Chapter 4

Periodical burst error correcting codes with weight distribution and error decoding probability

The contents of this chapter are based on the paper:

- Das, P. K. and Haokip, L. Periodical burst error correcting codes with decoding error probability. Discrete Mathematics Letters, 8:49-56, 2021.

Chapter 4

Periodical burst error correcting codes with weight distribution and error decoding probability

In this chapter, we study periodical burst errors that are found in some communication channels for known noise frequency (discussed in Section 1.2.4). By Definition 1.6, an s-periodical burst of length b is an error pattern where CT-burst of length b repeats in an n-tuple. The last burst may have less than b components. This chapter presents linear codes correcting periodical burst errors, (Hamming) weight distribution of the error pattern along with Plotkin's type of bound and error decoding probability of the codes. These works are organised as follows. Section 4.1 provides necessary and sufficient conditions for the existence of a linear code correcting periodical burst errors. Examples of such codes along with comparisons on the number of check digits of these codes with the $\boldsymbol{P}_{(s, b), \boldsymbol{n}, \boldsymbol{q}} \boldsymbol{R} \boldsymbol{C}-\boldsymbol{c o d e s}$ are also provided. In Section 4.2, we present the error weight distribution of periodical burst errors, followed by Plotkin's type of bound and the probability of decoding error of the code.

Like the previous chapters, we use the following notations for the specific studied error pattern and the corresponding error-correcting codes as follows:
$\boldsymbol{\psi}_{(s, b), \boldsymbol{n}, \boldsymbol{q}}$: set of all s-periodical burst errors of length b in an n-tuple over $G F(q)$.
$\boldsymbol{P}_{(s, b), \boldsymbol{n}, \boldsymbol{q}} \boldsymbol{B C}$ - code : length-n linear code correcting s-periodical burst errors of length b over $G F(q)$.

4.1 $\quad P_{(s, b), n, q} B C-$ codes and comparison

In this section, we provide necessary and sufficient conditions for the existence of a $P_{(s, b), n, q} B C$-code along with comparisons on the number of check digits of these codes with the $\boldsymbol{P}_{(s, b), \boldsymbol{n}, \boldsymbol{q}} \boldsymbol{R C}$ - codes.

4.1.1 Conditions for existence of $P_{(s, b), n, q} B C$ - codes

First, we give the necessary condition and then sufficient condition for the existence of a $P_{(s, b), n, q} B C$-code. Examples are included to justify the results. To prove our results, we first need the following lemma.

Lemma 4.1. For given non-negative integers n, b and $s(n \geq b+s)$, the total number of vectors of $\psi_{(s, b), n, q}$ in a vector of length n is

$$
N_{s, b}=\sum_{i=1}^{n}(q-1)^{\lambda_{i}} q^{m_{i}-\lambda_{i}},
$$

where $m_{i}=\left\lfloor\frac{n-i+1}{s+b}\right\rfloor b+\gamma((n-i+1) \bmod (b+s))$ and $\lambda_{i}=\left\lceil\frac{n-i+1}{s+b}\right\rceil$.
Proof. Error position in a vector of $\psi_{(s, b), n, q}$ can start from the $i^{\text {th }}$ position $(i=$ $1,2, \ldots, n)$. If m_{i} denotes the maximum number of nonzero positions in the error pattern and λ_{i} the number of sets in which the nonzero components are confined, then by Lemma 3.1

$$
m_{i}=\left\lfloor\frac{n-i+1}{s+b}\right\rfloor b+\gamma((n-i+1) \quad \bmod (b+s)) \text { and } \lambda_{i}=\left\lceil\frac{n-i+1}{s+b}\right\rceil .
$$

