
Chapter 6

Codes with burst distance and pe-

riodical burst errors

The contents of this chapter are based on the paper:

• Das, P. K. and Haokip, L. Codes with burst distance and periodical burst

errors. Journal of Computational and Applied Mathematics, 411:114240, 2022.
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Chapter 6

Codes with burst distance and periodical

burst errors

This chapter presents a study on the burst-b distance db of a linear code and

provides periodical burst error detection and correction capability for a linear code

equipped with minimum burst-b distance db. An (n, k) linear code with minimum

burst-b distance db is written as (n, k, db) linear code. In [79], Villalba et al. extend

the study on burst-b distance and derive an extended Reiger-Singleton bound for an

(n, k, db) linear code as

b(db − 1) ≤ n− k. (6.1)

Codes with b(db−1) = n−k are called Maximum Distance Separable (MDS) codes.

A class of Maximum Distance Separable (MDS) codes is presented in [79] as below.

Lemma 6.1. [79] The code generated by the b× bdb matrix Gb:

Gb =
b− 1





b︷ ︸︸ ︷
1 0 . . . 0

b︷ ︸︸ ︷
1 0 . . . 0 . . . . . .

b︷ ︸︸ ︷
1 0 . . . 0

0 1 . . . 0 0 1 . . . 0 . . . . . . 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
. . . . . .

...
...

. . .
...

0 0 . . . 1 0 0 . . . 1 . . . . . . 0 0 . . . 1

 =

Ib Ib . . . Ib︸ ︷︷ ︸
db times

 ,

where 1’s in each row are separated by exactly b − 1 zeros, is a (bdb, b, db) MDS

code.

Observe that the code given in Lemma 6.1 is a cyclic code and every codeword has

106



same burst-b weight db. So, the code is a constant burst-b weight code. We denote

the above (bdb, b, db) code by Cb code.

This chapter investigates the periodical burst error detection and correction ca-

pability of the code Cb and its dual code along with a decoding procedure of the

code Cb. The contents of this chapter are organised as follows. Section 6.1 gives

bounds on db for a linear code and a constant burst-b weight linear code. Then, we

give the connection between an (n, k, db) and (n− b, k, db − 1) codes along with the

cardinality of (n, k, db) code. We also provide a connection between linearly inde-

pendent columns of the parity check matrix of any MDS (n, k, db) codes. Section

6.2 presents periodical burst error detection and correction capability of a linear

(n, k, db) code. The same is investigated for the MDS code Cb. Finally, Section 6.3

gives a decoding procedure for the code Cb in the case of periodical burst error.

6.1 Codes with burst-b distance

In this section, we give bounds on db for a linear code and a constant burst-b weight

linear code. Then, we give the existence of a linear code with minimum distance

db − 1 from a linear code with minimum distance db. Further, an upper bound on

the cardinality of a linear code with distance db is derived. The connection between

linearly independent columns of the parity check matrix of any MDS code with

burst-b distance is derived.

Theorem 6.2. Let C be an (n, k, db) linear code over GF (q). Then

db ≤
nqk−1(q − 1)

qk − 1
.

Proof. From Result 1.12, the total number of nonzero components in all the code-

words of C is

nqk−1(q − 1). (6.2)

Again, the code has the minimum burst-b distance as db, so the number of nonzero

components in each nonzero codeword is at least db. Therefore, the total number of
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nonzero components in all the codewords of C is at least

(qk − 1)db.

Hence

(qk − 1)db ≤ nqk−1(q − 1).

This proves the theorem.

Remark 6.3. This upper bound of db coincides with Result 1.12 when the distance

is taken in Hamming sense for a q-ary (n, k, d) linear code.

Theorem 6.4. Let C be a constant burst-b weight (n, k, db) linear code over GF (q).

Then

db ≥
nqk−1(q − 1)

(qk − 1)b
. (6.3)

Proof. Since every codeword of the code C has burst-b distance db, the number of

nonzero components in each nonzero codeword is at most bdb. Therefore, the total

number of nonzero components in all the codewords of C can be at most

(qk − 1)bdb.

But the total number of nonzero components in all the codewords of C is given by

(6.2). Hence

(qk − 1)bdb ≥ nqk−1(q − 1).

This proves the theorem.

