Dedicated to my beloved parents, Mr. Gobinda Das (Deta) and Mrs. Rebati Das (Maa)

for their blessings, endless support and encouragement

DECLARATION BY THE CANDIDATE

I hereby declare that the thesis "Characterization of Mesobuthus tamulus Venom (MTV), commercial anti-scorpion-antivenom, and assessment of MTV neutralization potency of a formulated drug" being submitted to Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam in partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology, has previously not formed the basis for the award of any degree, diploma, associateship, fellowship or any other similar title or recognition. Due to unavailability of proper facilities in Tezpur University, the following experiments/sample analyses were carried out at other institutes:

- LC-MS/MS analysis of protein samples were performed at Centre for Cellular and Molecular Platforms (C-CAMP), NCBS-TIFR, Bangalore, India, and Kalinga Institute of Industrial Technology-Technology Business Incubator (KIIT-TBI), Bhubaneswar, India.
- 2. RT-PCR and *in vivo* experiments are performed at animal experiment facility, IASST, Guwahati 781035, India

Bhabana Das

(Bhabana Das)

Date: 26-10-2023

Place: Tezpur

Department of Molecular Biology and Biotechnology School of Sciences, Tezpur University

TEZPUR UNIVERSITY

CERTIFICATE OF SUPERVISOR

This is to certify that the thesis entitled "Characterization of *Mesobuthus tamulus* venom (MTV), commercial anti-scorpion-antivenom, and assessment of MTV neutralization potency of a formulated drug" submitted to the School of Sciences, Tezpur University in requirement of partial fulfilment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of research work carried out by Ms. Bhabana Das under my supervision and guidance. All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Ammyco

(Dr. A. K. Mukherjee, Ph.D., D.Sc., FASc., FRSB)

Designation: Professor

School: School of Sciences

Department: Molecular Biology and Biotechnology, Tezpur University (on deputation at IASST, Guwahati)

Present address: Director, Institute of Advanced Study in Science and Technology (IASST), Guwahati

Date: 26/10/2023

Place: Tezpur

ACKNOWLEDGEMENTS

First and foremost, I bow in front of the Almighty and thank Him for providing me strength to make a humble contribution to the society through my research work.

I express my respectful gratitude to my Ph.D. Supervisor, Professor Ashis Kumar Mukherjee, for introducing me to this exciting field of scorpion venom. His relentless encouragement, insightful advice, and unrivalled support and guidance throughout my Ph.D. tenure enabled me to successfully complete my research work. I deeply respect his dynamic vision, sincerity, and devotion towards research and it was a great privilege and honour to work under his able guidance.

I offer my gratitude to Prof V. K Jain and Prof. Shambhu Nath Singh, the former and present Vice Chancellor of Tezpur University, respectively for providing me the opportunity to work in this esteemed University. I always feel fortunate to be a part of this University which has a very good environment for research among the students.

I sincerely thank Council of Scientific & Industrial Research (CSIR), New Delhi for providing me the financial support for carrying out my research work.

I deeply acknowledge the Heads, Department of Molecular Biology and Biotechnology, Tezpur University for extending all possible facilities for carrying out my research work. I am also thankful to my Doctoral Committee members- Prof Manabendra Mandal, Dr. Venkata Satish Kumar Mattaparthi, Prof Sankar Chandra Deka; all the members of the Departmental Research Committee and all the faculty members of Department of Molecular Biology and Biotechnology for their valuable suggestions and inspiration throughout the course of this study.

I thank Centre for Cellular and Molecular Platforms (C-CAMP), NCBS-TIFR, Bangalore, Kalinga Institute of Industrial Technology-Technology Business Incubator (KIIT-TBI), Bhubaneswar for LC-MS/MS analysis and IASST, Guwahati for RT-PCR and in vivo experiments.

I also take this opportunity to thank Dr. K. K. Hazarika, Dr. N. K. Bordoloi, Mr. P. Mudoi, Mrs. Pranita S. Talukdar, Mr. Bijoy Mech, Mr. Guna Das, and all the non-teaching staff for all the help they have provided me during my Ph.D. tenure.

I also convey my thanks to Dr. Suman Dasgupta, Dept. of MBBT, Tezpur University for spectrofluorometric interaction study and SAIC, Tezpur University for TEM and FESEM analyses respectively and Dr. Anthony J. Saviola, University of Colorado Anschutz Medical Campus, Aurora, CO, United States for helping me writing a review article.

I sincerely thank my lab seniors (Dr. Taufikul Islam, Dr. Debananda Gogoi, Dr. Bhargab Kalita, Dr. Sumita Dutta, and Dr. Abhishek Chanda) for their guidance. A special thanks to Dr. Aparup Patra for his constant guidance and help for each and every research step during my Ph.D work. My lab mates (Nitisha, Madhubala, Upasana and Hirak), lab juniors (Anushree, Paran, Himangshu, Sushmita, Rozy, Rahul, Bhagyalaksmi, Dhandapani) for helping me in times I needed them most. I have absolutely enjoyed the research atmosphere of my lab, and the unconditional support and love extended by my lab colleagues.

I also take this opportunity to thank all my seniors and friends from Tezpur University, whose company I have enjoyed during my stay at Tezpur University.

Last but not the least; I thank my parents, and family members, my best friend Nirupam Talukdar and his parents for their endless support and encouragement. Finally, I would like to thank all the people, whose direct and indirect support has helped me complete my research work.