Since there are λ_{i} sets in which the first component is always nonzero, there will be $m_{i}-\lambda_{i}$ positions where the components can be any of the q field elements. Therefore, the total number of vectors of $\psi_{(s, b), n, q}$ is

$$
N_{s, b}=\sum_{i=1}^{n}(q-1)^{\lambda_{i}} q^{m_{i}-\lambda_{i}} .
$$

Example 4.2. Taking $n=15, b=2, s=3$ and $q=2$ in Lemma 4.1, we have $m_{1}=m_{2}=m_{3}=m_{4}=6, m_{5}=5, m_{6}=m_{7}=m_{8}=m_{9}=4, m_{10}=3$,
$m_{11}=m_{12}=m_{13}=m_{14}=2, m_{15}=1$ and $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=\lambda_{5}=3$, $\lambda_{6}=\lambda_{7}=\lambda_{8}=\lambda_{9}=\lambda_{10}=2, \lambda_{11}=\lambda_{12}=\lambda_{13}=\lambda_{14}=\lambda_{15}=1$. Then, the total number of vectors of $\psi_{(3,2), 15,2}$ in a vector of length 15 is

$$
N_{3,2}=\sum_{i=1}^{15} 2^{m_{i}-\lambda_{i}}=63
$$

These 63 error patterns are:
$100001000010000,100001000011000,100001100010000,100001100011000,110001000010000$, $110001000011000,110001100010000,110001100011000,010000100001000,010000100001100$, 010000110001000, 010000110001100, 011000100001000, 011000100001100, 011000110001000, 011000110001100, 001000010000100, 001000010000110, 001000011000100, 001000011000110, 001100010000100, 001100010000110, 001100011000100, 001100011000110, 000100001000010, 000100001000011, $000100001100010,000100001100011,000110001000010,000110001000011$, 000110001100010, 000110001100011, 000010000100001, 000010000110001, 000011000100001, 000011000110001, $000001000010000,000001000011000,000001100010000,000001100011000$, $000000100001000,000000110001000,000000100001100,000000110001100,000000010000100$, $000000010000110,000000011000100,000000011000110,000000001000010,000000001100010$, 000000001000011, $000000001100011,000000000100001,000000000110001,000000000010000$, $000000000011000,000000000001000,000000000001100,000000000000100,000000000000110$, $000000000000010,000000000000011,000000000000001$.

Now, we give a necessary condition for the existence of a $P_{(s, b), n, q} B C$-code (equivalent to Result 1.14).

Theorem 4.3. For given non-negative integers n, b and $s(n \geq b+s)$, a necessary condition for an $(n, k) P_{(s, b), n, q} B C$-code is

$$
\begin{equation*}
q^{n-k} \geq 1+N_{s, b}, \tag{4.1}
\end{equation*}
$$

where $N_{s, b}$ is given by Lemma 4.1.

Proof. As the code corrects all vectors of $\psi_{(s, b), n, q}$, all the errors must be in different cosets of the code. Thus, by Lemma 4.1, we get

$$
q^{n-k} \geq 1+N_{s, b} .
$$

Remark 4.4. From Inequality (4.1), we get

$$
q^{k} \leq \frac{q^{n}}{1+N_{s, b}}
$$

This implies that the number of codewords of an $(n, k) P_{(s, b), n, q} B C$-code is bounded above by $\frac{q^{n}}{1+N_{s, b}}$.

For a sufficient condition of a $P_{(s, b), n, q} B C$-code, we use the same technique used in the previous chapters by adding the columns in the parity check matrix one after another, keeping in mind that the syndromes of the errors should be all nonzero and distinct.

Theorem 4.5. For given non-negative integers n, b and $s(n \geq b+s)$, let $n=$ $\lambda(b+s)+l$ for some non-negative integers λ and l (where $0 \leq l<b+s$), a sufficient condition for an $(n, k) P_{(s, b), n, q} B C$-code is

$$
q^{n-k}> \begin{cases}{\left[(q-1)^{\lambda-1} q^{\lambda(b-1)}\right]\left[1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right] \quad} & \text { if } l=0 \\ {\left[(q-1)^{\lambda} q^{\lambda(b-1)+l-1}\right]\left[1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right] \quad \text { if } \quad 1 \leq l \leq b} \\ {\left[(q-1)^{\lambda} q^{(\lambda+1)(b-1)}\right]\left[1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right] \quad \text { if } \quad b<l<s+b}\end{cases}
$$