Remark 6.5. For constant burst-b weight (n, k, db) linear code over GF (q), Theorem

6.2–6.4 give

nqk−1(q − 1)

(qk − 1)b
≤ db ≤

nqk−1(q − 1)

qk − 1
. (6.4)

Remark 6.6. For constant burst-b weight code Cb, k = b and q = 2. Then

nqk−1(q − 1)

(qk − 1)b
=

bdb2
b−1

(2b − 1)b
≤ db. [∵

2b−1

(2b − 1)
≤ 1]

Further, for b = 1

nqk−1(q − 1)

(qk − 1)
=

d12
1−1

(21 − 1)
= d1,
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and for b ≥ 2

nqk−1(q − 1)

(qk − 1)
=
bdb2

b−1(2− 1)

(2b − 1)
=

bdb2
b−1

(2b − 1)
≥ db. [∵

b2b−1

(2b − 1)
≥ 1]

Thus

nqk−1(q − 1)

(qk − 1)
≥ db.

Therefore, the bound 6.4 is satisfied by the code Cb.

Theorem 6.7. If a q-ary (n, k, db) linear code C exists with db ≥ 2, there also exists

an (n− b, k, db − 1) linear code C ′.

Proof. There exist codewords x and y of C such that db(x, y) = wb(x − y) = db.

From the db sets in which nonzero components of x−y are confined, we choose a set

of b consecutive components. Delete the b consecutive components of the set in each

codeword of C, the resultant vectors will have burst-b weight at least db − 1(≥ 1)

with one vector x − y having exactly burst-b weight db − 1, and they will form a

subspace C ′ of C with qk elements. This code C ′ is the required (n − b, k, db − 1)

linear code C ′.

Theorem 6.8. The cardinality M of a linear code of length n with minimum burst-b

distance db is bounded above by

M ≤ qn

(db−1)/2∑
i=0

(
n− ib+ i

i

)
(q − 1)iqi(b−1)

.

Proof. By [23], the number of (db − 1)/2 bursts of length up to b is given by

qn

(db−1)/2∑
i=0

(
n− ib+ i

i

)
(q − 1)iqi(b−1)

By Result 1.18, the code can correct all (db−1)/2 bursts of length up to b. As every

codeword disturbed by such errors must produce distinct words, we have

qn ≥M

(db−1)/2∑
i=0

(
n− ib+ i

i

)
(q − 1)iqi(b−1)

i.e.

M ≤ qn

(db−1)/2∑
i=0

(
n− ib+ i

i

)
(q − 1)iqi(b−1)

.
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Theorem 6.9. Let C be an (n, k, db) code over GF (q) and n− k is a multiple of b.

Let H be the parity check matrix of C. Then C is an MDS code if and only if every

set of n− k columns that are formed from
n− k
b

sets of b consecutive columns of H

are linearly independent.

Proof. If C is an MDS code, then b(db − 1) = n− k, which implies db − 1 =
n− k
b

,

an integer. As every vector of burst-b weight db − 1 cannot be a codeword, every

linear combination of columns of H which consists of db − 1 sets of b consecutive

columns is nonzero. Also, the total number of columns in db−1 sets of b consecutive

columns is n− k, so every set of n− k columns that are formed from
n− k
b

sets of b

consecutive columns of H is linearly independent. Now, if every set of n−k columns

that are formed from
n− k
b

sets of b consecutive columns are linearly independent,

we cannot get a codeword whose nonzero components are confined to
n− k
b

sets of

b consecutive columns. The
n− k
b

sets of b consecutive columns may be within the

first n − k columns of H or not. In either case, the burst-b distance of the code C

is at least
n− k
b

+ 1, i.e.

db ≥
n− k
b

+ 1

=⇒ b(db − 1) ≥ n− k.

Again from Equation (6.1), we have b(db − 1) ≤ n − k. So, b(db − 1) = n − k and

hence C is an MDS code.

6.2 Burst-b distance and periodical burst errors

In this section, we present periodical burst detection and correction of an (n, k, db)

linear code. Then we do the same investigation for code Cb and its dual code C⊥b .

Theorem 6.10. An (n, k, db) code can detect all vectors of ψ(s,b),n,q that start from

the
(
n+ 1− (db − 1)(s+ b)

)th
position.

Proof. Consider a vector of the error set ψ(s,b),n,q defined in Chapter 4 whose nonzero
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components start from the jth position (j = 1, 2, . . . , n), so the errors are confined

to the last n− j + 1 positions.

