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Chapter 4

Periodical burst error correcting codes with

weight distribution and error decoding prob-

ability

In this chapter, we study periodical burst errors that are found in some com-

munication channels for known noise frequency (discussed in Section 1.2.4). By

Definition 1.6, an s-periodical burst of length b is an error pattern where CT-burst

of length b repeats in an n-tuple. The last burst may have less than b components.

This chapter presents linear codes correcting periodical burst errors, (Hamming)

weight distribution of the error pattern along with Plotkin’s type of bound and er-

ror decoding probability of the codes. These works are organised as follows. Section

4.1 provides necessary and sufficient conditions for the existence of a linear code

correcting periodical burst errors. Examples of such codes along with comparisons

on the number of check digits of these codes with the P(s,b),n,qRC − codes are also

provided. In Section 4.2, we present the error weight distribution of periodical burst

errors, followed by Plotkin’s type of bound and the probability of decoding error of

the code.

Like the previous chapters, we use the following notations for the specific studied

error pattern and the corresponding error-correcting codes as follows:

ψ(s,b),n,q : set of all s-periodical burst errors of length b in an n-tuple over GF (q).

P(s,b),n,qBC − code : length-n linear code correcting s-periodical burst errors of

length b over GF (q).
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4.1 P(s,b),n,qBC − codes and comparison

In this section, we provide necessary and sufficient conditions for the existence of

a P(s,b),n,qBC-code along with comparisons on the number of check digits of these

codes with the P(s,b),n,qRC − codes.

4.1.1 Conditions for existence of P(s,b),n,qBC − codes

First, we give the necessary condition and then sufficient condition for the existence

of a P(s,b),n,qBC-code. Examples are included to justify the results. To prove our

results, we first need the following lemma.

Lemma 4.1. For given non-negative integers n, b and s (n ≥ b + s), the total

number of vectors of ψ(s,b),n,q in a vector of length n is

Ns,b =
n∑
i=1

(q − 1)λiqmi−λi ,

where mi =
⌊n− i+ 1

s+ b

⌋
b+ γ

(
(n− i+ 1) mod (b+ s)

)
and λi =

⌈n− i+ 1

s+ b

⌉
.

Proof. Error position in a vector of ψ(s,b),n,q can start from the ith position (i =

1, 2, . . . , n). If mi denotes the maximum number of nonzero positions in the error

pattern and λi the number of sets in which the nonzero components are confined,

then by Lemma 3.1

mi =
⌊n− i+ 1

s+ b

⌋
b+ γ

(
(n− i+ 1) mod (b+ s)

)
and λi =

⌈n− i+ 1

s+ b

⌉
.

Since there are λi sets in which the first component is always nonzero, there will be

mi−λi positions where the components can be any of the q field elements. Therefore,

the total number of vectors of ψ(s,b),n,q is

Ns,b =
n∑
i=1

(q − 1)λiqmi−λi .

Example 4.2. Taking n = 15, b = 2, s = 3 and q = 2 in Lemma 4.1, we have

m1 = m2 = m3 = m4 = 6, m5 = 5, m6 = m7 = m8 = m9 = 4, m10 = 3,
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m11 = m12 = m13 = m14 = 2, m15 = 1 and λ1 = λ2 = λ3 = λ4 = λ5 = 3,

λ6 = λ7 = λ8 = λ9 = λ10 = 2, λ11 = λ12 = λ13 = λ14 = λ15 = 1. Then, the total

number of vectors of ψ(3,2),15,2 in a vector of length 15 is

N3,2 =
15∑
i=1

2mi−λi = 63.

These 63 error patterns are:

100001000010000, 100001000011000, 100001100010000, 100001100011000, 110001000010000,

110001000011000, 110001100010000, 110001100011000, 010000100001000, 010000100001100,

010000110001000, 010000110001100, 011000100001000, 011000100001100, 011000110001000,

011000110001100, 001000010000100, 001000010000110, 001000011000100, 001000011000110,

001100010000100, 001100010000110, 001100011000100, 001100011000110, 000100001000010,

000100001000011, 000100001100010, 000100001100011, 000110001000010, 000110001000011,

000110001100010, 000110001100011, 000010000100001, 000010000110001, 000011000100001,

000011000110001, 000001000010000, 000001000011000, 000001100010000, 000001100011000,

000000100001000, 000000110001000, 000000100001100, 000000110001100, 000000010000100,

000000010000110, 000000011000100, 000000011000110, 000000001000010, 000000001100010,

000000001000011, 000000001100011, 000000000100001, 000000000110001, 000000000010000,

000000000011000, 000000000001000, 000000000001100, 000000000000100, 000000000000110,

000000000000010, 000000000000011, 000000000000001.

