
Chapter 1

Introduction

As science and technology advance, reliable digital data transmission and storage

systems are becoming more and more necessary. We use computers and other com-

munication devices to develop these systems. In 1948, Shannon [70] established in

his paper that error occurring over noisy communication channels can be corrected

if information rate is below the channel capacity. It can be achieved through proper

coding of the message. Although his work lacks the method and technique by which

it can be achieved, he has only given probabilistic results when it is possible. In

1950, Hamming [36], an American Mathematician, was the first to give a method

for constructing a class of codes and coined the first kind of error-correcting codes,

known as the Hamming codes, at Bell Laboratory. These codes are used in the

computer storage system. Then some important classes of codes like Golay codes

and BCH codes were discovered by Golay [35] in 1949, and by Hocquenghem [37]

in 1959, Bose and Chaudhuri [48] in 1960 independently. The Reed-Solomon code,

another potent error-correcting code developed by Reed and Solomon [73] in 1960,

is a subfamily of the BCH codes. In 1970, Hsiao [39] developed a new group of

codes known as odd-weight-column-code. This code provides an improvement over

the Hamming codes. It reduces errors on deployments, improves reliability, and in-

creases the speed of the code. As a result, odd-weight-column-code became suitable

for applications for IBM and the computer industry worldwide [16, 50].

In 1959, Abramson [2] developed a class of codes that can correct two or fewer

consecutive errors. Fire [29] generalised this and developed a class of codes that

1



can correct any b or less consecutive errors (called burst errors). In 1960, Gilbert

[32, 33] brought a thrilling elegance to low-density binary burst-correcting codes.

The work of Gilbert led to the improvement of low-density burst detection and

correction codes. In [52], Neumann expanded the work of Gilbert strengthening

Gilbert’s outcomes at the burst correction capability of the codes and presented

comparable results on burst detecting capability. Neumann’s work was basically an

extension of Huffman codes [40]. His results showed that the burst-correcting codes

were more efficient than the formerly constructed codes. A study on low-density

cyclic burst errors was also presented concurrently by Wyner [81]. A lithographic

stage for semiconductors is an example where this type of error occurs. In [54],

a category of linear block codes that can correct all burst errors occurring in one-

dimensional, two-dimensional, and three-dimensional communication channels was

studied. Further, Chen [17] defined a category of binary linear codes for protecting

computer memory defects. These codes can mask three or fewer defects and correct

multiple random errors.

Cyclic codes are another class of codes that are used for detecting and correcting

errors in storage systems. Cyclic code was introduced by Prange [59] in the year

1957. Later, Peterson [56] developed more results and laid the outline for much of

the present-day theory. This is a type of linear block code in which the cyclic shift

of any codeword results in another codeword. This algebraic property proved to be

an excellent choice for designing the codes. An (n, k) cyclic code can be defined by

a generator polynomial of degree n−k. Cyclic code has the ability to combat single

and multiple bursts along with random errors. Cyclic code is one of the most widely

used codes developed in recent years. Even Hamming code is a cyclic code. Many

well-known codes, like BCH code [48], Reed-Muller code [56], Reed-Solomon code

[73], Goppa code [73], fall into the category of cyclic codes.

In coding theory, mathematicians have derived many upper and lower bounds

on the parameters of the codes. One goal of the work is to find a suitable one

that can provide fewer parity check digits in order to have better information rate.

The Hamming bound was developed by Hamming [36] in 1950. It is also known as

Sphere Packing Bound. Hamming bound is famous for giving the maximum number
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of codewords in a code of length n with minimum distance d. In 1957-58, Varshamov

[77] and Sacks [62] gave a famous bound on existence of a linear code, known as

Gilbert-Varshamov bound. Campopiano bound was given by Campopiano [15] in

1962. The bound gives us the minimum number of parity-check digits required for a

linear code that corrects all single burst errors. A bound (known as Plotkin bound)

was derived by Plotkin [58] in 1960. This was a better bound than Hamming on

the minimum distance of a linear code and gave a more accurate result when the

minimum distance is very close to the length of the code. Huffman and Pless [41]

derived the upper bound for nonlinear code. Elias [26] has inhanced Plotkin bound

further to derive a bound that gives a higher range of minimum distances. Griesmer

bound is another upper bound (developed by Griesmer [34]) on the length of a linear

code with respect to the dimension and minimum distance of the code. Unlike other

bounds, this bound is valid only for linear codes. After Griesmer derived his bound,

Solomon and Stiffler [68], and Belov [10] studied and obtained simplex codes that

attained Griesmer bound. In 1964, Singleton [67] derived a simple upper bound on

the number of codewords known as Singleton bound. The codes satisfying Singleton

bound with equality are called the Maximum Distance Separable (MDS) codes.

