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2.1 INTRODUCTION 

The human body is surrounded by billions of bacteria that might cause a variety of 

illnesses; as a result, defensive systems are required. The term "immunity," which 

derives from the Latin immunitas and means "status of protection," was first used in 

the 1880s as a result of work by Jenner, Pasteur, and Koch who demonstrated that 

exposure to certain microorganisms may cause a particular disease and that the illness 

can be avoided by using vaccines made from the same pathogen (1). In the Eighteen 

Nineties, natural immunity was described as the resistance to pathogens from the first 

stumble upon, while artificial immunity was defined as the immunity to withstand 

illnesses as a result of microorganisms that were hosted via the human body in an 

advanced time frame (2).  

We now recognize that soluble components and cellular immunity make up the 

immune system. Conventionally, it is further divided into innate immunity and 

adaptive immunity. Innate immunity, also known as native or natural immunity, is the 

body's initial line of defense against germs, according to textbooks on immunology. 

Phagocytes (monocytes, macrophages, and dendritic cells) and natural killer cells are 

examples of innate immune system cells. Additionally, soluble components of the 

immune system include cytokines, which are tiny proteins that function as 

messengers, regulators, and occasionally as killers(3). In contrast, compared to the 

innate immune system, adaptive immunity reacts to initial infections more slowly. 

Adaptive immune cells (T cells and B cells) produce a more focused and potent 

response when they come into contact with infections a second time. Adaptive 

immunity's soluble components are antibodies, which mature B cells make (3, 4). The  

ability of adaptive immunity to form memories and respond considerably more 

quickly to re-exposure to the same pathogen is a crucial contrast between it and innate 

immunity (5). 

More than 20 years before Edward Jenner, English physician Benjamin Jesty began 

developing a smallpox vaccine in the 18th and 19th centuries. This was one of the 

first novel approaches to immunize against various infections.(6, 7)(8). Jesty's plan 

was to inoculate healthy people, starting with his family, with a sick cow's substance. 

(9). However, Jenner received recognition for his outstanding work in the creation of 

vaccinations and the elimination of smallpox.(6, 10). Dairymaids were often believed 
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to be immune to smallpox at the time. Jenner was using fresh cowpox lesions from a 

dairymaid to immunize an 8-year-old child. The youngster experienced a little fever 

about a week later. Jenner continued to inoculate the same kid with new smallpox 

sores two months later. Jenner determined that the kid was immune since he never got 

sick(11). This was the first step towards protecting young children from widespread 

illnesses. In keeping with these discoveries, Louis Pasteur progressed the creation of 

vaccines in the 19th century by immunizing people with slain harmful organisms to 

stop the spread of illnesses.(12). A particular antigen can cause an antibody response, 

according to German Jew Paul Ehrlich, who developed antibodies later in the 19th 

century. (13). 

The immune system is a highly controlled, complicated network. Today's knowledge 

is the result of earlier discoveries. The immune system's components that are pertinent 

to this thesis are detailed below: 

2.1.1 Monocytes and Dendritic cells: 

Large leukocytes called monocytes come from the myeloid lineage. They perform a 

variety of tasks and take part in several crucial innate immune responses, including as 

phagocytosis and the generation of cytokines(14, 15). When present in the tissues, 

circulating monocytes transform into macrophages and dendritic cells(16). 

Additionally, they are split into two subsets; the classical subset has high levels of 

CD14, which is a co-receptor for the Toll-like receptor (TLR)-4, which recognizes 

bacterial lipopolysaccharide (LPS). They demonstrate cell-mediated cytotoxicity that 

is antibody-dependent (ADCC)(17). However, they can also inhibit activated cells in 

some circumstances(18, 19). An excellent presenter of peptides from viruses and 

bacteria, HLA-DR is expressed at high levels by the other subset of cells whereas 

CD14 is expressed at low levels. These cells also generate large concentrations of 

interferon-alpha (19-21). Most monocytes lack the FcIII receptor (CD16), however 

around 10% of blood in circulation does. GM-CSF, M-CSF, and IL-3, as well as 

inflammatory diseases such coronary artery disease and chronic renal disease, 

promote these monocytes to proliferate (22-26). When necessary, monocytes may act 

as both pro- and anti-inflammatory cells due to their flexibility (27, 28). During 

microbial invasion, pro-inflammatory monocytes can activate memory T cells and NK 

cells in a cytokine-dependent way (29-31). As an anti-inflammatory component, 
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monocytes are drawn to the site of inflammation in allergic responses to suppress the 

reaction (32). 