Now, we give a necessary condition for the existence of a P(s,b),n,qBC-code (equivalent

to Result 1.14).

Theorem 4.3. For given non-negative integers n, b and s (n ≥ b+ s), a necessary

condition for an (n, k) P(s,b),n,qBC-code is

qn−k ≥ 1 +Ns,b, (4.1)

where Ns,b is given by Lemma 4.1.

Proof. As the code corrects all vectors of ψ(s,b),n,q, all the errors must be in different

cosets of the code. Thus, by Lemma 4.1, we get

qn−k ≥ 1 +Ns,b.
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Remark 4.4. From Inequality (4.1), we get

qk ≤ qn

1 +Ns,b

.

This implies that the number of codewords of an (n, k) P(s,b),n,qBC-code is bounded

above by
qn

1 +Ns,b

.

For a sufficient condition of a P(s,b),n,qBC-code, we use the same technique used

in the previous chapters by adding the columns in the parity check matrix one after

another, keeping in mind that the syndromes of the errors should be all nonzero and

distinct.

Theorem 4.5. For given non-negative integers n, b and s (n ≥ b + s), let n =

λ(b+s)+ l for some non-negative integers λ and l (where 0 ≤ l < b+s), a sufficient

condition for an (n, k) P(s,b),n,qBC-code is

qn−k >



[
(q − 1)λ−1qλ(b−1)

][
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

]
if l = 0

[
(q − 1)λqλ(b−1)+l−1

][
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

]
if 1 ≤ l ≤ b

[
(q − 1)λq(λ+1)(b−1)

][
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

]
if b < l < s+ b,

where m′i =
⌊n− b− i+ 1

s+ b

⌋
b+γ

(
(n−b−i+1) mod (b+s)

)
and λ′i =

⌈n− b− i+ 1

s+ b

⌉
.

Proof. The proof is shown by constructing an appropriate (n− k)× n parity-check

matrix H of the code. Take the first column h1 as any nonzero (n − k)-tuple and

suppose the columns h2, h3, . . . , hn−1 are added suitably to H. Then any (nonzero)

column hn is added to H provided that it is not a linear combination of immediately

preceding b− 1 columns together with previous sets of b consecutive columns which

are at a gap of s columns (the last set may contain less than b columns), along with

a linear combination of sets of b consecutive columns which are at a gap of s columns

confined to the first n − b columns (the last set may contain less than b columns).

This can be written as

hn 6=

(
b−1∑
i=1

ai1hn−i +
b−1∑
i=0

bi1hn−(s+b)−i +
b−1∑
i=0

bi2hn−2(s+b)−i + · · ·+
g1−1∑
i=0

biλhn−λ(s+b)−i

)
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+

(
b−1∑
i=0

αi1hj′−i +
b−1∑
i=0

βi1hj′−(s+b)−i +
b−1∑
i=0

βi2hj′−2(s+b)−i + · · ·+
g2−1∑
i=0

βiλ′hj′−λ′(s+b)−i

)
,

(4.2)

where aij, bij, αij, βij ∈ GF (q); b0i, α0i, β0i 6= 0; j′ ≤ n − b; g1 = γ
(
n mod (s + b)

)
,

g2 = γ
(
(n− b− j′ + 1) mod (s+ b)

)
, λ =

⌊ n

s+ b

⌋
and λ′ =

⌈n− b− j′ + 1

s+ b

⌉
.

In Expression (4.2), it is convenient to assume that

g1−1∑
i=0

biλhn−λ(s+b)−i = 0 and

g2−1∑
i=0

biλ′hj′−λ′(s+b)−i = 0 when n and n− b− j′ + 1 are multiples of s+ b.

The condition (4.2) ensures that syndromes of any two vectors of ψ(s,b),n,q are distinct.