Place: Tezpur

Date: 26-10-2023

Bhabana Das

(Bhabana Das)

Contents

TABLE OF CONTENTS

CHAPTER IV	
Proteomics analysis, biochemical and pharmacological characterization and immunological profiling of indian red scorpion (<i>Mesobuthus tamulus</i>) venom	103-118
4.1. Results	103
4.1.1 Sodium dodecyl sulphate polyacrylamide gel electrophoresis	103
(SDS-PAGE) of <i>M. tamulus</i> venom (MTV)	103
4.1.2 Tandem mass spectrometry analysis of tryptic peptides	105
4.1.3 Some enzymatic activities and pharmacological properties of MTV	105
4.1.4 Correlation of <i>M. tamulus</i> venom toxinome composition with the clinical manifestations of scorpion sting in India	105
4.1.5 Assessment of immunological cross-reactivity between MTV and commercial scorpion antivenom by ELISA and immunoblot analysis	108
4.2. Discussion	110
4.2.1 The venom proteome of <i>M. tamulus</i> is predominately comprised of low molecular mass ion-channel peptides	110
1 1	112
4.2.2 Characterization of some pharmacological properties of MTV	113
4.2.3 Immuno-cross reactivity studies show that commercial anti- scorpion antivenom is deficient in specific antibodies against the low molecular mass toxins of MTV	110
Bibliography	113

TABLE OF CONTENTS	
Contents	Page No.
CHAPTER V	
Assessment of quality and safety of commercial anti-scorpion	119-148
(Mesobuthus tamulus) antivenoms	
5.1 Results	119
5.1.1 Physicochemical characterization of ASA	119
5.1.2 Electron microscopic analysis of ASAs	123
5.1.2 Determination of the purity of active substance in commercial	125
ASAs by mass spectrometry, SDS-PAGE, and size	

exclusion chromatography (SEC)	
5.1.4 Particle distribution (aggregate formation) in scorpion ASA	130
determined by DLS analysis	
5.1.5 Commercial ASAs showed trace amount of Fc content and	132
moderate complement activation property	
5.1.6 The ASAs contained IgA, devoid of IgE, and contained	135
endotoxin and preservative contents within the threshold limit	
5.1.7 Spectrofluorometric titration and AFM analyses showed	138
weak binding affinity of scorpion venom with commercial	
ASAs and they contained less proportion of venom toxins-	
specific antibodies	
	142
5.2 Discussion	145
Bibliography	

TABLE OF CONTENTS	
Contents	Page No.
CHAPTER VI	
A novel formulation for the improved treatment of Indian red	149-183
scorpion (Mesobuthus tamulus) venom-induced toxicity tested in	
Caenorhabditis elegans and rodent models	
6.1 Results	149
6.1.1 The <i>in-silico</i> analysis showed binding of α1 adrenoreceptor inhibitors to homologous SER6 receptor in <i>C. elegans</i>	149
6.1.2 Optimum dose of αl adrenoreceptor antagonists, commercial ASAs and ascorbic acid neutralizes <i>M. tamulus</i> venom-induced toxicity, ROS generation and depolarization of mitochondrial transmembrane in <i>C. elegans</i>	151
6.1.3 Early administration of α1 adrenoreceptor antagonists, commercial ASAs, and ascorbic acid showed better neutralization potency against <i>M. tamulus</i> venom	157
 6.1.4 Formulated drug showed significantly higher efficiency compared to individual components of formulation in neutralising the MTV-induced lethality in <i>C. elegans</i> 6.1.5 The Formulated drug (formulation 2) demonstrated 	160
optimum efficiency in neutralising the <i>in vitro</i> DPPH- free radical scavenging activity and <i>in vivo</i> neutralisation of MTV-induced ROS generation and alteration of mitochondrial transmembrane potential in <i>C. elegans</i> .	160

6.1.6	Formulated drug restored the MTV-induced upregulation of genes involved in apoptosis, detoxification and stress response to delay MTV-induced programmed cell death in <i>C. elegans</i>	165
6.1.7	Neutralisation of MTV-induced hyperglycaemia and pathophysiological symptoms, prolonged tail bleeding time, serum biochemical changes, and morphological alterations in Wistar strain albino rats model by drug formulation 2	166
6.1.8	Decrease of pro-inflammatory cytokines in MTV-treated Swiss albino mice	173
6.2 Discuss Bibliograph		173 179

Chapter VII CONCLUSIONS AND FUTURE PERSPECTIVES	184-186
7.1 Conclusions	184
7.2 Future perspectives	185
Publications, Patents and Conferences/Seminars	187-192
Appendix	193-252

Table No.	Table Captions	Page No.
	CHAPTER-I	
1.1	Comparative list of the pharmacological effects induced by toxins	19
	from Indian red scorpion venoms of different geographical	
	regions.	
1.2	Different treatment regimes utilized for scorpion sting.	23
	CHAPTER-II	
2.1	Inflammatory mediators involved in scorpion sting.	50
	CHAPTER-III	
3.1	Composition of the components used for formulation.	91
	CHAPTER-IV	
4.1	Correlation between Indian red scorpion (M. tamulus) venom	106
	proteome composition and clinical manifestations following	
	sting.	
	CHAPTER-V	
5.1	Parameters that should be assessed in the routine quality control	119
	of commercial antivenoms, according to the WHO Guidelines for	
	the Production, Control and Regulation of Snake Antivenom	
	Immunoglobulins, 2017) [2]. Reprinted with permission from	
	Patra et al., 2021b [1]	
5.2	A summary of the physicochemical properties of commercial	121
	ASAs against <i>M. tamulus</i> venom manufactured in India.	
5.3	Determination of <i>M. tamulus</i> venom toxins-specific antibodies in	140
	commercial ASAs by spectrofluorometric interaction study.	
	Values are mean / mean \pm SD of triplicate determinations.	
	PSVPL: Premium Serum and Vaccines Pvt. Ltd, HBC: Haffikine	
	Biopharmaceuticals.	