Dendritic cells (DC) can develop from lymphoid or myeloid progenitors (33-

35).Langerhans cells, plasmacytoid DC, and classical DC are the three types of DC  

seen in mice (LC). Those subsets are further split into several DC groups based on the 

expression and distribution of their surface antigens. It is possible to find CD8-

CD11C+CD11b+ or CD8+CD11C+CD11b- cDC in lymphoid tissues (36, 37). Are 

they either CD103+CD11b-, CD103-CD11b-, or CD103+CD11b- in gut non-

lymphoid tissues? (38, 39). Major Histocompatibility Complex (MHC) class II and 

CD11c expression are both low in blood and spleen inhabitants known as pDC, which 

also generate significant quantities of type I IFN (40). The skin is populated by LC, 

who are CD11b+F4/80+, express a lot of langerin.(41). 

As many surface markers are shared by other hematopoietic cell types, such as 

monocytes and macrophages, it is more difficult to distinguish DC subpopulations in 

humans(42), DC are typically classified as conventional/classical DC (cDC), 

plasmacytoid DC (pDC), Langerhans cells, and monocyte-derived DC (mDC) (43). 

Under both stable and inflammatory situations, cDC are present in the blood 

circulation and exhibit high levels of CD11c, CD1b/c, and BDCA3. They are highly 

migratory and often pass through the bloodstream quickly(44, 45). In contrast, as they 

only differentiate under inflammatory circumstances, mDC were predominantly 

included in the non-conventional DC (46, 47). However, recent research has indicated 

that mDC may be present in muscles and intestines in a constant state (48, 49). pDC 

are long-lived cells that are often found in lymphoid or circulating tissues. Low 

quantities of MHC-II and CD11c are expressed, but they have a significant capacity to 

generate IFN- when activated. LC mostly exist in the epidermis and are frequently 

referred to as "skin DC"(50-52). 
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2.1.2 Cytokines  

Small proteins known as cytokines play a variety of biological roles, such as cell 

development, differentiation, inflammation, and microbial defense(53-56). 

Leukocytes, as well as certain epithelial and endothelial cells, are only a few of the 

numerous cell types that generate cytokines. They work by attaching to their 

receptors, which are preferentially expressed on particular cell subsets. The inability 

to create cytokines or the disruption of their activity can result in a variety of illnesses, 

such as cancer and autoimmune conditions (57-59). The interleukins (IL), interferons 

and tumor necrosis factors (TNF), are a few of the many cytokine families. IL-2, one 

of the first ILs to be identified, is crucial for T- and NK-cell proliferation, survival, 

and heightened killing (60-62). Due to their capacity to cause inflammation, cytokines 

including IL-2, IL-15, IL-12, IL-6, TNF-, lymphotoxin-alpha (LTA), and IFN- are 

together referred to as proinflammatory cytokines (63, 64). Contrarily, because they 

play a role in reducing immune responses, cytokines like IL-10 and TGF- are 

considered anti-inflammatory cytokines (65-67). 

 2.1.3 T-cells: 

Adaptive immunity must function properly in order to provide the best resistance 

against various pathogens. T cells, which are produced from the thymus, are capable 

of mediating effector responses in two phases by employing antigen-specific 

receptors. Antigen-presenting cells (monocytes, macrophages, DC, and B cells) in the 

secondary lymph node first excite T cells, which then get activated, divide into 

various subsets based on the signal received, and multiply. Then, in response to 

chemokines that are often generated by innate immune cells that are already present at  

 

the infection site, primed T cells travel to the site of infection. Adaptive immune T 

cells are often divided into CD4 Th1 inflammatory cells that activate macrophages, 

CD4 Th-2 aid to produce antibody responses, regulatory T cells negatively inhibit 

effector cells, and CD8 T cells, which are not normally categorized.(62, 64, 67). 
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2.1.4 Antigen Processing and Presention: 

Antigens are traditionally presented on the MHC class I or II molecular complex. 

Exogenous (extracellular) or endogenous (intracellular) proteins are both shown by 

MHC molecules (68). Proteolytic breakdown of the targeted protein initiates the 

antigen presentation pathway. To get rid of accumulated and damaged proteins, the 

cell uses the biological process of protein degradation (69, 70). For this, the 

proteasome system is employed. The proteasome is a multi-subunit complex made up 

of the 20S core unit and many regulatory subunits, including as the 26S and 19S, 

which bind to the 20S to alter and choose breakdown(71). The immunoproteasome 

has the 20S core unit plus one regulatory unit, such as the 19S or 11S, despite the fact 

that all proteasomes have a similar structure made up of three subunits(72). The MHC 

class I restricted antigen presentation process makes use of the 

immunoproteasome.(73, 74).  

2.1.4.1 Endogenous antigen presenting: 

MHC class I molecule activates cytotoxic T lymphocytes (CD8+). All nucleated cells 

express this molecule, making all cells capable of presenting antigens to CD8+ T 

lymphocytes. Cytosolic antigens, which can be made by tumor cells, viruses, or other  

 

intracellular microorganisms, are presented by the MHC I molecule. Phagosomes 

(vesicles) are another source of antigens. Phagosomes transport microorganisms or 

pathogen products that internalize to the cell cytosol and are processed like the other 

cytosolic antigens. Antigens are transferred to the endoplasmic reticulum (ER) after 

processing by the transporter associated with antigen processing (TAP), then via the 

Golgi are delivered to the cell surface with exocytic vesicles. (8). 