Studies on the class of MDS codes had been carried out independently by Assmus

et al. [8], Forney [30], Kassami and Lin [44], and many others.

Some noteworthy reference books of error-correcting codes are: Peterson [55],

Abramson [4], Ash [7], Berlekamp [11], Van Lint [75], Van Lint [76], Vermani [78],

Pless [57], Jones et al. [43], Feng et al. [28], Todd [72], Neubauer et al. [51], Klove

[45], Bose [13], Niederreiter et al. [53], You [82], Bierbrauer [12], Dougherty [25],

Tomlinson et al. [73], Howe et al. [38], Kwong et al. [46], Ball [9], Shang et al. [64],

etc. These books are written in chronological order as per the year of publication.

1.1 Terminologies and preliminaries

Any subset C of a vector space V n of n-tuples over GF (q) is called a code over

GF (q). If C is a subspace, then it is called a linear code. An (n, k) linear code

is a subspace of V n whose dimension is k and n is called the length of the code.
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The elements of C are called codewords or codevectors. The Hamming distance

between two vectors is the number of components that vary. The Hamming weight

of a vector is the number of nonzero components. The minimum weight of a code

is the minimum of all weights of nonzero codewords. The minimum distance of a

code is the minimum of all distances between any two codewords. In linear code,

the minimum weight and the minimum distance coincide. A generator matrix of

an (n, k) linear code is a matrix of order k× n whose rows are the basis elements of

the code. A parity check matrix of an (n, k) linear code is an (n− k)×n matrix

whose rows form a basis for the dual of the code. Let w ∈ V n be a vector, and H

be the parity check matrix of a linear code. Then wHT is called the syndrome of

the vector w.

Standard array: The standard array of a linear code is an array consisting of all

the n-tuples in the space of vector space. It is arranged by placing all the codewords

of the linear code as the first row with the zero vector at the left. The next row is

constructed by placing any non-zero codevector with smaller weight below the zero

vector, then adding the new vector to each codeword and placing it just below the

codewords. The process continued until all the n-tuples were present in the array.

Each row is a coset of the code and the first element (smallest weight vector) in

each row of the array is known as coset leader.

Encoding and decoding: Let G and H be generator and parity check matrices of

an (n, k) linear code C. If x = (x1, x2, . . . , xk) be the message, then x is encoded as

v = xG by the code C (clearly v ∈ C). Suppose v is sent through communication

channel and w = (w1, w2, . . . , wn) is received. Then decoding is done as follows:

Case i: If wHT = 0, then there is no error in transmission. This means w is decoded

as v = w and accordingly we can get the message x.

Case ii: If wHT 6= 0, then there is error in transmission. In this case, we locate

the syndrome wHT in standard array with corresponding coset leader e and w is

decoded as v = w − e and accordingly we can get the message x.

Weight distribution: The (Hamming) weight distribution of a code provides

insight into the error detecting/correcting properties of a code. This is very helpful
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in determining the number of errors that are detectable/correctable by the code.

Usually, the weights of the errors are not uniformly distributed. Smallest weight

error vector has more chance than the higher one. If the weight distribution of the

code or the error pattern is known, probability of incorrect output can be estimated.

IfW (i) is the number of codewords of weight i in a code C, the listW (i) for 0 ≤ i ≤ n

is called the weight distribution or weight spectrum of C. The weight distribution

of a code was first given by Hamming [36] in the 1950s. In 1963, MacWilliam [49]

gave the fascinating relation of weight distributions between a linear code and its

dual code. For more details on weight distribution, one can see the book: Huffman

and Pless [41], or Peterson and Weldon [56]. Some recent works in this topic can be

found in [20, 21, 60, 65].