LIST OF TABLES

Table no.	CHAPTER-VI	Page no
6.1	Docking scores of the $\alpha 1$ adrenoreceptor antagonist (AAA) with	150
	the α1 adrenergic receptors from humans, mice, and <i>C. elegans</i> .	
	BA: Binding affinity; DR: Docking rank.	
6.2	Determination of toxicity of ASA, AAA and Ascorbic acid in C.	151
	<i>elegans</i> . Data represent mean \pm SD of three determinations.	
6.3	Determination of in vivo optimum dose of commercial ASA,	153
	Ascorbic acid, and AAAs against LC ₅₀ of <i>M. tamulus</i> venom.	
6.4	Co-treatment with Ascorbic acid and commercial ASA at	159
	different time intervals against LC ₅₀ concentration of <i>M. tamulus</i>	

	venom (MTV) in C. elegans (n=50). Data represent \pm SD of three	
	determinations (n=50). Significance of difference between	
	control and MTV, ${}^{\Psi}p \leq 0.05$; between MTV and the ASAs,	
	* <i>p</i> ≤0.05.	
6.5	The <i>in vivo</i> neutralization of <i>M. tamulus</i> venom (LC ₅₀ value)-	160
	induced toxicity in C. elegans with different concentrations of the	
	formulated drugs, individual components of the formulations, and	
	their combinations. Data represent mean \pm SD of three	
	determinations (n=50). Significant difference between control	
	and MTV, ${}^{\psi}p \leq 0.05$; Significance of difference between	
	formulation 1 and 2, $*p \leq 0.05$.	
6.6	Physical or behavioural changes in MTV-treated albino Wistar	167
	strain rat and their recovery by formulation 2 [ASA (187.5 µg),	
	Ascorbic acid (0.1 μ g), AAA (3 μ M)]. The symptoms were noted	
	24 h post-injection of MTV.	
6.7	Neutralisation of <i>M. tamulus</i> venom (25 μ g/ 200 g, i.v)-induced	170
	elevation in ALKP, SGPT, and creatinine level in the blood of	
	rats (24 h post-injection) by formulation 2, individual	
	components of the formulation at their optimum dose (the dose of	
	individual component where they showed best MTV	
	neutralisation (LC ₅₀ value) potency in <i>C. elegans</i> , (Fig.3 b, c, d))	
	and combinations of commercial ASA and AAA against MTV in	
	Wistar rats (n=6). Data represent mean \pm SD of three	
	determinations. Significant difference between control and MTV,	
	${}^{\psi}p \leq 0.05$; Significance of difference between MTV and the other	
	components of formulation 2, $*p \le 0.05$.	
	components of formulation 2, $p=0.05$.	

Table No.	Appendix Captions	Page No.
A1	List of proteins identified in <i>M. tamulus</i> venom by LC-MS/MS analysis followed by database search againstButhidae family (taxid: 6855) protein entries of the non-redundant NCBI	223
A2	databases. The gel sections are indicated in Fig. 4.1. List of proteins identified from LC-MS/MS analysis of PSVPL and HBC ASAs using Mascot software. Data were searched	243
	against <i>Equus caballus</i> protein entries in uniprot database.	