2.1.4.2 Exogenous antigen presenting: 

Antigen-presenting cells are among the few cell types that express MHC class II 

molecules. Exogenous antigens are delivered to CD4+ T lymphocytes on MHC II 

molecules. On the other hand, exogenous antigens can be displayed on the MHC I 

through a mechanism known as cross-presentation. Unlike endogenous presentation, 

which takes place within the ER, loading of MHC II takes place outside of it. Only 
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MHC II is processed after a loading step inside the merged endocytic and exocytic 

vesicles in the cytosol and is then shown on the cell surface (8). 

2.1.5 NK cells  

2.1.5.1 Identification of NK cells: 

The word "natural" was first used in the middle of the 1970s in reference to the way 

that NK cells behave, which allows them to detect and attack specific tumor cells 

without the need for prior immunization(75, 76).  

Due to their inability to rearrange their receptors from their germline structure, NK 

cells—which make about 5–15% of the blood circulating lymphocytes—are referred 

to be big granular lymphocytes of the innate system (77, 78). The expression of CD56  

 

and absence of CD3 help to identify them. Human NK cells include CD56 (NCAM), 

whereas those of murine origin do not(79). However, research has indicated that 

NKp46, a naturally occurring cytotoxic receptor, may be utilized to identify NK cells 

in several species(80, 81). When there is conflict, a portion of human NK cells 

express very little or no NKp46, making it challenging to identify NK cells. As a 

result, their identity must be verified by the absence of other lineage markers (82). 

2.1.5.2 Development of NK cells: 

There has been debate over the location in humans where NK cell development takes 

place. Although they originate from CD34+ hematopoietic progenitor cells in the 

bone marrow, this is not where their development into mature cells is expected to 

occur (83). As a result of the absence of immature and intermediately developed NK 

cells in the bone marrow, it is thought that NK cells develop in lymphoid organs 

instead. Contrarily, in vitro research has demonstrated that immune cells found in the 

bone marrow may develop CD34+ cells into NK cells by producing cytokines (84, 

85).  

NK cells from humans may be divided into two distinct groups based on how much of 

the surface protein CD56 are expressed. The lymphoid tissues are home to 

CD56bright immune-regulatory cells with outstanding cytokine production potential, 

whereas CD56dim NK cells, which make up 90% of the population, circulate in the 



Ph.D. Thesis: Understanding Immune Suppression of Natural Killer Cells in Head and Neck 
Squamous Cell Carcinoma 

 

28 | P a g e  
 

blood. CD56dim, as opposed to 19 CD56bright, express large amounts of CD16 and 

have powerful cytotoxic properties(86, 87). Target cells can be killed by CD16-

expressing cells using an antibody-dependent cell-mediated cytotoxicity mechanism 

(ADCC)(88). 

 

2.1.5.3 NK cell Inhibitory receptors: 

Through a fine balance between inhibitory and activating receptors, NK-cell activity 

is controlled. The intensity of the inhibitory receptors' binding, or lack thereof, 

predicts the outcome. The killer immunoglobulin-like receptors (KIRs), which bind to 

the MHC class I complex, make up the biggest category of inhibitory receptors (89). 

Beginning in the 1980s, Kärre and colleagues noticed that the mouse tumour cell line 

YAC-1, which expressed few MHC class I molecules, was vulnerable to NK cell 

death(90). Later, as a result of these results, the "missing-self" hypothesis was 

developed(91). The first inhibitory receptor Ly49 expressed on mouse NK cells was 

discovered in Yokoyama's lab in 1992(92). Later, in the beginning of the 90s, Moretta 

and colleagues were the first to find the human KIRs of the NK cells later, at the start 

of the 1990s(93-95).  

2.1.5.4 NK cell Activating receptors: 

NK cells also carry activation receptors in addition to inhibitory receptors. FCRIII 

(CD16), which is found on the majority of NK cells and binds the constant region (Fc) 

of IgG, is one of the most researched receptors (96, 97). The only receptor that may 

independently activate NK cells is CD16(98, 99). NKG2D, which ligates the stress-

induced molecules MICA/B or ULBP-proteins, and naturally occurring cytotoxic 

receptors (NCRs, NKp30, NKp46, and NKp44) are among other significant activation 

receptors (100-105). The ligands for the NCRs have not been extensively researched. 

Hemagglutinin (HA), a viral protein that ligates NKp44 and NKp46, and the two 

identified NKp30 ligands BAT3 and B7-H6, are what are now known(106-110). The 

activation co-receptors DNAM-1 and NKp80, which are important in the control of  
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NK cell responses to the target, must also be added to the list(111, 112). In many 

pathogenic and cell-transformation circumstances, these activating receptors are 

crucial for boosting NK cells. As a result, ADCC has gained widespread acceptance 

as a method to target both tumor and virus-infected cells (113, 114). Clinical 

outcomes are predicted by the expression of several NKp30 activation or inhibitory 

isoforms in patients with gastrointestinal sarcoma (115). The ligation of NKG2D by 

MICA/B or ULBP proteins has been demonstrated to generate cytotoxic action 

against hepatoma cells, continuing the line of the variety of NK cell responses(116). 