Probability of decoding error: The decoder will produce incorrect output if and

only if the syndrome produced corresponds to a correctable error. There is always a

possibility of decoding error that exceed the code’s guaranteed detection/correction

capability. To know the rate at which decoding error occurs, we need to study

Probability of decoding error of the code. Gallager [31] first introduced the

probability of decoding error in 1962. He derived the probability of decoding error

over a binary symmetric channel with the maximum likelihood of decoding. For

more details on probability of decoding error, one may refer Peterson and Weldon

[56], or Sweeney [69]. Some recent works on this direction can be found in [5, 61, 71].

1.2 Error Patterns

1.2.1 Burst errors

Burst errors are one of the most common error patterns present in communication

channels. Abramson [2, 3] studied this error pattern in 1959. He developed codes

correcting single and double adjacent errors. Fire [29] generalised them in the same

year and named them as open-loop burst errors (or simply burst errors). They are

defined as follows.
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Definition 1.1. A burst of length b is a vector whose only nonzero components are

among some b consecutive components, the first and the last of which are nonzero.

Some examples of bursts of length 3 in a vector of length 9 over GF (3) are

101000000, 001010000, 000001210, 000000201.

We call those bursts as end-around (EA) bursts (refer Wainberg et al. [80]) when

the b consecutive components are considered cyclically. A proper definition of an

EA-burst is given by Villalba et al. [79]. They called such bursts as all-around (AA)

bursts.

Definition 1.2. An n-tuple v = (v0, v1, . . . , vn−1) is called an all-around (AA)

burst of length b (where b < n/2) if given the consecutive (cyclically) co-ordinates

vi, vi+1, . . . , vi+b−1, the co-ordinates vi and vi+b−1 should be nonzero while vj = 0 for

j /∈ {i+ 1, i+ 2, . . . , i+ b− 1} and i+ b− 1 < i when taken modulo n.

For example, the vectors 1100000001 and 1100000010 are AA-bursts of length 3

and 4 respectively.

1.2.2 Cyclic burst errors

Cyclic bursts are known to be considered first by Abramson [2, 3] in 1960. He proved

the existence of an optimum one-burst-correcting code that is Hamming code, a two-

burst-correcting code, and a three-burst correcting code. Later, in 1986, Abdel et

al. [1] proved the existence of an infinite number of optimum burst correcting cyclic

codes. Cyclic burst basically consists of burst and AA-burst.

Definition 1.3. A cyclic burst of length b is a vector whose only nonzero cyclic

bursts are confined to some b consecutive components, the first and the last of which

are nonzero.

For example, 10100000, 00000121, 10000021, 12000001 are some cyclic bursts of

length 3 in a vector of length 8 over GF (3).
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1.2.3 CT-burst errors

Alexander, Gryb and Nast [6] studied burst errors in a binary bit of length N that

begins with an error bit and ends with N − 1 bits, whether or not they are error

bits. This type of error occurs on telephone lines. In 1965, Chien and Tang [18]

gave proper definition of such bursts, which are known as CT-bursts.

Definition 1.4. A CT-burst of length b is a vector whose only nonzero components

are confined to some b consecutive positions, first of which is nonzero.

For example, 100000000, 000100200, 000102000 are some CT-bursts of length 4

in a vector of length 9.

1.2.4 Periodic random/periodical burst errors

Errors due to noisy channels in the early days are classified into two broad cat-

egories: random and burst errors. In 1994, it has been observed by Lange [47]

that there are channels like power lines, data channels in close distance to electron-

ically controlled power supply units or inverters, the car electric, compact discs,

and CD-ROM where groups of consecutive errors (random or burst errors) repeat

periodically. They are called as periodic random errors or periodical burst

errors accordingly. Such types of errors are also found in lithographic stages for

semiconductor fabrication, as observed by Schmitz et al. [63].

Definition 1.5. An s-periodic random error of length b is an n-tuple whose non-

zero components are confined to distinct sets of b consecutive positions, the sets are

separated by s zeros and the b components can be filled by any field element.