where $m_{i}^{\prime}=\left\lfloor\frac{n-b-i+1}{s+b}\right\rfloor b+\gamma((n-b-i+1) \bmod (b+s))$ and $\lambda_{i}^{\prime}=\left\lceil\frac{n-b-i+1}{s+b}\right\rceil$.
Proof. The proof is shown by constructing an appropriate $(n-k) \times n$ parity-check matrix H of the code. Take the first column h_{1} as any nonzero $(n-k)$-tuple and suppose the columns $h_{2}, h_{3}, \ldots, h_{n-1}$ are added suitably to H. Then any (nonzero) column h_{n} is added to H provided that it is not a linear combination of immediately preceding $b-1$ columns together with previous sets of b consecutive columns which are at a gap of s columns (the last set may contain less than b columns), along with a linear combination of sets of b consecutive columns which are at a gap of s columns confined to the first $n-b$ columns (the last set may contain less than b columns). This can be written as

$$
h_{n} \neq\left(\sum_{i=1}^{b-1} a_{i 1} h_{n-i}+\sum_{i=0}^{b-1} b_{i 1} h_{n-(s+b)-i}+\sum_{i=0}^{b-1} b_{i 2} h_{n-2(s+b)-i}+\cdots+\sum_{i=0}^{g_{1}-1} b_{i \lambda} h_{n-\lambda(s+b)-i}\right)
$$

$$
\begin{equation*}
+\left(\sum_{i=0}^{b-1} \alpha_{i 1} h_{j^{\prime}-i}+\sum_{i=0}^{b-1} \beta_{i 1} h_{j^{\prime}-(s+b)-i}+\sum_{i=0}^{b-1} \beta_{i 2} h_{j^{\prime}-2(s+b)-i}+\cdots+\sum_{i=0}^{g_{2}-1} \beta_{i \lambda^{\prime}} h_{j^{\prime}-\lambda^{\prime}(s+b)-i}\right), \tag{4.2}
\end{equation*}
$$

where $a_{i j}, b_{i j}, \alpha_{i j}, \beta_{i j} \in G F(q) ; b_{0 i}, \alpha_{0 i}, \beta_{0 i} \neq 0 ; j^{\prime} \leq n-b ; g_{1}=\gamma(n \bmod (s+b))$, $g_{2}=\gamma\left(\left(n-b-j^{\prime}+1\right) \bmod (s+b)\right), \lambda=\left\lfloor\frac{n}{s+b}\right\rfloor$ and $\lambda^{\prime}=\left\lceil\frac{n-b-j^{\prime}+1}{s+b}\right\rceil$.

In Expression (4.2), it is convenient to assume that $\sum_{i=0}^{g_{1}-1} b_{i \lambda} h_{n-\lambda(s+b)-i}=0$ and $\sum_{i=0}^{g_{2}-1} b_{i \lambda^{\prime}} h_{j^{\prime}-\lambda^{\prime}(s+b)-i}=0$ when n and $n-b-j^{\prime}+1$ are multiples of $s+b$.
The condition (4.2) ensures that syndromes of any two vectors of $\psi_{(s, b), n, q}$ are distinct. The number of linear combinations in the first bracket on the right hand side (R.H.S.) of (4.2) is calculated as follows:
The number of ways $a_{i 1}$'s can be chosen is q^{b-1}. The number of ways $b_{i j}$'s $(j=$ $1,2, \ldots, \lambda-1)$ can be chosen is $(q-1) q^{b-1}$. For the last summation of the first bracket, we get different combinations depending on l. For $l=0$, there is no term in the last summation of the first bracket. For $1 \leq l \leq b, g_{1}$ will be l and $b_{i \lambda}$'s can be chosen by $(q-1) q^{l-1}$ ways. For $b<l<s+b, g_{1}$ will be b and $b_{i \lambda}$'s can be chosen by $(q-1) q^{b-1}$ ways. Therefore, the total number of combinations of the first bracket on R.H.S. of (4.2) is

