Chapter 6
Codes with burst distance and pe-

riodical burst errors

The contents of this chapter are based on the paper:

e Das, P. K. and Haokip, L. Codes with burst distance and periodical burst
errors. Journal of Computational and Applied Mathematics, 411:114240, 2022.
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Chapter 6

Codes with burst distance and periodical

burst errors

This chapter presents a study on the burst-b distance d, of a linear code and
provides periodical burst error detection and correction capability for a linear code
equipped with minimum burst-b distance dy. An (n, k) linear code with minimum
burst-b distance dj, is written as (n, k, d) linear code. In [79], Villalba et al. extend
the study on burst-b distance and derive an extended Reiger-Singleton bound for an

(n, k,dy) linear code as
b(dy —1) < n — k. (6.1)

Codes with b(d, — 1) = n — k are called Maximum Distance Separable (MDS) codes.

A class of Maximum Distance Separable (MDS) codes is presented in [79] as below.

Lemma 6.1. [79] The code generated by the b x bd, matriz Gy:

b b b
_~ - ~ % —_——N—
10 01 0 0 ...... 10 0
0 1 00 1 0 ...... 01 0
Gb: == [bIb---[b 5
b—1 ——
dp times
0 0 10 0 1 00 1

where 1’s in each row are separated by exactly b — 1 zeros, is a (bdy, b, dy) MDS

code.

Observe that the code given in Lemma is a cyclic code and every codeword has
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same burst-b weight d,. So, the code is a constant burst-b weight code. We denote

the above (bdy, b, d,) code by C} code.

This chapter investigates the periodical burst error detection and correction ca-
pability of the code C, and its dual code along with a decoding procedure of the
code (. The contents of this chapter are organised as follows. Section 6.1 gives
bounds on d, for a linear code and a constant burst-b weight linear code. Then, we
give the connection between an (n, k,d,) and (n — b, k,d, — 1) codes along with the
cardinality of (n,k,d,) code. We also provide a connection between linearly inde-
pendent columns of the parity check matrix of any MDS (n,k,d,) codes. Section
6.2 presents periodical burst error detection and correction capability of a linear
(n,k,dp) code. The same is investigated for the MDS code C,. Finally, Section 6.3

gives a decoding procedure for the code Cj, in the case of periodical burst error.

6.1 Codes with burst-b distance

In this section, we give bounds on d, for a linear code and a constant burst-b weight
linear code. Then, we give the existence of a linear code with minimum distance
dy — 1 from a linear code with minimum distance d,. Further, an upper bound on
the cardinality of a linear code with distance dj is derived. The connection between
linearly independent columns of the parity check matrix of any MDS code with

burst-b distance is derived.

Theorem 6.2. Let C be an (n,k,dy) linear code over GF(q). Then

5 < ng* (g —1)
PSR T

Proof. From Result 1.12, the total number of nonzero components in all the code-

words of C is

ng" (g —1). (6.2)
Again, the code has the minimum burst-b distance as dj, so the number of nonzero

components in each nonzero codeword is at least d,. Therefore, the total number of
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nonzero components in all the codewords of C' is at least
(¢ — 1)d,.
Hence
(" — 1)dy < ng" (g —1).

This proves the theorem. O]

Remark 6.3. This upper bound of d, coincides with Result 1.12 when the distance

is taken in Hamming sense for a q-ary (n, k,d) linear code.

Theorem 6.4. Let C' be a constant burst-b weight (n, k,d,) linear code over GF(q).
Then

0> ng"(q—1)

o (¢F -1 (6:3)

Proof. Since every codeword of the code C' has burst-b distance d,, the number of
nonzero components in each nonzero codeword is at most bd,. Therefore, the total

number of nonzero components in all the codewords of C' can be at most
(¢F — 1)bd,.

But the total number of nonzero components in all the codewords of C' is given by

(6.2]). Hence
(¢" = 1)bdy > ng" (g —1).

This proves the theorem. O

Remark 6.5. For constant burst-b weight (n, k, dy) linear code over GF(q), Theorem

G2 give

k—1 k—1
ng"(¢g—1) ng" (g —1)
— = <y < ———————~, 6.4
(F—1b ~— "7 -1 (64)
Remark 6.6. For constant burst-b weight code Cy, k = b and ¢ = 2. Then
k—1 -1 bd 2b71 2b71
ng* " (q ) _ b <dy [ <1
(¢F=1b  (2*=1)b (2> -1)

Further, forb=1

ng -1 _ 270
(¢F-1) —@-1
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and for b > 2

ng" (g —1) _ bdp21(2 — 1) _ bd,20~1 >dy [ b2t > ]
(¢ -1) (2" —=1) 2-1n=" " (@2-1) 7
Thus
k—1
ng"'(qg—1)
L S SV AN
(¢"-1) — K

Therefore, the bound[6.4) is satisfied by the code Cy.