The NK cells' co-receptors have been shown to be crucial for battling 

cytomegalovirus-infected cells and may be involved in malignancies when NK cells 

have an altered phenotype(117, 118).  

The receptors indicated above, with the exception of CD16, must work together to 

activate NK cell activity. For instance, co-activating DNAM-1, NKG2D, or 2B4 was 

necessary for NK cells to degranulate, while activating NKp46 alone is insufficient to 

stimulate NK cell degranulation (119). 

2.1.5.5 Regulation of NK cell receptors: 

In order to prevent autoimmunity or hypo-activation, NK cell receptor expression is 

tightly controlled during development. In-depth analyses of the mechanisms 

governing the KIR family's expression have revealed that healthy people' NK cells 

typically express at least one KIR. However, different cell types display different 

heterogenic repertoires (120). There are few theories as to how NK cell receptor 

expression is controlled. One of them is the licensing or schooling of NK cells; this 

concept is similar to the theory behind the TCR repertoire, with the exception that NK  

 

cell receptors cannot be rearranged. By attaching various MHC I molecules to their 

KIRs, NK cells go through an educational process. Studies using mouse models have 

demonstrated that the expression of an inhibitory receptor for a self-MHC class I on 

NK cells correlates with NK cell licensing(121). Such engagement is necessary for 

self-tolerance and fully responsive NK cells(122). 

Receiving proinflammatory or anti - inflammatory cytokines, such as IL-12, IL-15, 

TGF-, and IL-10, is a highly powerful regulator of the activation receptors in the line 
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of regulating receptors(123-126). Even though there are more and more research 

looking at how NK cell receptor expression is regulated in many human illnesses, 

particularly in cancer patients, we still don't fully understand these mechanisms. 

2.1.5.6 NK cell cytotoxicity: 

IFN- and TNF- are examples of the pro-inflammatory cytokines that NK cells 

generate after activation or in the absence of inhibition (127-130). Target cells cause 

NK cells to integrate via their adhering molecules, such as LFA-1, which causes Ca+ 

release and subsequent polarization of the cells. This process also results in the 

degranulation of perforin-containing lytic granules(131, 132). In another direct killing 

process, death receptors are ligated. The cognate receptors present on target cells are 

bound by death ligands produced on the surface of NK cells, such as TNF-related 

apoptosis-inducing ligand (TRAIL) and Fas-ligand (FasL). While TRAIL binds to one 

soluble receptor and four known membrane-bound receptors, the FasL exclusively 

binds to its single receptor, Fas. When TRAIL binds to the extracellular domain of 

TRAIL-receptors DR4 and DR5, the signal is transformed to the intracellular domain, 

where it recruits and activates caspase, which then starts the apoptotic signal- 

 

transduction pathway(133). By expressing the other two membrane-bound TRAIL 

receptors, known as decoy receptors DcR1 and DcR2, which are either missing or do 

not act as intracellular death-domains, normal cells can often be distinguished from 

altered cells(134-137). 

2.1.5.7Memory NK cells: 

NK cells are often regarded as short-lived innate lymphocytes without antigen 

specificity and a low proliferation potential. Recent research has refuted this 

paradigm, revealing surprise findings that NK cells have adaptive immunological 

characteristics. Regarding a second challenge, O'Leary et al. showed that a subset of 

liver-resident NK cells is capable of triggering particular hapten-induced responses in 

mice missing T and B cells (138). In mouse models, CMV infection may lead to the 

development of memory NK cells(139). The idea of NK cell memory is still relatively 

new, and it has mostly been tested in virus-infection models (140). Additional 

research using other disease models is necessary. In healthy and disease-ridden 



Ph.D. Thesis: Understanding Immune Suppression of Natural Killer Cells in Head and Neck 
Squamous Cell Carcinoma 

 

31 | P a g e  
 

situations, NK cells react differently. The NK cell responses in the tumor 

microenvironment are covered in the next segment. 

 2.2 TUMOR IMMUNOLOGY: 

Six biological traits that human cancers acquire during the course of their multi-step 

evolution constitute the characteristics of cancer. Maintaining proliferative signaling, 

dodging growth inhibitors, preventing cell death, permitting replicative immortality, 

initiating angiogenesis, and turning on invasion and metastasis are a few of these 

(141). Reprogramming of energy metabolism and escaping immune destruction are  

 

two novel hallmarks that have emerged as a result of advancements in tumor biology 

research (142). 