LIST OF FIGURES

Figure	Figure CaptionsNo.CHAPTER-IPage	ge No
1.1		<u>ge 140</u> 2
1.1	Parioscorpio venator gen. et sp. nov., Wisconsin, USA, Brandon Bridge Formation Silurian (a) A low angle photograph of a	2
	Bridge Formation, Silurian. (a) A low-angle photograph of a	
	holotype, UWGM 2162, exposing internal anatomy; (b)	
	Holotype, an interpretive drawing; (c) a low-angle photograph of	
	a paratype, UWGM 2163; and (d) Paratype, an interpretive	
	drawing. Abbreviations: cx, coxa; fe, femur; fx, fixed finger; fr,	
	free finger; gt, gut; le, lateral eye; me, median eyes; mt,	
	metasomal segment; pa, patella; pfm, pedipalp femur; pm,	
	pedipalpmanus; pc, pericardium; pm.c, pedipalps manus carina;	
	ppt, pedipalp patella; pr, pedipalp ramus; ps, pulmo-pericardial	
	sinus; st, sternum; ptr, pedipalp trochanter; pv, poison vesicle;	
	stn, sternite; tr, trochanter; wl, walking leg. The scale bar equals	
	5mm [22].	
1.2	Medial structures linked with the pulmonary-cardiovascular system	-
	in (a) Silurian and (b,c) Holocene scorpions. (a)	
	Parioscorpiovenator gen. et sp. nov., holotype, depiction of the	
	medial area displaying the pulmo-cardiovascular structures; (b)	
	SEM of Centruroidesexilicauda, pulmo-pericardial sinuses and the	
	pericardium's corroded cast; (c) Hadogenes troglodytes, male,	
	dorsal surface, demonstrating medial components that reflect the	
	location of the internal pericardium externally (Abbreviations: bl,	
	book lungs; pc, pericardium; ps, pulmo-pericardial sinus. Scale	
	bars equal 1mm for (a,b); scale bar equals 1 cm for (c) [22]	
1.3	Indian red scorpion (Mesobuthus tamulus) [66]	(
1.4	The geographical distribution of the Mesobuthus tamulus	(
	throughout the Indian sub-continent [Brown fill: Indian states; Blue	
	fill: neighbouring countries of India] [66]	
1.5	Scorpion anatomy	:
1.6	Nervous system of scorpion (created with BioRender.com;	(
	agreement number: XG25HMISCM)	
1.7	Circulatory system of scorpion mainly controlled by heart (created	10
	with BioRender.com; agreement number: QJ25HMJ3NH).	
1.8	Foods of scorpion (created with BioRender.com; agreement	1.
	number: JF25HMJNPF)	
1.9	Scorpion life tree. Number of orthologs is indicated by bars to the	1
	right of terminals. In Navajo plots, shaded squares denote node	-
	recovery from the associated analysis with $M = Matrix$ followed by	
	its number (except M1e = Matrix 1 analyzed with ExaML), and	
	colored as follows: blue squares = IQTree; pink square = ASTRAL	

Figure	[24] e No. CHAPTER-II Pag	e No.
2.1	General architecture of a voltage-gated ion channel. (A) Each subunit is made upof six transmembrane helices (S1-S6 lined with intracellular N and C termini. (B) The four sub-units tetramerize to shape an ion channel with a pore-forming central unit (orange) enclosed by four VSDs (green). (C) S4 charges move in an outward direction withan alteration in membrane voltage that leads to the ion channel opening (<i>Nature Reviews Neuroscience</i>) [49]	43
2.2	The four primary classes of K^+ channels. a 2TM/P channels, b 6TM/P channels, c 8TM/2P channels, d 4TM/2P channels. The presence of positive signs on S4 denotes its function in voltage sensing in voltage-gated K^+ channels [49].	46
2.3	Diagram showing the neurotoxic binding regions on the voltage- gated Na ⁺ channel's -subunit (VGSC) [79]	48
Figure	e No. CHAPTER-IV Pag	e No.
4.1 4.2	 15 % SDS-PAGE analysis of MTV under non-reduced and reduced conditions. Lanes M contain protein molecular markers. Lanes 1 and 2 contain crude MTV (80 μg protein) under non-reduced and reduced conditions, respectively. The per cent band intensity was determined by densitometry analysis of gel. Protein family composition of MTV. The relative abundance of different venom protein families is expressed as an average of relative abundances calculated using MS1 (summed peptidespectrum Match Precursor Intensity) based on label-free quantitation 	103 104
4.3	techniques. Assessment of immunological cross-reactivity of M . <i>tamulus</i> venom against commercial scorpion antivenom by ELISA and immunoblot analysis. a. Immunological cross-reactivity of MTV against commercial ASAs (PSVPL and HBC) by ELISA; b. Immunoblot analysis. Lanes M and 1 contain protein molecular markers and MTV (80 µg protein, reduced), respectively. Lanes 2 and 3 represent blots of MTV immune-detected by commercial ASAs produced by Haffkine Institute and PSVPL, respectively; c. Densitometry analyses of whole blot intensities of MTV detected by commercial ASAs.Values are shown as mean \pm SD of triplicate determination.	109

Figure	e No. CHAPTER-V	Page No.
5.1	Photograph of lyophilized ASA manufactured by- (a) PSVPL, and (b) HBC	121
5.2	Field emission scanning electron microscope (FESEM) image analysis of PSVPL and HBC ASA shows the smooth plates and channel-like structures. FESEM images of PSVPL ASA with (a). 500X, and (b). 1000X magnification. FESEM images of HBC ASA with (c). 500X, and (d). 1000X magnification. The black arrow indicates the smooth plates, and the red arrow indicates the channel-like structure in commercial ASA. Transmission electron microscopy (TEM) images of PSVPL and HBC ASA showing Immunoglobins/dimers. TEM images of PSVPL ASA at (e). 100 nm, and (f). 50 nm microscopic view. The white arrow shows the individual immunoglobulin, and the black arrow shows other non-IgG proteins/oligomer. The black box in a1 and a2 indicate the selected field for high magnification. The images were captured with an FEI TECNAI G2 camera with magnifications of 9900 X, 17000 X, 38000 X,	
5.3	 and 71000 X at 200kV. Composition of PSVPL and HBC ASA determined by LC-MS/MS analysis. (a). %Relative abundance of different protein families in PSVPL ASA. (b). %Relative abundance of different protein families in HBC ASA. 	126
5.4	Comparison of % immunoglobulin content and other contaminating proteins determined by different biophysical technique. a. % Protein composition of PSVPL ASA determined by different methods. b. % Protein composition of HBC ASA determined by different methods	
5.5	Size exclusion chromatography of anti-scorpion antivenom (ASA) on a FPLC Sephacryl S-200 size-exclusion column. (a). Fractionation of PSVPL and HBC ASA (60mg dry weight). (b). Fractionation of purified horse IgG and F(ab') ₂ (5 mg dry weight) in identical experimental conditions. (c). 12.5% SDS-PAGE analysis of size exclusion chromatography (SEC) and crude PSVPL and HBC ASAs under reduced and non-reduced conditions. Lane M contains protein molecular marker, Lane C contains crude PSVPL and HBC ASA (20 µg). P1 and P2 contain SEC peak1 and peak2 PSVPL and HBC ASA (20 µg) respectively. (d-e). SDS-PAGE analysis of purified F(ab') ₂ and IgG (20µg) under non-reduced (lane N) and reduced (lane R) conditions. (f). Percent of undigested IgG / IgG aggregates present in PSVPL and HBC ASA. (g). % Protein content present	