Theorem 6.7. If a g-ary (n, k,dy) linear code C exists with dy, > 2, there also exists
n (n—b,k,dy, — 1) linear code C".

Proof. There exist codewords x and y of C' such that dy(z,y) = wy(x — y) = dp.
From the dj, sets in which nonzero components of x — y are confined, we choose a set
of b consecutive components. Delete the b consecutive components of the set in each
codeword of C, the resultant vectors will have burst-b weight at least d, — 1(> 1)
with one vector x — y having exactly burst-b weight d, — 1, and they will form a
subspace C" of C' with ¢* elements. This code C’ is the required (n — b, k,d, — 1)

linear code C'. O]

Theorem 6.8. The cardinality M of a linear code of length n with minimum burst-b

distance dy is bounded above by

n

q

M= G b4 i '
bz (’n, — /l.b + Z) (q . 1)iqi(b71)

i=0 v

Proof. By [23], the number of (d, — 1)/2 bursts of length up to b is given by

n

4q

dp—1)/2 N q
1

=0

By Result 1.18, the code can correct all (d, — 1)/2 bursts of length up to b. As every

codeword disturbed by such errors must produce distinct words, we have
(dp—1)/2

—zb+z i i(be
¢">M Z < )(q—l)q“’ Y

1.e.

n

M < 4

— (dp—1)/2 ; ; '
i=0 ¢
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Theorem 6.9. Let C be an (n,k,dy) code over GF(q) and n — k is a multiple of b.
Let H be the parity check matriz of C'. Then C is an MDS code if and only if every

n —
set of n — k columns that are formed from sets of b consecutive columns of H

are linearly independent.
n—=k

b Y
an integer. As every vector of burst-b weight d, — 1 cannot be a codeword, every

Proof. If C' is an MDS code, then b(d, — 1) = n — k, which implies d, — 1 =

linear combination of columns of H which consists of d, — 1 sets of b consecutive
columns is nonzero. Also, the total number of columns in d, — 1 sets of b consecutive

columns is n — k, so every set of n — k columns that are formed from sets of b

consecutive columns of H is linearly independent. Now, if every set of n — k columns

that are formed from

2 sets of b consecutive columns are linearly independent,

n —_
we cannot get a codeword whose nonzero components are confined to sets of

. n —
b consecutive columns. The

b
first n — k columns of H or not. In either case, the burst-b distance of the code C'

sets of b consecutive columns may be within the

) n
is at least

+ 1, ie.

— b(dy—1)>n—k.

Again from Equation (6.1]), we have b(d, — 1) < n — k. So, b(d, — 1) = n — k and
hence C' is an MDS code. [l

6.2 Burst-b distance and periodical burst errors
In this section, we present periodical burst detection and correction of an (n, k, dp)
linear code. Then we do the same investigation for code C}, and its dual code Cj-.
Theorem 6.10. An (n,k,dy) code can detect all vectors of V(s p)nq that start from

the (n+1— (d, — 1)(s + b))th position.

Proof. Consider a vector of the error set ¢4 ) 4 defined in Chapter 4 whose nonzero
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components start from the j** position (j =1,2,...,n), so the errors are confined
to the last n — j + 1 positions.
By Euclidean division algorithm, for integers n —i+ 1 and s+ b, there exist integers

Aj and r; such that
n—j+1=X(s+b)+r;, where 0 <r; <s+0b. (6.5)

So, every vector of 1, ) nq, Where the error starts from the 4" position, has burst-b

weight

L%J ifrj+p<b (p: the last nonzero position of the first nonzero set)

f%} otherwise.

An (n, k, dy) code can detect error vectors of ¥ p) g if its burst-b weight is less than
or equal to d, — 1. So, if

n—j+1

dy—1> [—1

’ - s+ b
ie, (dp—1)(s+b)>n—j+1
ie, j>n+1—(dy—1)(s+0),

the code detects any error vector of 1, ) nq that starts from the 5" position. There-
fore, if the starting position of the error pattern of ¢(sp)ngisn+1—(dp —1)(s+b),
the code detects such errors. O

Taking j = 1, we have 1l = n+1—(dy— 1)(s+b), i.e., d, = %—kl. Therefore,
s

we have the following corollary.

Corollary 6.11. An (n,k,dy) code detects all error vectors of Y(s,p)ng Provided
dy > [SL—H)—I + 1.

Theorem 6.12. An (n,k,d,) code corrects all error vectors of U(sp)ng that start

from the ((ﬂ +1- <db2_ D), (s + bﬂ)th position.