 2.2.1 Immune surveillance: 

When Ehrlich initially proposed the theory in 1909, the immune system's involvement 

in regulating transformation cells was highly debatable(143). Burnet updated the idea 

of "natural" tumor prevention later in the 1950s. Burnet thought that antigens unique 

to tumor cells may end immunological tolerance and trigger an efficient immune 

response that would end carcinogenesis(144, 145). When transgenic mouse models 

were used to validate tumor immune surveillance in chemically produced as well as 

spontaneous tumors in the 1990s, the concept was finally accepted. At that time, it 

was shown that effector cells such as T, B, and NK cells as well as interferons play a 

crucial role (146-148). Transgenic mice missing the gene RAG, which is required for 

the rearrangement of immunoglobulin and T cell receptors, provided additional proof 

of immune surveillance when they were subcutaneously injected with the chemical 

carcinogen 3′-methylcholanthrene (MCA). Sarcomas were produced in 60% of the 

mice as opposed to just 19% of WT animals(148). Immunosuppressed transplant 

patients who have a higher risk of getting cancer provide more proof in favor of 

immune monitoring(149, 150). Finally, during the past ten years, several research 

involving cancer patients have demonstrated that a favorable prognosis is correlated 

with large levels of infiltrating lymphocytes, particularly T cells (151-154). 
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          2.2.2 Immune escape: 

Numerous variables either promote or prevent the growth of cancer. These variables 

may be influenced by the surrounding environment or the altered cells (intrinsic to the  

 

tumor) (tumor-cell-extrinsic). Three crucial cancer immune-editing processes, known 

as the "3 Es" paradigm (elimination, equilibrium, and escape), are involved in the 

genesis of cancer. 

Elimination is a safeguard against unchecked proliferation that involves the immune 

system's removal of the damaged cells, or immune surveillance(155-157). Moving on 

to the following stage, "equilibrium," when more resistant tumor cells emerge due to 

immune selection as they become less immunogenic as a result of long-term immune 

effector cell resistance(158). The tumor immune "escape" has been attained when the 

immune system has no or very little control on the tumor mass (159).  

Three kinds of immune escape by tumors—loss of recognition, absence of 

susceptibility, and induction of immune suppression—have been identified (160). The 

inability to present tumor-specific antigens when T cells are no longer able to detect 

them is one of the most well-known examples of loss of recognitions (161). 

Moreover, in order to prevent effector cells from killing them, tumor cells typically 

block signals, down-regulate, or shed receptors or ligands, which makes the tumor 

less susceptible(162-164). 

 2.2.3 Tumor microenvironment: 

It is well recognized that the tumor microenvironment is made up of a diverse 

population of cells and secreted substances, including not just tumor cells but also 

immune cells and cytokines. Selected cell types and tumor microenvironment 

components are discussed in this session. 
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2.2.3.1 Membrane bound proteins: 

Tumor cells that have undergone immune editing may lose or overexpress certain 

proteins that are crucial for immune detection or suppression. For the activation and 

priming of T cells, HLA molecules are crucial. Cancer patients and mouse tumor 

models both exhibit failure to present antigen. Such deletion of antigens is caused by 

HLA total loss, alterations in the antigen-presenting apparatus, or even loss of antigen 

production(165, 166). Cancer cells that no longer express MHC class I are resistant to 

T cell destruction. Instead, these tumor cells are susceptible to NK cell destruction. 

The death receptor Fas, stress ligands for NKG2D, and down-modulating TRAIL-

receptor-mediated apoptosis by upregulating FLIP are all ways that tumor cells might 

evade NK cell destruction(167-169).The programmed death ligands 1 and 2 (PD-

L1/PD-L2), which are expressed on a variety of cancers, have received a lot of 

attention recently. To avoid hyperactivity, they interact with the PD-1 receptor present 

on activated immune cells(170-174). Both NK cell and T cell antitumor activity are 

decreased upon contact with tumor cells, and this is clinically associated with a poor 

prognosis(175-177). CTLA-4, HLA-G, and HLA-E are other comparable molecules 

that are overexpressed and interfere with T cell and NK cell activities by integrating 

with malignancies. Note that these compounds influence immune-suppression early 

on (178-181). 

2.2.3.2 Tumor-induced transcriptions factors: 

The increased activity of some transcriptional factors, specifically signal transducer 

and activator of transcription (STAT)3, which is constitutively phosphorylated in 

many cancers, is another way that tumor cells inhibit the immune system (182, 183).  

 

Inhibited CD8+ T cell and Th1 cell immune surveillance has been linked to STAT3 

activation in malignancies(184-186). Tumor STAT3 activation triggers the production 

of inhibitory cytokines such as IL-10 and TGF-β (187). 