$$
\left\{\begin{array}{llll}
q^{b-1}\left[(q-1) q^{b-1}\right]^{\lambda-1} & =(q-1)^{\lambda-1} q^{\lambda(b-1)} & \text { if } & l=0 \\
q^{b-1}\left[(q-1) q^{b-1}\right]^{\lambda-1}(q-1) q^{l-1}=(q-1)^{\lambda} q^{\lambda(b-1)+l-1} & \text { if } & 1 \leq l \leq b \\
q^{b-1}\left[(q-1) q^{b-1}\right]^{\lambda-1}(q-1) q^{b-1} & =(q-1)^{\lambda} q^{(\lambda+1)(b-1)} & \text { if } & b<l<s+b
\end{array}\right.
$$

The second bracket on R.H.S. of (4.2) gives the number of vectors of $\psi_{(s, b), n-b, q}$ in a vector of length $n-b$. This number, including the zero combination, is given by Lemma 4.1 as

$$
1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}
$$

where $m_{i}^{\prime}=\left\lfloor\frac{n-b-i+1}{s+b}\right\rfloor b+\gamma((n-b-i+1) \bmod (b+s))$ and $\lambda_{i}^{\prime}=\left\lceil\frac{n-b-i+1}{s+b}\right\rceil$.

Therefore, the total number of all possible linear combinations on R.H.S. of (4.2) is

$$
\begin{cases}{\left[(q-1)^{\lambda-1} q^{\lambda(b-1)}\right]\left[1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right]} & \text { if } l=0 \\ {\left[(q-1)^{\lambda} q^{\lambda(b-1)+l-1}\right]\left[1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right]} & \text { if } \quad 1 \leq l \leq b \\ {\left[(q-1)^{\lambda} q^{(\lambda+1)(b-1)}\right]\left[1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right]} & \text { if } \quad b<l<s+b .\end{cases}
$$

Since we can have at most $q^{n-k}-1$ nonzero columns, the sufficient condition for the existence of the required code is given by

$$
q^{n-k}> \begin{cases}{\left[(q-1)^{\lambda-1} q^{\lambda(b-1)}\right]\left[1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right]} & \text { if } \quad l=0 \\ {\left[(q-1)^{\lambda} q^{\lambda(b-1)+l-1}\right]\left[1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right]} & \text { if } \quad 1 \leq l \leq b \\ {\left[(q-1)^{\lambda} q^{(\lambda+1)(b-1)}\right]\left[1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right]} & \text { if } \quad b<l<s+b .\end{cases}
$$

Remark 4.6. For $q=2$, the sufficient condition of Theorem 4.5 becomes

$$
2^{n-k}> \begin{cases}2^{\lambda(b-1)}\left[1+\sum_{i=1}^{n-b} 2^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right] & \text { if } l=0 \\ 2^{\lambda(b-1)+l-1}\left[1+\sum_{i=1}^{n-b} 2^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right] & \text { if } 1 \leq l \leq b \\ 2^{(\lambda+1)(b-1)}\left[1+\sum_{i=1}^{n-b} 2^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right] & \text { if } b<l<s+b .\end{cases}
$$

Now, we give three examples to justify Theorem 4.5 corresponding to $l=0,1 \leq l \leq b$ and $b<l<s+b$.

Example 4.7. Consider $n=13, s=3, b=2$ and $q=2$ in Theorem 4.5, then $\lambda=2 ; l=3$; and $\lambda_{1}^{\prime}=3, \lambda_{2}^{\prime}=\cdots=\lambda_{6}^{\prime}=2, \lambda_{7}^{\prime}=\cdots=\lambda_{11}^{\prime}=1 ; m_{1}^{\prime}=5, m_{2}^{\prime}=$ $\cdots=m_{5}^{\prime}=4, m_{6}^{\prime}=3, m_{7}^{\prime}=\cdots=m_{10}^{\prime}=2, m_{11}^{\prime}=1$. From Theorem 4.5, we have

$$
\begin{aligned}
2^{n-k} & >\left[(q-1)^{\lambda} q^{(\lambda+1)(b-1)}\right]\left(1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right) \\
& =2^{(2+1)(2-1)}\left(1+\sum_{i=1}^{11} 2^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right)
\end{aligned}
$$

$$
=8\left(1+2^{5-3}+2^{4-2} \times 4+2^{3-2}+2^{2-1} \times 4+2^{0}\right)=8 \times 32=256 .
$$