Proof. By Result 1.18, an (n,k,d,) code can correct up to (d, — 1)/2 bursts of
length up to b each. Since every error vector of ¢4 ) n 4 that starts from 5" position
(j =1,2,...,n) has burst-b weight [%ﬁl} or less, an (n, k,d,) code can correct an
error vector of ¥ p) n 4 if its burst-b weight is less than or equal to (d, — 1)/2. Now

db—1> (n—j—Fl—‘
2 s+b
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_1)

implies (s+b)>n—j+1
dy — 1
implies j>n+1-— ( b2 )(s+b),
: : . : (dy —1)
Therefore, if the starting position of an error vector of ¢, y) n 4 is [n—i— 1— —5 (s+
b)}, the code corrects such errors. O

(s+b)], le., dp >2[ 2]+ 1.

s+b

dy — 1
Again taking j = 1, we have 1 = (n—i—l—( b2 )

This gives the following corollary:

Corollary 6.13. An (n,k,dy) code can correct vectors of sp)ng provided dy >

2[ 2] + 1.

Theorem 6.14. The code Cy, (d, > 2) detects all
(i) vectors of the error set s p)nq for any s > b, and

1) vectors o, € error se s.b)n at start jrom + position jor any Ss.
i) vectors of th t Y(sp)ng that start f b+ 1)™" position f

Proof. Asn =bd, and s > b, then [ 5] +1< (Y27 1 =[%]+1<d,for d, > 2.
From Corollary [6.11] the code Cj detects all error vectors of s p)n,q for any s > b.
Further, if the error vector of sy, 4 starts from the (b+ 1) position for any s,
then n becomes (d, — 1)b and quLb <1, so0

Tl {b«j‘;ﬁwﬂédb—lﬂ:db.

This proves the part (ii) by Corollary |6.11} O

Theorem 6.15. The number of vectors of the error set V(s nq that go undetected

by the code Cy is 2°.

Proof. From Theorem [6.14} a vector of 9, ) n,, may go undetected if it starts within
the first b positions and s < b. Every codeword of C}, is a linear combination of rows

of Gy, so every codeword can be written as
(a0+a1X—i—a2X2 + - +(lej) +Xb(a0+a1X—|—a2X2 —+ ...
+a; X)X DD (g + ag X+ apX? 4+ a; XY,

where a; € GF(2) and 0 < j <b—1.

Clearly, every nonzero codeword is a vector of 9(s )4 that starts within the first b
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positions and s < b. Therefore, the number of vectors of 1 ) » 4 that go undetected

by Ob is 2b. ]

Theorem 6.16. The code Cy corrects all
(i) vectors of the error set s p)n,q for any s > 3b, and
(ii) vectors of the set \(sp)nq that start from (((dbﬂ)b] + 1) position for any s.

Proof. Since the difference between any two vectors of 1, ) n,q for s > 3bis a vector
which contains at least b consecutive zeros, so the difference cannot be a codeword

of Cy. Therefore, the code C corrects all error vectors of ¢4 p) 4 for any s > 3b.

This can be verified from Corollary also:
Asn = bd, and s > 3b, then 2[ 5] +1 <2[¥e] 41 =2[2]4+1 < dp for dy > 3.

Further, if an error vector of ¢4 ) 4 starts from (((d”ﬂ)ﬂ + 1> position, then

dy +1)b b(dy — 1
n becomes bd, — [( b+ 1) -‘ < (ds ).So
2 2
n b(dy — 1) b
2 1<2| —— | +1<4d,. . <1
L+bw+ - [2(s+b)w+ =0 C. s+b )
This proves the part (i7). O

Theorem 6.17. The dual code Ci- of Cy is also a (bdy, b(dy — 1),2) MDS code.

Proof. Since the code Cj is of order (bdy,b), the order of its dual code Cj- is

(bdy, b(d, — 1)) and its generator matrix H, is given by

rr -

Iy

Hy =d, -1 Ib(dbfl) )

\ L .

where [, represents the identity matrix of order b.

Clearly, the minimum burst-b distance of Ci- is dj = 2. So, for the dual code Cj,
n =bdy, k =0b(d, — 1) and d, = 2. Now b(d, — 1) = b = n — k. Therefore, the dual
code Ci is also an MDS code. ]
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Theorem 6.18. If d, = 2, the dual code Ci- of C,,
(i) detects all vectors of the error set VY p)n,q and

ii) corrects all vectors of the set Yy nq that start from the (b+ 1) position.
(i1) (b,b),n,q p

Proof. From the previous theorem, we have that the length and the minimum burst-b

distance of Cj- are bd, and dj, = 2 respectively. Now taking s = b, we have

n bd,, dy
- l=|—|+1=|= 1 <d,.
’VS_i_b—‘—i_ (Qb—‘_k [2—‘—’_ — b
So, by Corollary [6.11] the code Cj- detects all vectors of 1 p)n,4 provided d, = 2.