By Euclidean division algorithm, for integers n− i+ 1 and s+ b, there exist integers

λj and rj such that

n− j + 1 = λj(s+ b) + rj, where 0 ≤ rj < s+ b. (6.5)

So, every vector of ψ(s,b),n,q, where the error starts from the jth position, has burst-b

weightb
n−j+1
s+b
c if rj + p ≤ b (p : the last nonzero position of the first nonzero set)

dn−j+1
s+b
e otherwise.

An (n, k, db) code can detect error vectors of ψ(s,b),n,q if its burst-b weight is less than

or equal to db − 1. So, if

db − 1 ≥
⌈n− j + 1

s+ b

⌉
i.e., (db − 1)(s+ b) ≥ n− j + 1

i.e., j ≥ n+ 1− (db − 1)(s+ b),

the code detects any error vector of ψ(s,b),n,q that starts from the jth position. There-

fore, if the starting position of the error pattern of ψ(s,b),n,q is n+ 1− (db− 1)(s+ b),

the code detects such errors.

Taking j = 1, we have 1 = n+ 1− (db− 1)(s+ b), i.e., db =
n

s+ b
+ 1. Therefore,

we have the following corollary.

Corollary 6.11. An (n, k, db) code detects all error vectors of ψ(s,b),n,q provided

db ≥ d n
s+b
e+ 1.

Theorem 6.12. An (n, k, db) code corrects all error vectors of ψ(s,b),n,q that start

from the
(⌈
n+ 1− (db − 1)

2
(s+ b)

⌉)th
position.

Proof. By Result 1.18, an (n, k, db) code can correct up to (db − 1)/2 bursts of

length up to b each. Since every error vector of ψ(s,b),n,q that starts from jth position

(j = 1, 2, . . . , n) has burst-b weight dn−j+1
s+b
e or less, an (n, k, db) code can correct an

error vector of ψ(s,b),n,q if its burst-b weight is less than or equal to (db − 1)/2. Now

db − 1

2
≥
⌈n− j + 1

s+ b

⌉
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implies
(db − 1)

2
(s+ b) ≥ n− j + 1

implies j ≥ n+ 1− (db − 1)

2
(s+ b),

Therefore, if the starting position of an error vector of ψ(s,b),n,q is
⌈
n+1− (db − 1)

2
(s+

b)
⌉
, the code corrects such errors.

Again taking j = 1, we have 1 =
⌈
n+ 1− (db − 1)

2
(s+ b)

⌉
, i.e., db ≥ 2

⌈
n
s+b

⌉
+ 1.

This gives the following corollary:

Corollary 6.13. An (n, k, db) code can correct vectors of ψ(s,b),n,q provided db ≥

2
⌈

n
s+b

⌉
+ 1.

Theorem 6.14. The code Cb (db ≥ 2) detects all

(i) vectors of the error set ψ(s,b),n,q for any s ≥ b, and

(ii) vectors of the error set ψ(s,b),n,q that start from (b+ 1)th position for any s.

Proof. As n = bdb and s ≥ b, then d n
s+b
e+ 1 ≤ d bdb

2b
e+ 1 = ddb

2
e+ 1 ≤ db for db ≥ 2.

From Corollary 6.11, the code Cb detects all error vectors of ψ(s,b),n,q for any s ≥ b.

Further, if the error vector of ψ(s,b),n,q starts from the (b + 1)th position for any s,

then n becomes (db − 1)b and
b

s+ b
≤ 1, so⌈ n

s+ b

⌉
+ 1 =

⌈b(db − 1)

s+ b

⌉
+ 1 ≤ db − 1 + 1 = db.

This proves the part (ii) by Corollary 6.11.

Theorem 6.15. The number of vectors of the error set ψ(s,b),n,q that go undetected

by the code Cb is 2b.

Proof. From Theorem 6.14, a vector of ψ(s,b),n,q may go undetected if it starts within

the first b positions and s < b. Every codeword of Cb is a linear combination of rows

of Gb, so every codeword can be written as

(a0 + a1X + a2X
2 + · · ·+ ajX

j) +Xb(a0 + a1X + a2X
2 + . . .

+ajX
j) + · · ·+X(db−1)b(a0 + a1X + a2X

2 + · · ·+ ajX
j),

where ai ∈ GF (2) and 0 ≤ j ≤ b− 1.