For example, 4-periodic random errors of length 3 in a vector of length 16 are

001 0000 110 0000 10, 0 001 0000 110 0000 1, 00 001 0000 110 0000, etc.

If b = 1, such errors are simply called s-periodic errors. s-periodic error detecting

and correcting linear codes and the Hamming weight distribution of the error pattern

are studied in [20, 22, 74].

7



Definition 1.6. An s-periodical burst error of length b is an n-tuple whose nonzero

components are confined to distinct sets of b consecutive positions such that the sets

are separated by s positions and first component of each set is nonzero.

For example, 4-periodical burst errors of length 3 in a vector of length 16 are

100 0000 110 0000 10, 0 101 0000 110 0000 1, 00 101 0000 110 0000, etc.

Note that the sets which are separated by s positions in an s-periodical burst error

of length b are nothing but CT-burst errors of length b.

1.2.5 Low-density periodic random/periodical burst errors

Wyner [81] in 1961 introduced the concept of low-density burst errors for low in-

tensity bursts. In such a burst, very few components within the burst are normally

disturbed. Motivated by this, for low intensity periodical disturbances, we have

considered low-density periodic random errors and low-density periodical

burst errors. They are defined as follows:

Definition 1.7. A low-density s-periodic random error of length b with weight w

(w ≤ b) is an n-tuple whose non-zero components are confined to distinct sets of b

consecutive positions such that the sets are separated by s positions and the number

of nonzero components within the b consecutive positions can be at most w.

For example, 5-periodic random errors of length 4 with weight 2 over GF (2) in

a vector of length 21 are 0101 00000 0101 00000 100, 0 0110 00000 1001 00000 10,

00 0101 00000 0101 00000 1, etc.

Definition 1.8. A low-density s-periodical burst error of length b with weight w

(w ≤ b) is an n-tuple whose non-zero components are confined to distinct sets of

b consecutive positions such that the sets are separated by s positions, the first po-

sition of each set is nonzero, and the number of nonzero components within the b

consecutive positions can be at most w.

For example, 5-periodical burst errors of length 4 with weight 3 over GF (2) in a

vector of length 21 are 1010 00000 1101 00000 100, 0 1010 00000 1101 00000 10,
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00 1010 00000 1101 00000 1, etc.

1.2.6 Burst -weight and -distance

Hamming distance [56] has been widely studied and found applications in many

coding problems among the various studied standard distances in coding theory.

The choice of a distance for a communication channel is vital. One type of distance is

better suited than another because different channels produce different types of error

patterns, and error patterns and distances are interlinked. In this regard, Wainberg

and Wolf [80] in 1972 introduced the concept of burst-b weight and distance in order

to correct multiple bursts and multiple erasures. Then Villalba et al. [79] extended

the study on this distance and derived extended Reiger-Singleton bound for a linear

code having minimum burst-b distance. They also presented a class of Maximum

Distance Separable (MDS) codes with respect to burst-b distance. To define burst-b

distance, burst-b weight is required to be defined first.

Definition 1.9. The burst-b weight of a vector v is the minimum number of CT-

bursts of length b that cover (cyclically) the nonzero coordinates of a vector v. We

denote the burst-b weight of a vector v as wb(v).

For instance, w2(100101101) = 3, w4(100101101) = 2.

Definition 1.10. The burst-b distance db between vectors u and v is defined by

db(u, v) = wb(u− v).

Note that the above two definitions were originally defined for binary case, but valid

for q-ary case also. Also, burst-b weight and distance coincide with the Hamming

weight and distance in the case of b = 1. An (n, k) linear code equipped with the

minimum burst-b distance db is written as (n, k, db).

1.3 Some previous results

Some of the important results on which this thesis is based are mentioned below.
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Result 1.11. (Hamming bound [36]): The maximum number of codewords in

a q-ary (n, k) block code with minimum distance at least d is given by

qn

b d−1
2
c∑

i=1

(
n

i

)
(q − 1)i

.

Result 1.12. (Plotkin’s bound [58]): The minimum weight of a codeword in a

q-ary (n, k) linear code is at most as large as the average weight nqk−1(q−1)/(qk−1).

