\
001000000000000000100000 \\
000100000000000000010000 \\
100000000000000000001000 \\
010000000000000000000100 \\
001000000000000000000010 \\
000100000000000000000001
\end{array}\right]_{20 \times 24}
$$

(i) Let the received vector be $w=101101011101110110001101$ after an error vector of $\psi_{(3 b=12,3), 24,2}$. Now the syndrome of w is $w H_{4}^{T}=11100110011000110110$. As each of the first 3 tuples of $b=4$ consecutive components is not all zero, the error starts within the first $b=4$ positions. From the majority of first three sets of four consecutive components, we can have $\left(e_{1}, e_{2}, e_{3}, e_{4}\right)=(0110)$. So

$$
\begin{aligned}
\left(e_{5}, e_{6}, \ldots, e_{24}\right) & =11100110011000110110-01100110011001100110 \\
& =(10000000000001010000)
\end{aligned}
$$

Therefore, the error vector is $e=(011010000000000001010000)$ and the sent
codeword is

$$
\begin{aligned}
v=w-e & =(101101011101110110001101)-(011010000000000001010000) \\
& =(110111011101110111011101)
\end{aligned}
$$

(ii) Let the received vector be $w=(110101001101110111010001)$ after an error vector of $\psi_{(3 b=12,3), 24,2}$. Now the syndrome of w is $w H_{4}^{T}=(10010000000000001100)$. As the second and third tuples of b components are all zero, the error starts after $b=4$ positions.

Therefore the error vector is $e=(000010010000000000001100)$ and the sent codeword is

$$
\begin{aligned}
v=w-e & =(110101001101110111010001)-(000010010000000000001100) \\
& =110111011101110111011101
\end{aligned}
$$