This implies that we can construct a parity check matrix

$$
H=\left[\begin{array}{lllllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1
\end{array}\right]_{9 \times 13}
$$

of order 9×13 which gives rise to a $(13,4)$ binary linear code.
It can be verified from Error Pattern-Syndrome Table 4.1 that the syndromes of all vectors of $\psi_{(3,2), 13,2}$ are nonzero and distinct, showing that the code can correct all vectors of $\psi_{(3,2), 13,2}$. So, the code is a $(13,4) P_{(3,2), 13,2} B C$-code.

Table 4.1: Error Pattern-Syndrome

Error Patterns	Syndromes	Error Patterns	Syndromes
1000010000100	101011011	0110001000011	111101101
1000010000110	101111011	0110001100010	011100110
1000011000100	101011111	0110001100011	111101111
1000011000110	101111111	0010000100001	101001011
1100010000100	111011011	0010000110001	000011110
1100010000110	111111011	0011000100001	101101011
1100011000100	111011111	0011000110001	000111110
1100011000110	111111111	0001000010000	101110101
0100001000010	010100100	0001000011000	111110101
0100001000011	110101101	0001100010000	101100101
0100001100010	010100110	0001100011000	111100101

Table 4.1 - Error Pattern-Syndrome

Error Patterns	Syndroms	Error Patterns	Syndromes
0100001100011	110101111	0000100001000	010010000
0110001000010	011100100	0000100001100	011000011
0000110001000	010011000	0000000110001	001011110
0000110001100	011001011	0000000010000	101010101
0000010000100	001011011	0000000011000	111010101
0000010000110	001111011	0000000001000	010000000
0000011000100	001011111	0000000001100	011010011
0000011000110	001111111	0000000000100	001010011
0000001000010	000100100	0000000000110	001110011
0000001000011	100101101	0000000000010	000100000
0000001100010	000100110	0000000000011	100101001
0000001100011	100101111	0000000000001	100001001
0000000100001	100001011		

Example 4.8. Consider $n=11, s=3, b=2$ and $q=3$ in Theorem 4.5, then $\lambda=2 ; l=1$; and $\lambda_{1}^{\prime}=\cdots=\lambda_{4}^{\prime}=2, \lambda_{5}^{\prime}=\cdots=\lambda_{9}^{\prime}=1 ; m_{1}^{\prime}=m_{2}^{\prime}=m_{3}^{\prime}=4, m_{4}^{\prime}=$ $3, m_{5}^{\prime}=\cdots=m_{8}^{\prime}=2, m_{9}^{\prime}=1$. Theorem 4.5 gives

$$
\begin{aligned}
3^{n-k} & >\left[(q-1)^{\lambda} q^{\lambda(b-1)+l-1}\right]\left(1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right) \\
& =(3-1)^{2} 3^{2(2-1)}\left(1+\sum_{i=1}^{9}(3-1)^{\lambda_{i}^{\prime}} 3^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right) \\
& =4 \times 9\left(1+4 \times 3^{4-2} \times 3+4 \times 3^{3-2}+2 \times 3^{2-1} \times 4+2 \times 3^{0}\right) \\
& =5292,
\end{aligned}
$$

which implies $n-k \geq 8$. This gives rise to a ternary $(11,3)$ linear code whose parity check matrix H of order 8×11 is given by

$$
H=\left[\begin{array}{lllllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 2 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]_{8 \times 11}
$$

Here also, the syndromes of all vectors of $\psi_{(3,2), 11,3}$ are found to be nonzero and distinct, showing that the code is a $(11,3) P_{(3,2), 11,3} B C$-code.