2.2.3.3 Secreted factors in the tumor microenvironment: 

Although the kind and quantity of the components released in various tumors may 

vary, "master" regulators appear to be often generated. TGF-, IL-10, IL-6, GM-CSF, 



Ph.D. Thesis: Understanding Immune Suppression of Natural Killer Cells in Head and Neck 
Squamous Cell Carcinoma 

 

34 | P a g e  
 

and inflammatory mediators including COX-2 and prostaglandin E2 (PGE2) are some 

of these inhibitory factors (188-192). The microenvironment's suppressive cytokines, 

such as TGF-, prevent dendritic cells from differentiating and maturing, which 

inhibits the cross-presentation of tumor antigens to T cells(193). IL-10 is another 

effective inhibitor, directly affecting the generation of TNF- and IFN- by NK cells 

and T cells. Additionally, it prevents macrophages from having a cytotoxic impact 

and from being able to create IL-12(194, 195). By suppressing DC, skewing cytokine 

production, promoting angiogenesis, and blocking apoptosis, the immune-modulators 

indicated above contribute to a cascade of inflammatory responses that advance 

cancer(196-199). Collectively, host innate and adaptive immune systems are typically 

severely compromised by tumor growth.  

Tumors have an immune-suppressive environment that is comprised of intricate 

processes and the participation of numerous immune cells and elements. It is therefore 

difficult to cover every one of them in this thesis. The function of NK cells and their 

interactions with tumor cells and certain immune-suppressive cells are highlighted in 

the next session. 

 

 2.2.4Immune suppression of NK cells: 

Understanding how NK cells interact with tumor cells as well as how they function in 

the tumor microenvironment may help us better understand NK cell responses against 

cancer. 

2.2.4.1 Regulatory T cells: 

Regulatory T cells are one of the immune-suppressive cell types most closely linked 

to the development of tumors (Treg). They may be identified by the expression of the 

transcription factors CD4, CD25, and CD127 (CD4+CD25+CD127low/negative) as 

well as FoxP3(200). Different malignancies increase the growth of Treg, and their 

buildup is associated with reduced immune cell activity and a bad prognosis(201-

206). Treg suppresses NK cells in a cell-contact-dependent manner, attenuating their 

cytotoxicity with membrane-bound TGF- β(207). The high affinity IL-2 receptor-

alpha (IL-2R) is expressed by Treg, and they require IL-2 to operate properly. They 
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consume IL-2 that is generated by other cells, which raises the possibility that T cells 

and NK cells are suppressed by IL-2 deprivation(208, 209). 

2.2.4.2 Myeloid-derived suppressor cells: 

Myeloid-derived suppressor cells (MDSCs) are a diverse population of immature DC, 

macrophage, and granulocyte precursors that have suppressive function(210). 

Recently, it has been suggested that critical immune-regulators in a variety of solid 

and hematologic malignancies are called myeloid-derived suppressor cells 

(MDSCs)(211, 212). The monocytic MDSCs (moMDSCs) and the granulocytic 

MDSCs (grMDSCs) are the two categories of MDSC (213). In mice, grMDSCs  

 

exhibit CD11b, Gr-1, Ly6G, and low Ly6C, whereas moMDSCs exhibit CD11b, Gr-

1, high Ly6C, and no Ly6C. Different phenotypes of MDSCs in humans are linked to 

various malignancies(214-218). Their inhibitory action is accomplished by a variety 

of methods, but mainly through the generation of reactive oxygen species (ROS), 

arginine depletion, and suppressive cytokines such IL-10 and TGF- β(219-222). 

Recent research sought to determine how MDSCs are produced and how they inhibit 

T cells in vitro (223-225). The relationship between T cells and MDSCs has been well 

studied, but little is known about how these cells affect NK cell responses. 

2.2.4.3 Tumor-associated macrophages: 

The main myeloid-derived population in the tumor microenvironment is composed of 

macrophages. It has been hypothesized that tumor-associated macrophages (TAMs) 

actively encourage the development and spread of tumors (226, 227). TAMs are 

defined as a population of several unique pro- (M2)- and anti- (M1)-tumoral 

subpopulations. TAMs can employ direct and indirect T cell inhibition, Treg 

recruitment, and IL-10 production as immune suppressive strategies in the tumor 

microenvironment(228-230). 

2.2.4.4 Immune-regulatory Dendritic cells: 

Recent investigations of a less understood cell type reveal that immune-regulatory 

Dendritic cells, a subset of myeloid-derived immune regulatory cells, are pro-

tumorigenic (regDC). They arise from cDC, and their presence in malignancies is 



Ph.D. Thesis: Understanding Immune Suppression of Natural Killer Cells in Head and Neck 
Squamous Cell Carcinoma 

 

36 | P a g e  
 

associated with a bad clinical prognosis(231, 232). An accumulation of regDC in a 

lung cancer pre-clinical investigation supports tumor development and inhibits anti-

tumor action(233). 

   

           2.2.5 Immunotherapy: 

Immunotherapy seeks to boost immunity to get rid of cancer. Immunotherapy can be 

classified as passive (antibody therapy, cell therapy), active (vaccines, active non-

specific therapy, cytokines), or both, depending on how the patient's immune system 

is activated (listed below). 