The number of linear combinations in the first bracket on the right hand side (R.H.S.)

of (4.2) is calculated as follows:

The number of ways ai1’s can be chosen is qb−1. The number of ways bij’s (j =

1, 2, . . . , λ − 1) can be chosen is (q − 1)qb−1. For the last summation of the first

bracket, we get different combinations depending on l. For l = 0, there is no term in

the last summation of the first bracket. For 1 ≤ l ≤ b, g1 will be l and biλ’s can be

chosen by (q− 1)ql−1 ways. For b < l < s+ b, g1 will be b and biλ’s can be chosen by

(q − 1)qb−1 ways. Therefore, the total number of combinations of the first bracket

on R.H.S. of (4.2) is
qb−1[(q − 1)qb−1]λ−1 = (q − 1)λ−1qλ(b−1) if l = 0

qb−1[(q − 1)qb−1]λ−1(q − 1)ql−1 = (q − 1)λqλ(b−1)+l−1 if 1 ≤ l ≤ b

qb−1[(q − 1)qb−1]λ−1(q − 1)qb−1 = (q − 1)λq(λ+1)(b−1) if b < l < s+ b.

The second bracket on R.H.S. of (4.2) gives the number of vectors of ψ(s,b),n−b,q in

a vector of length n − b. This number, including the zero combination, is given by

Lemma 4.1 as

1 +
n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i ,

wherem′i =
⌊n− b− i+ 1

s+ b

⌋
b+γ

(
(n−b−i+1) mod (b+s)

)
and λ′i =

⌈n− b− i+ 1

s+ b

⌉
.
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Therefore, the total number of all possible linear combinations on R.H.S. of (4.2) is

[
(q − 1)λ−1qλ(b−1)

][
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

]
if l = 0

[
(q − 1)λqλ(b−1)+l−1

][
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

]
if 1 ≤ l ≤ b

[
(q − 1)λq(λ+1)(b−1)

][
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

]
if b < l < s+ b.

Since we can have at most qn−k−1 nonzero columns, the sufficient condition for the

existence of the required code is given by

qn−k >



[
(q − 1)λ−1qλ(b−1)

][
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

]
if l = 0

[
(q − 1)λqλ(b−1)+l−1

][
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

]
if 1 ≤ l ≤ b

[
(q − 1)λq(λ+1)(b−1)

][
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

]
if b < l < s+ b.

Remark 4.6. For q = 2, the sufficient condition of Theorem 4.5 becomes

2n−k >



2λ(b−1)
[
1 +

n−b∑
i=1

2m
′
i−λ′i

]
if l = 0

2λ(b−1)+l−1
[
1 +

n−b∑
i=1

2m
′
i−λ′i

]
if 1 ≤ l ≤ b

2(λ+1)(b−1)
[
1 +

n−b∑
i=1

2m
′
i−λ′i

]
if b < l < s+ b.

Now, we give three examples to justify Theorem 4.5 corresponding to l = 0, 1 ≤ l ≤ b

and b < l < s+ b.

Example 4.7. Consider n = 13, s = 3, b = 2 and q = 2 in Theorem 4.5, then

λ = 2; l = 3; and λ′1 = 3, λ′2 = · · · = λ′6 = 2, λ′7 = · · · = λ′11 = 1; m′1 = 5,m′2 =

· · · = m′5 = 4,m′6 = 3,m′7 = · · · = m′10 = 2,m′11 = 1. From Theorem 4.5, we have

2n−k >

[
(q − 1)λq(λ+1)(b−1)

](
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

)

= 2(2+1)(2−1)

(
1 +

11∑
i=1

2m
′
i−λ′i

)
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= 8
(
1 + 25−3 + 24−2 × 4 + 23−2 + 22−1 × 4 + 20

)
= 8× 32 = 256.

This implies that we can construct a parity check matrix

H =



1 0 0 0 0 0 0 0 1 0 0 0 1

0 1 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 1 0 1 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 1 0 1 0 0

0 0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1


9×13

of order 9× 13 which gives rise to a (13, 4) binary linear code.

It can be verified from Error Pattern-Syndrome Table 4.1 that the syndromes of all

vectors of ψ(3,2),13,2 are nonzero and distinct, showing that the code can correct all

vectors of ψ(3,2),13,2. So, the code is a (13, 4) P(3,2),13,2BC-code.