Example 4.9. Consider $n=10, s=3, b=2$ and $q=4$ in Theorem 4.5, then $\lambda=2 ; l=0$; and $\lambda_{1}^{\prime}=\cdots=\lambda_{3}^{\prime}=2, \lambda_{4}^{\prime}=\cdots=\lambda_{8}^{\prime}=1 ; m_{1}^{\prime}=m_{2}^{\prime}=4, m_{3}^{\prime}=$ $3, m_{4}^{\prime}=\cdots=m_{7}^{\prime}=2, m_{8}^{\prime}=1$. From Theorem 4.5, we have

$$
\begin{aligned}
4^{n-k} & >\left[(q-1)^{\lambda-1} q^{\lambda(b-1)}\right]\left(1+\sum_{i=1}^{n-b}(q-1)^{\lambda_{i}^{\prime}} q^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right) \\
& =(4-1) \times 4^{2(2-1)}\left[1+\sum_{i=1}^{8}(4-1)^{\lambda_{i}^{\prime}} 4^{m_{i}^{\prime}-\lambda_{i}^{\prime}}\right] \\
& =18048 .
\end{aligned}
$$

This implies $n-k \geq 8$. Thus, we can construct a parity check matrix H of order 8×10, which gives rise to $a(10,2) P_{(3,2), 10,4} B C$-code .

$$
H=\left[\begin{array}{llllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1
\end{array}\right]_{8 \times 10}
$$

4.1.2 Comparison

This subsection gives comparisons on the necessary and sufficient numbers of check digits for $P_{(s, b), n, q} B C$-codes with $P_{(s, b), n, q} R C$-codes. We find that the $P_{(s, b), n, q} B C$ codes take less number of check digits than $P_{(s, b), n, q} R C$-codes. So, $P_{(s, b), n, q} B C$-codes are more efficient than $P_{(s, b), n, q} R C$-codes in terms of code rate.

Table 4.2: Necessary number of check digits

n	s	b	q	$n-k$ $\left(P_{(s, b), n, q} R C\right.$-codes $)$	$n-k$ $\left(P_{(s, b), n, q} B C\right.$-codes $)$
10	3	2	3	5	4
10	3	2	4	4	4
11	3	2	3	5	5
12	4	2	2	6	5
13	4	2	2	6	5
14	4	3	2	8	6
18	5	4	2	10	8
20	5	4	2	11	9
23	5	4	3	12	11

Table 4.3: Sufficient number of check digits

n	s	b	q	$n-k$ $\left(P_{(s, b), n, q} R C\right.$-codes $)$	$n-k$ $\left(P_{(s, b), n, q} B C\right.$-codes $)$
10	3	2	3	8	7
10	3	2	4	8	8
11	3	2	3	10	8
12	4	2	2	9	7
13	4	2	2	10	7

Table 4.3 - Sufficient number of check digits

n	s	b	q	$n-k$ $\left(P_{(s, b), n, q} R C\right.$-codes $)$	$n-k$ $\left(P_{(s, b), n, q} B C\right.$-codes $)$
14	4	3	2	13	11
18	5	4	2	17	14
20	5	4	2	19	16
23	5	4	3	23	19

4.2 Weight distribution and error decoding probability

In this section, we obtain the weight distribution of vectors of $\psi_{(s, b), n, q}$. Then, we give a Plotkin's type of bound for the error set $\psi_{(s, b), n, q}$. We also give the total probability of the set $\psi_{(s, b), n, 2}$ followed by the probability of decoding error of $P_{(s, b), n, 2} B C$-code over a binary symmetric channel. The following lemma gives the weight distribution of the error vectors.