Active immunotherapy  

1. The purpose of tumor vaccines is to either stimulate the body's natural anti-tumor 

immune response or to cause immunological identification of the tumor cells. 

However, a significant issue with this sort of therapy is the tumor's poor 

immunogenicity and the already diminished number of functional immune 

compartments. These vaccines can be cell-based (whole-tumor cell vaccination, DC-

vaccine), or they can be based on tumor components (DNA vaccine, antigen peptide 

vaccine, and exosome-based vaccine)(234-237).  

2. Immunotherapy frequently employs cytokines to promote immune responses such 

effector cell differentiation, proliferation, and activation, as well as APC recruitment. 

Such cytokines include IL-2, IFN- α, and GM-CSF; nevertheless, the systematic 

administration of these therapy results in high rates of toxicity (238).  

Passive immunotherapy  

1. One of the first methods of cancer immunotherapy was antibody-based treatment. 

Monoclonal antibodies (mAB) have the ability to directly destroy the targeted tumour 

cells, activate an immune system component (ADCC), or obstruct the routes used by 

the tumour cells to signal in an inhibiting manner. Anti-CD20 (Rituximab), anti- 
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HER2 (Trastuzumab), anti-VEGF (Bevacizumab), anti-EGFR (Cetuximab), and anti-

CTLA-4 (Ipilimumab) are some of the mABs mentioned here(239). Resistance 

building is a key issue with long-term antibody-based treatment(240).  

2. The notion of adoptive cell therapy using ex-vivo activated immune cells was first 

sparked by the significant immunological hypo-responsiveness in the tumor 

microenvironment. It has been demonstrated that tumor infiltrating lymphocytes 

(TILs) are receptive to host tumor-specific antigens but are suppressed in the tumor 

mass. Numerous research has looked into the possibility of growing these cells ex-

vivo and reintroducing them into patients. Patients with melanoma have seen 

incredible results from this therapy(241). Genetic alterations, T cells with a particular 

TCR transduced, and T cells that express the chimeric antigen receptor (CAR) are 

examples of other T cell treatments (242, 243). As was already noted, the tumor 

microenvironment significantly inhibits the immune response to cancer. As a result, 

medicines that target immunosuppressive cell populations are becoming more 

common. The following lists other immunotherapy targets.  

2.2.5.1 Targeting Treg: 

Treg targeting for therapeutic purposes has made some progress, but not much. In 

order to decrease the quantity of Treg, a variety of therapeutic treatments have been 

proposed; however, these drugs also target effector cell activity, not just Treg. These 

treatments aim to increase Treg proliferation(244, 245), and reduce their functionality 

by using TLR agonists(108, 246). Recently, it was proposed to employ mAB CTLA-4 

as a target for controlling Treg in cancer patients. Though improved anti-tumor  

 

activity by effector T cells is seen in preclinical and clinical trials, an expansion of 

Treg suggests a secondary benefit of CTLA-4 therapy(247, 248).  

2.2.5.2 Targeting MDSC: 

MDSCs are challenging to selectively deplete because they lack unique identifying 

markers. Instead, researchers have looked for ways to reduce the immunosuppressive 

substances MDSCs produce. It is advised to prevent MDSC differentiation, 

expansion, and their suppressive activity in preclinical studies for therapeutic 
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purposes(249). Amiloride is used to treat hypertension, however when given to 

tumor-bearing mice, it reduced the STAT3-dependent MDSC suppressive function by 

preventing the generation of tumour exosomes(250). A tyrosine kinase inhibitor 

called sunitinib targets a variety of growth factors, including M-CSF and VGEF 

receptors. Sunitinib treatment inhibited the growth of MDSC and increased the 

expression of Th1 IFN- in tumor-bearing rats(251). PGE2 induces MDSCs while 

preventing APC from differentiating from bone marrow(252). Celecoxib and 

acetylsalicylic acid (Aspirin), COX-2 inhibitors, lower the systematic level of PGE2 

and, as a result, the generation of ROS, arginase, and the MDSC chemoattractant 

CCL2 by MDSCs(253-255). 

2.2.5.3 Immunological checkpoint Blocking: 

To increase the beneficial effects of effector cells and decrease the suppressive effects 

of suppressor cells like Treg and MDSCs in malignancies, immunological 

checkpoints have to be targeted. Boosting immune effector functions was the main 

goal of immunotherapeutic approaches like CTLA-4 blocking by mAB (Ipilimumab). 

Currently, a number of clinical trials have employed ipilimumab in cancer patients  

 

with positive objective responses and stable illness(256-259). The PD-1: PD-L1 axis 

is another inhibitory checkpoint protein with the potential to recover worn-out CD8+ 

T cells in mouse models and prolong life in cancer patients (260). It's interesting to 

note that blocking PD-1 increases the cytotoxic capacity of effector cells while 

decreasing the suppressive impact of Treg(261). 