in size exclusion chromatogram (SEC) peaks of PSVPL and HBC ASA. Values are mean \pm SD with triplicate determination. Both the ASAs did not show significant difference (p > 0.05) in their presence of undigested IgG content.

- 7.5% SDS-PAGE analysis of ASA with and without agitation 5.6 131 for 48 h. Lane M contains protein molecular markers, lanes A and B contain IgG (20 µg) without agitation and with agitation, respectively. Lanes C and D contain PSVPL ASA (20 µg) without agitation and with agitation, respectively. Lanes E and F contain HBC ASA (20 µg) without agitation and with agitation, respectively.
- 5.7 Dynamic light scattering (DLS) analysis anti-scorpion 132 antivenom (ASA) and native IgG. a. DLS of PSVPL ASA (1mg/mL). b. DLS of HBC ASA (1mg/mL). c. DLS of native IgG (1mg/mL).
- 5.8 ELISA to determine thepercent Fc content in commercial ASAs. 133 The percent content of Fc in the purified horse IgG was considered as 100% and other values were measured relative to that. Values are mean \pm SD for triplicate determinations.
- 5.9 (a1, a2). Immuno-blot analysis to determine the Fc content in 134 anti-scorpion antivenom (ASA) IgG in non-reduced and reduced condition respectively. Lane M contains protein molecular marker. Lanes IgG, F1 and F2 represent immunoblot of IgG (positive control), PSVPL and HBC ASA respectively. Immunoblot detected by HRP conjugated Fc-specific antibody. (b1, b2). Densitometry analysis of SDS-PAGE images in nonreduced and reduced condition respectively to quantitate the percent Fc content of IgG in PSVPL and HBC ASAs. Values are mean \pm SD with triplicate determination. Both the ASAs did not show significant difference (p > 0.05) in their Fc content.
- 5.10 Determination of the complement activation pathways ASAs. a. 135 Classical pathway of PSVPL and HBC ASA (%CH₅₀/mL). b. Alternative pathway of PSVPL and HBC ASA (%AP₅₀/mL). The experimental details are described in the text. Values are mean ± SD for triplicate determinations. The ASAs did not show significant difference, p>0.05.
- 5.11 a. Immunological cross-reactivity of PSVPL and HBC ASAs 136 against anti-horse IgE antibodies (HRP-conjugated) determined by ELISA. Values are mean \pm SD of triplicate determinations. **b.** Immuno-blot analysis of IgE contamination in ASA. Lanes BSA, 1 and 2 represent immuno-blot of BSA (negative control), PSVPL and HBC ASA, respectively. The proteins wrre immuno-detected by HRP conjugated anti-horse IgE antibody.

lane M contains protein markers. Values are mean \pm SD for triplicate determinations. The ASAs did not show IgE content.

- 5.12 (a) ELISA to determine the immunological cross-reactivity between anti-scorpion antivenom (ASA) and anti-horse IgA antibodies (HRP-conjugated). Values are mean ± SD with triplicate determination. Significance of difference with respect to HBC ASA, *p<0.05. (b) Immuno-blot analysis to determine the IgA contamination /co-precipitationin ASAs. Lanes BSA, A, and B represent immuno-blot of BSA (negative control), PSVPL, and HBC ASA, respectively. The immuno-blots were detected by HRP conjugated anti-horse IgA antibody. (c) Densitometry analysis to quantitate the IgA content in PSVPL and HBC ASAs. Values are mean ± SD of triplicate determinations. There was no significance of difference between the values, p>0.05.
- 5.13 Determination of % cresol content present in PSVPL and HBC ASAs by RP-UHPLC analysis. One mg of the dry weight of ASA (PSVPL and HBC) on an Acclaim300 C18 RP-UHPLC column (2.1×150 mm, 3.0μ m) was separated for cresol determination. Values are mean \pm SD for triplicate determinations. The ASAs did not show significant differences in cresol content, p>0.05.
- 5.14 One-site specific binding curves to determine the kd value of interaction between *M. tamulus* venom and commercial ASA. (a-b).Spectrofluorometric study to determine the interaction between MTV (10µg/mL)and different concentrations of PSVPL / HBC ASA (10 µg/mL to 1280µg/mL) (c-d). Atomic force microscope analysis to determine the interaction between MTV (50µg/mL) and different concentrations of PSVPL / HBC ASA (50µg/mL) and different concentrations of PSVPL / HBC ASA (50µg/mLto 3000µg/mL). Values are the mean of triplicate determinations. The graphs were plotted using GraphPad Prism 5.0 software.
- 5.15 Atomic force microscope (AFM) analysis of venom-antivenom 141 interaction by two-dimensional (2D) images and Gaussian plot. The venom and antivenom were incubated at different ratios from 1: 1 to 1:60. (a) PSVPL ASA, (b) HBC ASA