Result 1.13. (Varshamov-Gilbert-Sacks bound [56]): The sufficient condi-

tion for the existence of a q-ary (n, k) linear code with minimum distance at least

d ≥ 3 is as follows:

qn−k >

2b d−1
2
c−1∑

i=0

(
n

i

)
(q − 1)i.

Result 1.14. (Fire bound [29]: The necessary number of parity-check symbols

in a q-ary (n, k) linear code that can correct all bursts of length b or less is at least

b− 1 + logq
[
(q − 1)(n− b+ 1) + 1

]
.

Result 1.15. (Campopiano bound[15]): There shall always exist a q-ary (n, k)

linear code that corrects all bursts of length b or less (b < n/2) provided that

n− k > 2(b− 1) + logq

[
(q − 1)(n− 2b+ 1) + 1

]
.

Result 1.16. (Singleton bound [67]): For a q-ary (n, k) linear code, the mini-

mum distance d of the code is at most n− k + 1, i.e., d ≤ n− k + 1.

Result 1.17. [69] The decoding error probability of a code of length n correcting up

to t errors on a binary symmetric channel with cross-over probability p is given by

Pde = 1−
t∑
i=0

W (i)pi(1− p)n−i,

where W (i) is number of codewords of weight i.

Result 1.18. [80] An (n, k, db) code can correct up to (db− 1)/2 bursts of length up

to b each.
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1.4 Plan of the thesis

This thesis studies mainly on the existence of linear codes that correct periodic

random/periodical burst errors with or without weight constraint, along with weight

distribution of the error patterns and error decoding probability of the codes. We

also present a study on the minimum burst-b distance of linear codes with periodical

burst-detection and -correction capabilities of codes. In this thesis, weight (distance)

is taken in the Hamming sense, except the last chapter. The contents of this thesis

are divided into six chapters.

Chapter 1

This chapter is essentially the introductory chapter, discussing the development of

the concept of error-correcting codes. Pre-requisites, basic definitions, and some

previous results are discussed in this chapter.

Chapter 2

In this chapter, we study necessary and sufficient conditions for the existence of

linear codes correcting periodic random errors. We also obtain the Hamming weight

distribution of such error pattern and derive an upper bound on the total Hamming

weight of all codewords of such error correcting codes. Examples are also provided.

Chapter 3

Chapter 3 extends the study of Chapter 2 and derives the conditions for the existence

of linear codes correcting periodic random errors but with (Hamming) weight con-

straint (i.e., low-density periodic random errors). For this, we first find the weight

distribution of low-density periodic random errors and then derive necessary and

sufficient conditions for the codes which are followed by examples. Then we present

Plotkin’s type of bound for the set of all such errors over q-ary n-tuples. Finally,

the probability of decoding error of the codes over a memoryless binary symmetric
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channel is derived.

Chapter 4

In this chapter, we study linear codes correcting periodical burst errors and derive

necessary and sufficient conditions for the existence of such codes. This chapter also

gives the (Hamming) weight distribution of periodical burst errors. This is followed

by Plotkin’s type of bound for the set of periodical burst errors. We conclude this

chapter by providing the probability of decoding error of periodical burst error-

correcting codes.

Chapter 5

Chapter 5 is also an extension of Chapter 4 where we give necessary and sufficient

conditions for the existence of linear codes correcting periodical burst errors having

(Hamming) weight constraint (i.e., low-density periodical burst errors). This chapter

also gives the weight distribution for low-density periodical burst errors, Plotkin’s

type of bound for the set of low-density periodical burst errors, and error decoding

probability of the codes. In addition to these, we present weight distribution and

Plotkins type bound for the set of errors (beyond the correctable periodical bursts)

that are detected by the low-density periodical burst correcting codes.

Chapter 6

In Chapter 6, we study bounds on the minimum burst-b distance of any linear

code. The periodical burst -detection and -correction capabilities of linear codes

with burst-b distance are investigated. Then the same investigation is done for the

MDS code Cb, given by Villalba et al. (2016), and its dual code C⊥b . Finally, we

provide a decoding procedure for the code Cb in the case of periodical burst errors.

After the last chapter, a separate section titled “Scope for Further Research” is

added for future direction of work. At the end, we provide the bibliography of the

thesis.
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