2.2.5.4 DC vaccines: 

The importance of preclinical research to produce DC-vaccines in vitro has been 

emphasized since DC are the most effective APC. Dendritic cells originating from 

monocytes (mDC) produced in vitro have proved an excellent method for producing 

DC vaccines. Independent studies' observations demonstrate that naturally existing 

human mDC need IL-4 or GM-CSF to develop into mDC in vivo (262-264). So, these 

cytokines have been utilized in vitro to distinguish blood monocytes(265).  
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The development of therapeutic vaccines for cancer patients has spurred the in vitro 

maturation of blood monocytes to fully developed mDC over the past 20 years(266-

270). Briefly, after maturation when various cytokines or TLR-agonists are used and 

loaded with tumor-specific antigens, blood monocytes are differentiated to immature 

DC by IL-4 and GM-CSF(271, 272). The goal of creating therapeutic DC vaccines 

has been to stimulate T cells to produce potent anti-tumor immune responses. Despite 

the fact that DC can induce anti-tumor T cell responses(272-275), the therapeutic 

effect for cancer patients has only been marginal(276, 277). 

 

NK CELLS IN THE CLINIC: 

 2.3.1 KIRs as targets: 

Numerous research has been done to improve NK cell anti-tumor efficacy against 

cancer. Initial attempts to infuse LAK (lymphokine activated killer cells)/NK cells in 

cancer patients with or without IL-2 injection were made in the 1980s, but these 

individuals showed little clinical responses and were believed to be paralyzed by the 

tumor immune-suppression(278-280). After NK cell injection in patients with solid 

tumors, no total tumor rejection has been seen so far(281-283). However, individuals 

with hematological malignancies have shown improved response to adoptive 

immunotherapy using NK cells(284, 285). Avoiding the interaction of inhibitory 

receptors KIRs with homologous HLA and choosing "mismatched" clones for 

adoptive transfer of NK cells is one of the key methods employed in these effective 

treatments (286-288). Therefore, it is crucial to evaluate the tumor phenotype before 

NK cell infusion, forecast the tumors’ vulnerability to NK cell lysing in order to 

choose NK cell clones that will be more advantageous, or choose patients who will 

respond well to a certain therapy.  

The notion of creating monoclonal antibodies to inhibit KIRs arose from such 

research demonstrating the therapeutic advantage of utilizing mismatched NK cell 

clones. Anti-inhibitory KIR mAb IPH2101 has successfully completed phase I trials 

in acute myeloid leukemia and multiple myeloma, indicating a safe profile in patients 

and the ability to block KIR for extended periods of time with little adverse 
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effects(289, 290). When NK cell activity in these individuals was assessed, response 

markers such as raised blood levels of TNF-, the NK cell and monocyte  

 

chemoattractant MIP-1, and enhanced expression levels of CD69 and partly CD25 

were found(290). 

 2.3.2 Sensitization of tumor cells to NK cell-mediated killing: 

There have been suggested additional treatments to make tumor cells vulnerable to 

NK cell targeting. Targeting B-cell lymphomas, Rituximab or Mabthera are specific 

chimeric antibodies targeting CD20(291). Studies using mAB and IL-2 in 

combination demonstrated that this type of therapy can facilitate NK cell ADCC 

targeting of the tumor cells (292, 293). Recent therapies have focused on enhancing 

NK cell-driven tumor cell death mediated by death receptors. The relationship 

between NK- or T-cell TRAIL and tumor cell death has been demonstrated in several 

in vitro and in vivo investigations. Through increased TRAIL-R expression, 

pharmaceutical treatments like as proteasome inhibitors, anthracycline antibiotics, and 

histone deacetylase inhibitors improve tumor sensitivity to NK cells(294-298).  

 2.3.3Improve NK cell anti-tumor activity: 

Death ligands are not expressed at all or very little on dormant NK cells (TRAIL and 

FasL). To increase the cytotoxic activity of NK cells, efforts should be made to up-

regulate the expression of death ligands on NK cells. In addition to increasing the 

expression of death ligands on NK cells, cytokines like IL-2 also boost NK cell 

proliferation and cytotoxicity in vivo(299-301). It has been demonstrated in vitro that 

drugs like lenalidomide and zoledronic acid boost TRAIL expression on NK cells, 

which correlates with an increase in cytotoxicity(302, 303).  

Both mouse models and human patients have demonstrated improved NK cell 

function after pre-conditioning. Radiation therapy and/or chemotherapy are two 

possible forms of treatment. By increasing, for example, stress ligands, NK cell 

proliferation, and inducing NK cell responses to the usual treatment, such treatment 

promotes NK cell identification of the tumor cells (304, 305).  



Ph.D. Thesis: Understanding Immune Suppression of Natural Killer Cells in Head and Neck 
Squamous Cell Carcinoma 

 

41 | P a g e  
 

Effective NK cell-based immunotherapy requires the fusion of many approaches to 

boost activity and decrease repression in the tumor microenvironment. 
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