137

138

Figure no	TABLE OF CONTENTS CHAPTER-VI	Dage No
Figure no.		Page No.
6.1	The LC ₅₀ value of <i>C. elegans</i> N ₂ calculated after 24 h treatment of scorpion venom (<i>M. tamulus</i> venom). The LC ₅₀ value calculated for Scorpion venom towards <i>C.elegans</i> , after 24 h incubation, was 125 μ g/ml.	152
6.2	Dose-dependent <i>in vivo</i> neutralisation/ inhibition of <i>M.</i> <i>tamulus</i> venom (LC ₅₀)-induced toxicity in <i>C. elegans</i> at different time intervals by (a) commercial ASAs (375-1500 µg), (b) Prazosin-HCL (6.25 µM-100 µM), (c) Silodosin (6.25 µM-100 µM), (d) Terazosin-HCL (6.25 µM-50 µM) and (e) Ascorbic acid (1 µg/mL-10 µg/mL). Data represent \pm SD of three determinations. Significance of difference between control and MTV, ${}^{\Psi}p \leq 0.05$; between MTV and the ASAs, $*p \leq 0.05$. (Abbreviations: LC: lethal concentration; ASAs: anti-scorpion-antivenoms; HCL: hydrochloride; MTV: <i>M. tamulus</i> venom)	155
6.3	a Illustrates fluorescence intensities of <i>M. tamulus</i> venom- induced ROS generation in <i>C. elegans</i> after 6 h of <i>M. tamulus</i> venom (LC ₅₀) treatment and its neutralisation by commercial ASAs, Prazosin-HCL, Ascorbic acid, Silodosin and Terazosin-HCL determined by ImageJ software. ROS level in the positive control (CCCP1) <i>C. elegans</i> was considered baseline (100%), and other values were compared with that. b. Disruption of mitochondrial membrane potential (MMP) in MTV-treated <i>C. elgans</i> was observed after 12 h, and its neutralization by commercial ASAs, Prazosin-HCL, Ascorbic acid, Silodosin and Terazosin-HCL was determined with measurement of the ratio of red/ green fluorescence intensity by JC-1 staining. Image J software determined the image's intensity, and the bar diagram plotted from the figures shown in Fig. 6. Mitochondrial ROS level in the positive control (CCCP1) <i>C. elegans</i> was considered baseline (100%), and other values were compared. Data represent ±SD of three determinations. Significance of difference between control and MTV, ${}^{\psi}p \leq 0.05$; between MTV and the ASAs/ AAAs, $*p \leq 0.05$. (Abbreviations: LC: lethal concentration; ROS: reactive oxygen species; ASAs: anti-scorpion-antivenoms; AAA: α 1-adrenoreceptor antagonist; HCL: hydrochloride; CCCP1: Carbonyl cyanide 3-chlorophenylhydrazone 1)	156

6.4	Neutralisation of <i>M. tamulus</i> venom (LC ₅₀)-induced toxicity	159
	in C. elegans by an optimum dose of ASAs/ AAAs	
	(determined in Fig. 6.2, Table. 6.2), which were added at an	
	interval of 0-120 min post-treatment with venom. a-b.	
	PSVPL and HBC ASAs, c. Prazosin-HCL, d. Silodosin, e.	
	Terazosin-HCL against M. tamulus venom (LC50) in C.	
	<i>elegans.</i> Data represent \pm SD of three determinations.	
	Significance of difference between control and MTV,	
	* $p \le 0.05$; between MTV and the ASAs/ AAAs, * $p \le 0.05$.	
	(Abbreviations: LC: lethal concentration; ASAs: anti-	
	scorpion-antivenoms; AAA: α1-adrenoreceptor antagonist;	
	HCL: hydrochloride; PSVPL: Premium Serum and Vaccines	
	Pvt. Ltd.; HBC: Haffkine Bio-pharmaceutical Corporation	
	Ltd.; MTV: M. tamulus venom).	

6.5 Shows the DPPH free radical-scavenging activity of (a) the optimum dose of individual formulation components, their combinations, and different concentrations of formulations, (b) Individual components of the formulation and their combinations compared with formulation 2. Data represent mean ± SD of three determinations. Significance of difference, **p*≤0.05 as compared to formulation 2. There was no significant difference (*p*>0.05) between formulations 2 and 3.