Clearly, every nonzero codeword is a vector of ψ(s,b),n,q that starts within the first b
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positions and s < b. Therefore, the number of vectors of ψ(s,b),n,q that go undetected

by Cb is 2b.

Theorem 6.16. The code Cb corrects all

(i) vectors of the error set ψ(s,b),n,q for any s ≥ 3b, and

(ii) vectors of the set ψ(s,b),n,q that start from
(⌈ (db+1)b

2

⌉
+ 1
)th

position for any s.

Proof. Since the difference between any two vectors of ψ(s,b),n,q for s ≥ 3b is a vector

which contains at least b consecutive zeros, so the difference cannot be a codeword

of Cb. Therefore, the code Cb corrects all error vectors of ψ(s,b),n,q for any s ≥ 3b.

This can be verified from Corollary 6.13 also:

As n = bdb and s ≥ 3b, then 2d n
s+b
e+ 1 ≤ 2d bdb

4b
e+ 1 = 2ddb

4
e+ 1 ≤ db for db ≥ 3.

Further, if an error vector of ψ(s,b),n,q starts from
(⌈ (db+1)b

2

⌉
+ 1
)th

position, then

n becomes bdb −
⌈(db + 1)b

2

⌉
≤ b(db − 1)

2
. So

2
⌈ n

s+ b

⌉
+ 1 ≤ 2

⌈b(db − 1)

2(s+ b)

⌉
+ 1 ≤ db. (∵

b

s+ b
≤ 1)

This proves the part (ii).

Theorem 6.17. The dual code C⊥b of Cb is also a (bdb, b(db − 1), 2) MDS code.

Proof. Since the code Cb is of order (bdb, b), the order of its dual code C⊥b is

(bdb, b(db − 1)) and its generator matrix Hb is given by

Hb = db − 1





Ib

Ib
... Ib(db−1)

Ib

Ib


,

where Ib represents the identity matrix of order b.

Clearly, the minimum burst-b distance of C⊥b is d′b = 2. So, for the dual code C⊥b ,

n = bdb, k = b(db − 1) and d′b = 2. Now b(d′b − 1) = b = n− k. Therefore, the dual

code C⊥b is also an MDS code.
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Theorem 6.18. If db = 2, the dual code C⊥b of Cb

(i) detects all vectors of the error set ψ(b,b),n,q and

(ii) corrects all vectors of the set ψ(b,b),n,q that start from the (b+ 1)th position.

Proof. From the previous theorem, we have that the length and the minimum burst-b

distance of C⊥b are bdb and d′b = 2 respectively. Now taking s = b, we have⌈ n

s+ b

⌉
+ 1 =

⌈bdb
2b

⌉
+ 1 =

⌈db
2

⌉
+ 1 ≤ d′b.

So, by Corollary 6.11, the code C⊥b detects all vectors of ψ(b,b),n,q provided db = 2.

Again ⌈
n+ 1− (d′b − 1)

2
(s+ b)

⌉
=
⌈
2b+ 1− (2− 1)

2
(b+ b)

⌉
= b+ 1.

So, by Theorem 6.12, the dual code C⊥b corrects all vectors of ψ(b,b),n,q that start

from the (b+ 1)th position.

6.3 Decoding of the MDS code Cb

In this section, we give a decoding method for periodical burst error by the code Cb.

Suppose that v is a sent codeword of Cb and w = (w1, w2, . . . , wbdb) is received after

any vector of ψ(s,b),n,q (where s ≥ 3b) which is e = (e1, e2, . . . , ebdb). Then the sent

codeword is v = w − e. In the following, we describe how to get the error from the

received vector w. Now the syndrome of w is

S =wH⊥b

=eH⊥b

=

(
e1 + eb+1, e2 + eb+2, . . . , eb + e2b, e1 + e2b+1, e2 + e2b+2, . . . , eb + e3b,

. . . , . . . , e1 + e(db−1)b+1, e2 + e(db−1)b+2, . . . , eb + edbb

)
=

(
s1, s2, . . . , sb, sb+1, sb+2, . . . , s2b, . . . , . . . , s(db−2)b+1, s(db−2)b+2, . . . , s(db−1)b

)
.