Lemma 4.10. For $0 \leq j \leq n$, let $N_{s, b}(j)$ denote the number of vectors of $\psi_{(s, b), n, q}$ with weight j in a vector of length n over $G F(q)$. Then

$$
N_{s, b}(j)=\sum_{i=1}^{n}\binom{m_{i}-\lambda_{i}}{j-\lambda_{i}}(q-1)^{j},
$$

where m_{i} and λ_{i} are given by Lemma 3.1.

Proof. By Lemma 3.1, $\lambda_{i}(i=1,2, \ldots, n)$ represents number of sets where the nonzero components are confined, and m_{i} represents the number of the nonzero components if vectors of $\psi_{(s, b), n, q}$ that start from the $i^{t h}$ position. As first component of each set is nonzero, there will be at least λ_{i} nonzero positions, that is, $m_{i} \geq \lambda_{i}$ and the weight of the error pattern is at least λ_{i}. Then there will be $m_{i}-\lambda_{i}$ positions where any field element can be chosen.

Therefore, to obtain vectors of $\psi_{(s, b), n, q}$ with weight j, we need to choose any $j-\lambda_{i}$ positions from $m_{i}-\lambda_{i}$ positions. Note that the weight j of the error pattern that starts from the $i^{\text {th }}$ position is at least λ_{i}, so

$$
m_{i}-\lambda_{i} \geq j-\lambda_{i} \geq 0 .
$$

We can choose $j-\lambda_{i}$ positions from $m_{i}-\lambda_{i}$ positions by $\binom{m_{i}-\lambda_{i}}{j-\lambda_{i}}$ ways. Therefore, the total number of vectors of $\psi_{(s, b), n, q}$ with weight j is

$$
N_{s, b}(j)=\sum_{i=1}^{n}\binom{m_{i}-\lambda_{i}}{j-\lambda_{i}}(q-1)^{j} .
$$

Observe that for given non-negative integers n, b and $s(n \geq s+b)$, the maximum number of nonzero components in a vector of $\psi_{(s, b), n, q}$ can be found when the error pattern starts from the first position. By Lemma 3.1, this number is

$$
m_{1}=\left\lfloor\frac{n}{s+b}\right\rfloor b+\gamma(n \quad \bmod (b+s)) .
$$

So, the maximum weight of vectors of $\psi_{(s, b), n, q}$ can be at most m_{1}. We denote it by $w_{\max }$. Therefore, $N_{s, b}(j)=0$ for $w_{\max }<j \leq n$.

Now, we give the Plotkin's type of bound (equivalent to Result 1.12) for the vectors of the set $\psi_{(s, b), n, q}$.

Theorem 4.11. The minimum weight of a vector having vectors of $\psi_{(s, b), n, q}$ in the space of n-tuples over $G F(q)$ is at most

$$
\frac{\sum_{j=1}^{w_{\max }} j N_{s, b}(j)}{N_{s, b}}
$$

where $N_{s, b}$ is given by Lemma 4.1 and $N_{s, b}(j)$ by Lemma 4.10.

Proof. By Lemma 4.1, the number of all vectors of $\psi_{(s, b), n, q}$ in the space of n-tuples over $G F(q)$ is $N_{s, b}$.

From Lemma 4.10, the total weight of all vectors of $\psi_{(s, b), n, q}$ in the space of n-tuples over $G F(q)$ is given by $\sum_{j=1}^{w_{\text {max }}} j N_{s, b}(j)$.
As the minimum weight of a vector can be at most the average weight, the minimum
weight of a vector having vectors of $\psi_{(s, b), n, q}$ in the space of n-tuples over $G F(q)$ is at most

$$
\frac{\sum_{j=1}^{w_{\max }} j N_{s, b}(j)}{N_{s, b}} .
$$

Remark 4.12. The difference of two vectors:

where $x \in G F(q) \backslash\{0\}$,
in $\psi_{(s, b), n, q}$ gives vectors of $\psi_{(s, b), n, q}$ with maximum weight $w_{\max }$. So, the minimum distance of the set with all vectors of $\psi_{(s, b), n, q}$ is less than or equal to $w_{\max }$, and the maximum distance of the set is more than or equal to $w_{\max }$.