MTV-induced ROS generation in C. elegans after 6 h of MTV (LC₅₀) treatment and its neutralisation by (a) Optimum dose of individual components of the formulation, their combinations and different concentrations of formulations, (b) Individual components of the formulation and their combinations compared with formulation 2. ROS level in the positive control (CCCP1) C. elegans was considered baseline (100%), and other values were compared. Fluorescence intensities were determined by ImageJ software. Data represent \pm SD of three Determination. In fig. 9a shows the significance of the difference compared to formulation 2, ${}^{\#}p \leq 0.05$. In fig. 9b shows the significance of the difference compared to formulation 2, ${}^{4}p \leq 0.05$. There was no significant difference (p>0.05) between formulations 2 and 3. (Abbreviations: LC: lethal concentration; ROS: reactive oxygen species; MTV: M. tamulus venom; CCCP1: Carbonyl cyanide 3-chlorophenylhydrazone 1)

6.6

xxiv

162

163

6.7	The in vivo neutralisation of M. tamulus venom-induced	165
	(LC ₅₀ value) alteration of mitochondrial transmembrane	
	potential in C. elegans by (a) Optimum dose of individual	
	components of the formulation, their combinations and	
	different concentrations of formulation, (b) Individual	
	components of the formulation and their combinations	
	compared with formulation 2. Alteration of mitochondrial	
	transmembrane potential induced by positive control	
	(CCCP1) in <i>C. elegans</i> was considered baseline (100%), and	
	other values were compared. Fluorescence intensities were	
	quantitated by ImageJ software. Data represent \pm SD of three	
	Determination. Significance of difference, ${}^{\#}p \leq 0.05$ as	
	compared to formulation 2. In Fig. 6.11a, the significance of	
	the difference compared to formulation 2, ${}^{\#}p \leq 0.05$. In fig.	
	6.11b shows the significance of the difference compared to	
	formulation 2, ${}^{4}p \leq 0.05$. There was no significant difference	
	(p>0.05) between formulations 2 and 3. (Abbreviations: LC:	
	lethal concentration; CCCP1: Carbonyl cyanide 3-	
	chlorophenylhydrazone 1)	
6.8	Demonstrated the relative expression of MTV-induced C.	166
	elegans genes involved in apoptosis, detoxification and	
	stress response compared to control (* $p \le 0.05$) and	
	improvement by treatment with formulation 2. Significance	
	of difference as compared to MTV ($p \le 0.05$) (Abbreviations:	
	MTV: <i>M. tamulus</i> venom)	
6.9	a Illustrates the time-dependent increase in blood glucose	169
	content in <i>M. tamulus</i> venom (MTV)-treated (25 µg/ 200 g,	
	i.v.) Wistar strain albino rats and its neutralisation by	
	formulation 2, individual component of the formulation at	
	their optimum dose (the dose of individual component where	
	they showed best MTV neutralisation (LC50 value) potency	
	in C. elegans, (Fig.3 b, c, d)) and combinations of	
	commercial ASA and AAA against MTV (25 µg/ 200 g, i.v.)	
	in Wistar rats. Significance of difference $p \leq 0.05$, as	
	compared to control; $p \leq 0.05$, as compared to MTV; AAA	
	(50 μ M) and [AAA (50 μ M): ASA (1500 μ g] instead	
	increase the blood glucose content in MTV treated rat,	
	$\Psi p \leq 0.05$. Significance of difference, $p \leq 0.05$, between the	
	combination doses [ASA (1500 µg): AAA (50 µM)] and	

[ASA (187.5 μ g): AAA (3 μ M)]. **b.** Increase in tail bleeding time (sec) in MTV-treated (25 μ g/ 200 g, i.v) Wistar strain albino rats and its neutralisation by formulation 2, individual components of the formulation at their optimum dose and

xxv

combinations of commercial ASA and AAA against MTV (25 μ g/ 200 g, i.v.) in Wistar rats. Data represent \pm SD of three determinations. Significance of difference [#] $p \leq 0.05$ compared to formulation 2. The significance of difference, [¥] $p \leq 0.05$, between the combination doses [ASA (1500 μ g): AAA (50 μ M)] and [ASA (187.5 μ g): AAA (3 μ M)]. (Abbreviations: LC: lethal concentration; ASAs: antiscorpion-antivenoms; AAA: α 1-adrenoreceptor antagonist; MTV: *M. tamulus* venom).

- 6.10 Histopathological analysis of the *M. tamulus* venom-induced 172 Wistar rat tissues and their neutralisation by formulation 2.
- 6.11 Light microscopic observation of a) Heart, b) Kidney, c) 173
 Liver, d) Lung, e) Testis and f) Ovary from control and treated groups, Bar-100μM. The black arrow indicates the morphological changes observed in MTV-induced rat tissue compared to the control.

Figure No.	Appendix Figure Captions	Page No
A1	Alignment of tryptic and semi-tryptic peptide sequences deriv	193
	from LC-MS/MS analysis. The protein alignment was done us	
	Clustal Omega program	
	(https://www.ebi.ac.uk/Tools/msa/clustalo/). The disti	
	peptides obtained for each of the following proteins has be	
	highlighted in green or blue or purple (three colours have be	
	used in case of adjacent distinct/unique peptides). The amino a	
	substitutions within the unique/distinct peptides obtained fr	
	MS/MS are highlighted in red colour.	
A2	Homology modelled structures of the following proteins	216
	taken from SwissProt [Structure through AlphaFold].	
	Protein-ligand interactions of al-adrenoreceptor antagonist	
	(AAA) with α 1-adrenergic receptor.	
A3	Fluorescence image of confocal microscopy of M. tamulus	218
	venom induced ROS generation in C. elegans after 6 h of M.	
	tamulus venom (LC50) treatment and its neutralization by	
	Prazosin, Silodosin and Terazosin. ROS level in positive	
	control (CCCP1) C. elegans was considered as baseline	
	(100%) and other values were compared with that.	
A4	Fluorescence image of confocal microscopy of MTV-	220
	induced alteration of mitochondrial membrane potential and	
	its neutralization by Prazosin, Silodosin and Terazosin. ROS	
	level in positive control (CCCP1) C. elegans was considered	
	as baseline (100%) and other values were compared with	
	that.	
A5	Fluorescence image of confocal microscopy of <i>M. tamulus</i>	224
	venom induced ROS generation in <i>C. elegans</i> after 6 h of <i>M</i> .	
	tamulus venom (LC50 concentration) treatment and sits	
	neutralization by formulation 2, individual components of	
	formulation and their combinations. ROS level in positive	
	control (CCCP1) C. elegans was considered as baseline	
	(100%) and other values were compared with that.	
A6	Fluorescence image of confocal microscopy of MTV-	228
	induced alteration of mitochondrial membrane potential and	
	its neutralization by formulation 2, individual components of	
	formulation and their combinations. ROS level in positive	
	control (CCCP1) C. elegans was considered as baseline	
	(100%) and other values were compared with that.	