If the periodical burst error starts from jth position (1 ≤ j ≤ b), all the three b-tuples

(s1, s2, . . . , sb), (sb+1, sb+2, . . . , s2b), (s2b+1, s2b+2, . . . , s3b) of b consecutive components

of S will be nonzero tuples and also ej+b = ej+b+1 = · · · = ej+4b−1 = 0. Taking the
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majority of the three sets of b consecutive components gives us (e1, e2, . . . , eb). Then

subtracting (e1, e2, . . . , eb) from each set of b consecutive components of S gives the

remaining (db − 1)b components of e, i.e.(
eb+1, eb+2, . . . , e2b, e2b+1, e2b+2, . . . , e3b, . . . . . . , e(db−1)b+1, e(db−1)b+2, . . . , edbb

)
=

(
s1, s2, . . . , sb︸ ︷︷ ︸

b

, sb+1, sb+2, . . . , s2b︸ ︷︷ ︸
b

, . . . . . . , s(db−2)b+1, s(db−2)b+2, . . . , s(db−1)b︸ ︷︷ ︸
b

)

−
(
e1, e2, . . . , eb︸ ︷︷ ︸

b

, e1, e2, . . . , eb︸ ︷︷ ︸
b

, . . . . . . , e1, e2, . . . , eb︸ ︷︷ ︸
b

)

=

(
s1 − e1, s2 − e2, . . . , sb − eb︸ ︷︷ ︸

b

, sb+1 − e1, sb+2 − e2, . . . , s2b − eb︸ ︷︷ ︸
b

, . . . . . . . . . ,

s(db−2)b+1 − e1, s(db−2)b+2 − e2, . . . , s(db−1)b − eb︸ ︷︷ ︸
b

)
.

If the periodical burst error starts from jth position (j ≥ b+ 1), then

S = wH⊥b

= eH⊥b

=

(
eb+1, eb+2, . . . , e2b, e2b+1, e2b+2, . . . , e3b, . . . , . . . , e(db−1)b+1, e(db−1)b+2, . . . , edbb

)
=

(
s1, s2, . . . , sb, sb+1, sb+2, . . . , s2b, . . . , . . . , s(db−2)b+1, s(db−2)b+2, . . . , s(db−1)b

)
.

Thus, if the periodical burst starts from jth position (j > b), at least one b-

tuple of {(s1, s2, . . . , sb), (sb+1, sb+2, . . . , s2b), (s2b+1, s2b+2, . . . , s3b)} of b consecutive

components of S will be a zero tuple. Then, the error vector e will be e =(
00 . . . 0︸ ︷︷ ︸

b

s1s2 . . . sb(db−1)
)
.
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Example 6.19. For b = 4 and d4 = 6, the parity check matrix of C4 is given by

H4 =



100010000000000000000000

010001000000000000000000

001000100000000000000000

000100010000000000000000

100000001000000000000000

010000000100000000000000

001000000010000000000000

000100000001000000000000

100000000000100000000000

010000000000010000000000

001000000000001000000000

000100000000000100000000

100000000000000010000000

010000000000000001000000

001000000000000000100000

000100000000000000010000

100000000000000000001000

010000000000000000000100

001000000000000000000010

000100000000000000000001


20×24

.

(i) Let the received vector be w = 101101011101110110001101 after an error vector

of ψ(3b=12,3),24,2. Now the syndrome of w is wHT
4 = 11100110011000110110. As

each of the first 3 tuples of b = 4 consecutive components is not all zero, the error

starts within the first b = 4 positions. From the majority of first three sets of four

consecutive components, we can have (e1, e2, e3, e4) = (0110). So

(e5, e6, . . . , e24) = 11100110011000110110− 01100110011001100110

= (10000000000001010000).

Therefore, the error vector is e = (011010000000000001010000) and the sent
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codeword is

v = w − e = (101101011101110110001101)− (011010000000000001010000)

= (110111011101110111011101).

(ii) Let the received vector be w = (110101001101110111010001) after an error vec-

tor of ψ(3b=12,3),24,2. Now the syndrome of w is wHT
4 = (10010000000000001100). As

the second and third tuples of b components are all zero, the error starts after b = 4

positions.

Therefore the error vector is e = (000010010000000000001100) and the sent code-

word is

v = w − e = (110101001101110111010001)− (000010010000000000001100)

= 110111011101110111011101.
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