The following result gives the total probability of vectors of $\psi_{(s, b), n, 2}$ over a binary symmetric channel.

Theorem 4.13. Let ϵ be the transition probability of a memoryless binary symmetric channel. Then the total probability $P(E)$ of vectors of $\psi_{(s, b), n, 2}$ in a vector of length n over $G F(2)$ is given by

$$
\sum_{i=0}^{n} \epsilon^{\lambda_{i}}(1-\epsilon)^{n-m_{i}},
$$

where m_{i} and λ_{i} are given by Lemma 3.1.

Proof. With the usual meaning of m_{i} and $\lambda_{i}(i=1,2, \ldots, n)$ by Lemma 3.1, the number of nonzero positions in a vector of $\psi_{(s, b), n, 2}$ that starts from $i^{\text {th }}$ position is m_{i}, and other nonzero positions can be from the remaining $m_{i}-\lambda_{i}$ positions. Therefore, the total probability of vectors of $\psi_{(s, b), n, 2}$ that start from the $i^{\text {th }}$ position is given by

$$
\sum_{j=0}^{m_{i}-\lambda_{i}}\binom{m_{i}-\lambda_{i}}{j} \epsilon^{\lambda_{i}+j}(1-\epsilon)^{n-\lambda_{i}-j}
$$

$$
\begin{aligned}
& =\epsilon^{\lambda_{i}}(1-\epsilon)^{-\lambda_{i}}(1-\epsilon)^{n-\left(m_{i}-\lambda_{i}\right)} \sum_{j=0}^{m_{i}-\lambda_{i}}\binom{m_{i}-\lambda_{i}}{j} \epsilon^{j}(1-\epsilon)^{m_{i}-\lambda_{i}-j} \\
& =\epsilon^{\lambda_{i}}(1-\epsilon)^{n-m_{i}}
\end{aligned}
$$

Varying i from 1 to n gives the result.

Finally, we give the probability of decoding error for a $P_{(s, b), n, 2} B C$-code, which is equivalent to Result 1.17.

Theorem 4.14. Let C be an (n, k) binary $P_{(s, b), n, 2} B C$-code. If $P_{D}(E)$ is the probability of decoding error of the code C on a memoryless binary symmetric channel with transition probability ϵ, then

$$
P_{D}(E)=1-\sum_{j=0}^{w_{\max }} N_{s, b}(j) \cdot \epsilon^{j}(1-\epsilon)^{n-j}
$$

where $N_{s, b}(j)$ is given by Lemma 4.10 .

Proof. For the proof, we follow the same technique as done in Theorem 3.15. In this case, the probability of vectors of $\psi_{(s, b), n, 2}$ with weight j forming one of the coset leaders is

$$
N_{s, b}(j) \cdot \epsilon^{j}(1-\epsilon)^{n-j}
$$

where $N_{s, b}(j)$ is given by Lemma 4.10.
Therefore, the probability $P_{D}(E)$ of decoding error of the code C is the probability that the error is not one of the coset leaders. So

$$
P_{D}(E)=1-\sum_{j=0}^{w_{\max }} N_{s, b}(j) \cdot \epsilon^{j}(1-\epsilon)^{n-j}
$$

Remark 4.15. For $s=3, b=2$ and $\epsilon=0.01$, we determine the probability of decoding error $P_{D}(E)$ of $P_{(s, b), n, 2} B C$-codes of different lengths as follows.

Table 4.4: Table of $P_{D}(E)$

n	λ	l	$P_{D}(E)$
11	2	1	0.060
12	2	2	0.064
13	2	3	0.074
14	2	4	0.085
15	3	0	0.095
16	3	1	0.106
17	3	2	0.116
18	3	3	0.127
19	3	4	0.130
20	4	0	0.148
21	4	1	0.158
22	4	2	0.169
23	4	3	0.179

We find that the probability of decoding error of a $P_{(s, b), n, 2} B C$-code increases as the length of the code increases. So, a shorter length of code is more efficient.