Table 4.1: Error Pattern-Syndrome

Error Patterns Syndromes Error Patterns Syndromes

10 000 10 000 10 0 101011011 0 11 000 10 000 11 111101101

10 000 10 000 11 0 101111011 0 11 000 11 000 10 011100110

10 000 11 000 10 0 101011111 0 11 000 11 000 11 111101111

10 000 11 000 11 0 101111111 00 10 000 10 000 1 101001011

11 000 10 000 10 0 111011011 00 10 000 11 000 1 000011110

11 000 10 000 11 0 111111011 00 11 000 10 000 1 101101011

11 000 11 000 10 0 111011111 00 11 000 11 000 1 000111110

11 000 11 000 11 0 111111111 000 10 000 10 000 101110101

0 10 000 10 000 10 010100100 000 10 000 11 000 111110101

0 10 000 10 000 11 110101101 000 11 000 10 000 101100101

0 10 000 11 000 10 010100110 000 11 000 11 000 111100101

Contd...
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Table 4.1 - Error Pattern-Syndrome

Error Patterns Syndroms Error Patterns Syndromes

0 10 000 11 000 11 110101111 0000 10 000 10 00 010010000

0 11 000 10 000 10 011100100 0000 10 000 11 00 011000011

0000 11 000 10 00 010011000 0000000 11 000 1 001011110

0000 11 000 11 00 011001011 00000000 10 000 101010101

00000 10 000 10 0 001011011 00000000 11 000 111010101

00000 10 000 11 0 001111011 000000000 10 00 010000000

00000 11 000 10 0 001011111 000000000 11 00 011010011

00000 11 000 11 0 001111111 0000000000 10 0 001010011

000000 10 000 10 000100100 0000000000 11 0 001110011

000000 10 000 11 100101101 00000000000 10 000100000

000000 11 000 10 000100110 00000000000 11 100101001

000000 11 000 11 100101111 000000000000 1 100001001

0000000 10 000 1 100001011

Example 4.8. Consider n = 11, s = 3, b = 2 and q = 3 in Theorem 4.5, then

λ = 2; l = 1; and λ′1 = · · · = λ′4 = 2, λ′5 = · · · = λ′9 = 1; m′1 = m′2 = m′3 = 4,m′4 =

3,m′5 = · · · = m′8 = 2,m′9 = 1. Theorem 4.5 gives

3n−k >

[
(q − 1)λqλ(b−1)+l−1

](
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

)

= (3− 1)232(2−1)

(
1 +

9∑
i=1

(3− 1)λ
′
i3m

′
i−λ′i

)
= 4× 9

(
1 + 4× 34−2 × 3 + 4× 33−2 + 2× 32−1 × 4 + 2× 30

)
= 5292,

which implies n−k ≥ 8. This gives rise to a ternary (11, 3) linear code whose parity

check matrix H of order 8× 11 is given by
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H =



1 0 0 0 0 0 0 0 2 0 0

0 1 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 1 0 1 0 0

0 1 0 0 0 2 0 1 0 1 0

0 0 0 2 0 0 1 0 0 0 1

0 0 1 0 1 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0


8×11

.

Here also, the syndromes of all vectors of ψ(3,2),11,3 are found to be nonzero and

distinct, showing that the code is a (11, 3) P(3,2),11,3BC-code.

Example 4.9. Consider n = 10, s = 3, b = 2 and q = 4 in Theorem 4.5, then

λ = 2; l = 0; and λ′1 = · · · = λ′3 = 2, λ′4 = · · · = λ′8 = 1; m′1 = m′2 = 4,m′3 =

3,m′4 = · · · = m′7 = 2,m′8 = 1. From Theorem 4.5, we have

4n−k >

[
(q − 1)λ−1qλ(b−1)

](
1 +

n−b∑
i=1

(q − 1)λ
′
iqm

′
i−λ′i

)

= (4− 1)× 42(2−1)

[
1 +

8∑
i=1

(4− 1)λ
′
i4m

′
i−λ′i

]
= 18048.

This implies n − k ≥ 8. Thus, we can construct a parity check matrix H of order

8× 10, which gives rise to a (10, 2) P(3,2),10,4BC-code.