Again

(n+1- (dg’z_l)(erbﬂ =[2b+1— (2;1)(b+b)] =b+1

So, by Theorem [6.12] the dual code Cj- corrects all vectors of )., that start
from the (b + 1)™ position. O

6.3 Decoding of the MDS code ()

In this section, we give a decoding method for periodical burst error by the code C,.
Suppose that v is a sent codeword of C, and w = (w1, wa, . .., wyy, ) is received after
any vector of s p)nq (Where s > 3b) which is e = (ey,€2,...,€pq,). Then the sent
codeword is v = w — e. In the following, we describe how to get the error from the

received vector w. Now the syndrome of w is

S =wH;"
:eHbL
= (61 + €pt1,€2 + €pyo, ... €+ €2p, €1 F €2pt1, €2 + €2py2, ... € T E3p,
ceey ey €1 €(dy—1)b+15 €2 T €(dy—1)b425 - - - €p T edbb)
2(5’17 82, -+« 5 Sby Sb+1, Sb+2, 3S2by + v oy ey S(dy—2)b4+15 S(dp—2)b+25 - - - 5 S(dp—1) )

If the periodical burst error starts from ;% position (1 < j < b), all the three b-tuples
(81,82, +,5b)s (Sb1s Sba2s- -5 S2), (S2p41, S22, - - -, S3p) Of b consecutive components

of S will be nonzero tuples and also €4, = €j4p41 = -+ = €j14p—1 = 0. Taking the
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majority of the three sets of b consecutive components gives us (eq, €, . .., €p). Then
subtracting (eq, e, ..., e,) from each set of b consecutive components of S gives the

remaining (d, — 1)b components of e, i.e.

<3b+17 €p42; -+ -5 €2h, €2041, €242, -+ - 3 E3by v - v v y €(dp—1)b+15 E(dp—1)b+25 - - + Bd,,b)
=\ 51,52y, 5b) Sb+15Sb4+2y+ -+ S2y -+ - - - - y S(dp—2)b+15 S(dp—2)b+25 + -+ » S(dp—1)b
~ ~ ARG ~- [\ ~ 7/
b b b
—(61,62,...,66,61,62,...761), ...... ,61,62,...,65)
N Vv 7 N\ Vv 4 '
b
:<81 —€1,852 —€2,...,5) —€p,Sp+1 —€1,Sp42 —€2,...,82 —€Epy ... s
NS -~ N - 7
b b
S(dp—2)b+1 — €1, S(dp—2)b+2 — €25+ -, S(dp—1)b — €b )
- 7
b

If the periodical burst error starts from j* position (j > b+ 1), then

S = waL
= eHj
= (€b+1, €p+2y - -5 €25 €26415 €242y - - - 5 €3by + -« 5+ - 5 E(dy—1)b+1) E(dp—1)b425 - - - 7edbb)
= (Sla §2,..., Sb, Sb+17 3b+27 ce ey S2hy ey S(db*Q)b+17 S(db72)b+27 cee S(dbl)b) .

Thus, if the periodical burst starts from ;% position (j > b), at least one b-

tuple of {(s1,52,...,5b), (Sbt1s Sbt2y- -+, S2),s (S2b+1, S2p42, - - -, S3p)} of b consecutive

components of S will be a zero tuple. Then, the error vector e will be e =

(00 cee 05182 N Sb(db—l))-
b
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Example 6.19. For b =4 and d4 = 6, the parity check matrixz of Cy is given by

100010000000000000000000
010001000000000000000000
001000100000000000000000
000100010000000000000000
100000001000000000000000
010000000100000000000000
001000000010000000000000
000100000001000000000000
100000000000100000000000
010000000000010000000000
001000000000001000000000
000100000000000100000000
100000000000000010000000
010000000000000001000000
001000000000000000100000
000100000000000000010000
100000000000000000001000
010000000000000000000100
001000000000000000000010
000100000000000000000001

20x24

(i) Let the received vector be w = 101101011101110110001101 after an error vector
of Y3p=12,3),24,2. Now the syndrome of w is wH] = 11100110011000110110. As

each of the first 3 tuples of b = 4 consecutive components is not all zero, the error

starts within the first b = 4 positions. From the majority of first three sets of four

consecutive components, we can have (eq, e, e3,e4) = (0110). So

(es,€6,-..,e24) = 11100110011000110110 — 01100110011001100110

= (10000000000001010000).

Therefore, the error vector is e = (011010000000000001010000) and the sent
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codeword s

v=w—e=(101101011101110110001101) — (011010000000000001010000)

= (110111011101110111011101).

(1) Let the received vector be w = (110101001101110111010001) after an error vec-
tor of Y(sp=12,3),24,2. Now the syndrome of w is wHT = (10010000000000001100). As
the second and third tuples of b components are all zero, the error starts after b = 4
positions.

Therefore the error vector is e = (000010010000000000001100) and the sent code-
word s

v=w—e=(110101001101110111010001) — (000010010000000000001100)

= 110111011101110111011101.
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