ABBREVIATIONS

Abbreviation	Full form
1D SDS-PAGE	One dimensional sodium dodecyl sulfate-
	polyacrylamide gel electrophoresis
2D SDS-PAGE	Two dimensional sodium dodecyl sulfate-
	polyacrylamide gel electrophoresis
AAA	α1-adrenoreceptor agonists
ACM	Anococcygeus muscle
ADP	Adenosine diphosphate
AF	Alpha Fold
AFM	Atomic force microscopic
AI	Artificial intelligence
ALKP	Alkaline phosphatise
AMP	Adenosine monophosphate
ASA	Anti-scorpion antivenom
ATP	Adenosine triphosphate
BA	Binding affinity
BCIP/NBT	5-bromo-4-chloro-3-indolyl-phosphate/ nitro blue tetrazolium
BPP	Bradykinin potentiating peptide
BSA	Bovine serum albumin
Csαβ	Cysteine-stabilized α/β motif
CC	Corpus cavernosum
CCCP	Carbonyl cyanide m-chlorophenylhydrazone
CGC	Charge coupled device
CCD	Caenorhabditis Genetics Center
CTAB	Cetyltrimethylammonium bromide
DBP	disulfide bridge peptide
DCF	2',7'-dichlorodihydrofluorescein
DLS	Dynamic light scattering
DT	Diffusion coefficient
DTT	dithiothreitol
DPPH	2,2-diphenyl-1-picrylhydrazyl

Abbreviation	Full form
DR	Docking rank
ED	Erectile dysfunction
ELISA	Enzyme-linked immunosorbent assay
FESEM	Field emission scanning electron microscopy
FPLC	Fast Protein Liquid Chromatography
HBC	Haffkine Biopharmaceutical Corp. Ltd., Mumbai, India
HCL	Hydrochloride
H ₂ DCFDA	2',7'-dichlorofluorescein-diacetate
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HRP	Horse radish peroxidise
IAA	Iodoacetamide
IgA	Immunoglobulin A
IgE	Immunoglobulin E
IgG	Immunoglobulin G
Kv	Potassium ion channel
LAL	Limulus amebocyte lysate
LAAO	L-amino acid oxidase
LC ₅₀	Median lethal concentration
LC/ES-MS	Liquid chromatography-electronspray tandem mass spectrometry
LC-MS/MS	Liquid chromatography-tandem mass spectrometry
LD ₅₀	Median lethal dose
LPP	Lipolysis potentiating peptides
MALDI-TOF-	Matrix-assisted laser desorption/ionization -Time of flight - mass
	spectrometry
MTV	Mesobuthus tamulus venom
MYA	Million years ago
NaV	Sodium ion channel
NCBI	National Center for Biotechnology Information
NDBP	Non-sulfide bridge peptide
NGM	Nematode growth media
NTU	Nephelometric turbidity unit
NO	Nitric oxide

Abbreviation	Full form
PBS	Phosphate buffered saline
PD	Pore-forming domain
PLA_2	Phospholipase A ₂
PPP	Platelet poor plasma
PRP	Platelet rich plasma
PSVPL	Premium Serum and Vaccine Pvt. Ltd.
PVDF	Polyvinylidne fluoride
Q-RT PCR	Quantitative reverse transcription polymerase chain reaction
Q-TOF	Quadrapole time of flight
RCSB	Research collaborator for structural bioinformatics
RH	Hydrodynamic radius
RNA	Ribonuclic acid
ROS	Reactive oxygen species
RP-HPLC	Reversed-phase high-performance liquid chromatography
RP-UHPLC	Reversed-phase ultra high-performance liquid chromatography
SEC	Size-exclusion chromatography
SGOT	Serum glutamic oxaloacetic transaminase
SGPT	Serum glutamic pyruvic transaminase
SPI	Serine protease inhibitor
SPLP	Serine protease-like protein
STX	Saxitoxin
TBS	Tris buffered saline
TCA	Trichloroacetic acid
TDF	Therapeutic drug formuat
TEMED	Tetramethylethylenediamine
TFA	Trifluoroacetic acid
TMB/H_2O_2	3,3,5,5'-tetramethylbenzidine/hydrogen peroxide
ТМ	Transmembrane
TTX	Tetrodotoxin
VSD	Voltage-sensing domain
WHO	World health organization