H =



1 0 0 0 0 0 0 0 1 3

0 1 0 0 0 0 0 0 0 3

0 0 1 0 0 0 0 0 0 3

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 3 0

0 0 0 0 0 1 0 0 2 0

0 0 0 0 0 0 1 0 2 0

0 0 0 0 0 0 0 1 0 1


8×10

.
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4.1.2 Comparison

This subsection gives comparisons on the necessary and sufficient numbers of check

digits for P(s,b),n,qBC-codes with P(s,b),n,qRC-codes. We find that the P(s,b),n,qBC-

codes take less number of check digits than P(s,b),n,qRC-codes. So, P(s,b),n,qBC-codes

are more efficient than P(s,b),n,qRC-codes in terms of code rate.

Table 4.2: Necessary number of check digits

n s b q n− k n− k

(P(s,b),n,qRC-codes) (P(s,b),n,qBC-codes)

10 3 2 3 5 4

10 3 2 4 4 4

11 3 2 3 5 5

12 4 2 2 6 5

13 4 2 2 6 5

14 4 3 2 8 6

18 5 4 2 10 8

20 5 4 2 11 9

23 5 4 3 12 11

Table 4.3: Sufficient number of check digits

n s b q n− k n− k

(P(s,b),n,qRC-codes) (P(s,b),n,qBC-codes)

10 3 2 3 8 7

10 3 2 4 8 8

11 3 2 3 10 8

12 4 2 2 9 7

13 4 2 2 10 7

Contd...
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Table 4.3 – Sufficient number of check digits

n s b q n− k n− k

(P(s,b),n,qRC-codes) (P(s,b),n,qBC-codes)

14 4 3 2 13 11

18 5 4 2 17 14

20 5 4 2 19 16

23 5 4 3 23 19

4.2 Weight distribution and error decoding prob-

ability

In this section, we obtain the weight distribution of vectors of ψ(s,b),n,q. Then, we give

a Plotkin’s type of bound for the error set ψ(s,b),n,q. We also give the total probability

of the set ψ(s,b),n,2 followed by the probability of decoding error of P(s,b),n,2BC-code

over a binary symmetric channel. The following lemma gives the weight distribution

of the error vectors.

Lemma 4.10. For 0 ≤ j ≤ n, let Ns,b(j) denote the number of vectors of ψ(s,b),n,q

with weight j in a vector of length n over GF (q). Then

Ns,b(j) =
n∑
i=1

(
mi − λi
j − λi

)
(q − 1)j,

where mi and λi are given by Lemma 3.1.

Proof. By Lemma 3.1, λi (i = 1, 2, . . . , n) represents number of sets where the

nonzero components are confined, and mi represents the number of the nonzero

components if vectors of ψ(s,b),n,q that start from the ith position. As first component

of each set is nonzero, there will be at least λi nonzero positions, that is, mi ≥ λi

and the weight of the error pattern is at least λi. Then there will be mi−λi positions

where any field element can be chosen.
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Therefore, to obtain vectors of ψ(s,b),n,q with weight j, we need to choose any j − λi
positions from mi − λi positions. Note that the weight j of the error pattern that

starts from the ith position is at least λi, so

mi − λi ≥ j − λi ≥ 0.

We can choose j−λi positions from mi−λi positions by

(
mi − λi
j − λi

)
ways. Therefore,

the total number of vectors of ψ(s,b),n,q with weight j is

Ns,b(j) =
n∑
i=1

(
mi − λi
j − λi

)
(q − 1)j.

Observe that for given non-negative integers n, b and s (n ≥ s + b), the maximum

number of nonzero components in a vector of ψ(s,b),n,q can be found when the error

pattern starts from the first position. By Lemma 3.1, this number is

m1 =
⌊ n

s+ b

⌋
b+ γ

(
n mod (b+ s)

)
.

So, the maximum weight of vectors of ψ(s,b),n,q can be at most m1. We denote it by

wmax. Therefore, Ns,b(j) = 0 for wmax < j ≤ n.

Now, we give the Plotkin’s type of bound (equivalent to Result 1.12) for the

vectors of the set ψ(s,b),n,q.

Theorem 4.11. The minimum weight of a vector having vectors of ψ(s,b),n,q in the

space of n-tuples over GF (q) is at most
wmax∑
j=1

jNs,b(j)

Ns,b

,

where Ns,b is given by Lemma 4.1 and Ns,b(j) by Lemma 4.10.

Proof. By Lemma 4.1, the number of all vectors of ψ(s,b),n,q in the space of n-tuples

over GF (q) is Ns,b.

From Lemma 4.10, the total weight of all vectors of ψ(s,b),n,q in the space of n-tuples

over GF (q) is given by
wmax∑
j=1

jNs,b(j).

As the minimum weight of a vector can be at most the average weight, the minimum
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weight of a vector having vectors of ψ(s,b),n,q in the space of n-tuples over GF (q) is

at most
wmax∑
j=1

jNs,b(j)

Ns,b

.

Remark 4.12. The difference of two vectors:(
x0x0x0 . . . . . .︸ ︷︷ ︸

b

00 . . . 0︸ ︷︷ ︸
s

x0x0x0 . . . . . .︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s

. . . . . .
)

and

(
0x0x0x . . . . . .︸ ︷︷ ︸

b

00 . . . 0︸ ︷︷ ︸
s

0x0x0x . . . . . .︸ ︷︷ ︸
b

00 . . . 0︸ ︷︷ ︸
s

. . . . . .
)
,

where x ∈ GF (q) \ {0},

in ψ(s,b),n,q gives vectors of ψ(s,b),n,q with maximum weight wmax. So, the minimum

distance of the set with all vectors of ψ(s,b),n,q is less than or equal to wmax, and the

maximum distance of the set is more than or equal to wmax.

The following result gives the total probability of vectors of ψ(s,b),n,2 over a binary

symmetric channel.

Theorem 4.13. Let ε be the transition probability of a memoryless binary symmetric

channel. Then the total probability P (E) of vectors of ψ(s,b),n,2 in a vector of length

n over GF (2) is given by
n∑
i=0

ελi(1− ε)n−mi ,

where mi and λi are given by Lemma 3.1.

Proof. With the usual meaning of mi and λi (i = 1, 2, . . . , n) by Lemma 3.1, the

number of nonzero positions in a vector of ψ(s,b),n,2 that starts from ith position is mi,

and other nonzero positions can be from the remaining mi−λi positions. Therefore,

the total probability of vectors of ψ(s,b),n,2 that start from the ith position is given

by

mi−λi∑
j=0

(
mi − λi

j

)
ελi+j(1− ε)n−λi−j
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= ελi(1− ε)−λi(1− ε)n−(mi−λi)
mi−λi∑
j=0

(
mi − λi

j

)
εj(1− ε)mi−λi−j

= ελi(1− ε)n−mi .

Varying i from 1 to n gives the result.

Finally, we give the probability of decoding error for a P(s,b),n,2BC-code, which

is equivalent to Result 1.17.

Theorem 4.14. Let C be an (n, k) binary P(s,b),n,2BC-code. If PD(E) is the prob-

ability of decoding error of the code C on a memoryless binary symmetric channel

with transition probability ε, then

PD(E) = 1−
wmax∑
j=0

Ns,b(j).ε
j(1− ε)n−j,

where Ns,b(j) is given by Lemma 4.10.

Proof. For the proof, we follow the same technique as done in Theorem 3.15. In this

case, the probability of vectors of ψ(s,b),n,2 with weight j forming one of the coset

leaders is

Ns,b(j).ε
j(1− ε)n−j.

where Ns,b(j) is given by Lemma 4.10.

Therefore, the probability PD(E) of decoding error of the code C is the probability

that the error is not one of the coset leaders. So

PD(E) = 1−
wmax∑
j=0

Ns,b(j).ε
j(1− ε)n−j.

Remark 4.15. For s = 3, b = 2 and ε = 0.01, we determine the probability of

decoding error PD(E) of P(s,b),n,2BC-codes of different lengths as follows.
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Table 4.4: Table of PD(E)

n λ l PD(E)

11 2 1 0.060

12 2 2 0.064

13 2 3 0.074

14 2 4 0.085

15 3 0 0.095

16 3 1 0.106

17 3 2 0.116

18 3 3 0.127

19 3 4 0.130

20 4 0 0.148

21 4 1 0.158

22 4 2 0.169

23 4 3 0.179

We find that the probability of decoding error of a P(s,b),n,2BC-code increases as the

length of the code increases. So, a shorter length of code is more efficient.
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