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2.1 Biochemical and proteomic characterization of some medically essential 

scorpions around the world 

Scorpions are one of the deadliest venomous animals found all over the globe including 

India. They are accountable for more than 1.2 million stings annually resulting in more 

than 3250 deaths in a year [1; 2; 3]. During the last several years, the field of proteomics 

has evolved considerably with the power of 1D and 2D SDS-PAGE, multidimensional 

chromatographic techniques (gel filtration chromatography, ion exchange 

chromatography, RP-HPLC) to separate complex mixtures of proteins and demonstrated 

the advantages of application of LC/MALDI-TOF-MS or LC/ES-MS in the identification 

of different venom components [4; 5; 6]. These are the methods for de-complexion of 

venom protein before LC/MS-MS analysis which are prerequisites for better resolution 

and identification of more proteins. 

One of the most significant dynamic pharmacological components of scorpion venom is 

peptides [7]. Biologically active scorpion venom proteins/ peptides are classified into two 

groups: disulfide bridge peptide (DBP) and non-sulfide bridge peptide (NDBP). The 

disulfide bridge peptide (DBP) are neurotoxic and specifically impairing with various ion 

channels, whereas non-sulfide connect peptides (NDBP)s have appeared to have 

bradykinin–potentiating, antimicrobial, haemolytic, cell flagging and immuno-

modulating activities [8; 9; 10]. From the LC-MS/MS analysis of various scorpion venom 

proteomes, it was found that Na+ and K+ channel inhibitors are predominated in the 

majority of the scorpion venom proteomes [4; 11].  

The last decade has seen an expansion of research techniques utilized to identify, 

characterize, and quantify the venom composition of venomous animals. Traditional 

approaches have relied on biochemical analyses of venom enzymes and venom profiling 

by SDS PAGE and gel filtration chromatography. However, more recently, these 

techniques have been coupled with high throughput genomic, transcriptomic, and 

proteomics approaches to provide a more profound and comprehensive analysis of a 

specific venom [12; 13; 14; 15; 16; 17; 18]. Several studies have also drawn a good 

correlation between venom composition with toxicity and pathophysiology of sting [19; 

20; 21]. 
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Different scorpion families such as Buthidae, Scorpionidae, Urodacidae, and 

Hemiscorpiidae comprise different types of venom components which may also have 

therapeutic implications [22]. For example, venom components from Buthus martensii 

Karsch show analgesic effects [23], anticancer properties [24], immunomodulatory 

properties [25], antimicrobial effects etc. [26]. Likewise, different venom components 

from the Indian black scorpion (Heterometrus benganelsis) shows ant-proliferative and 

anti-apoptotic effect [27]. One component named bradykinin-potentiating peptide from 

Brazilian scorpion Tityus serrulatus, increases the hypotensive action of bradykinin [28]; 

Hyaluronidase was also isolated from its venom [29]. Different scorpion species such as 

Tityus sp.(Brazil), Buthus martensii (China, Korea), Centruroides noxius (Mexico) show 

an effect on the immune system (release histamine, TNF-α, interleukins etc.) that have a 

role on inflammation [30]. A low molecular weight component (adenosine and dipeptides 

LeuTrp and IleTrp) from Heterometrus laoticus (from Vietnam) scorpion venom is 

responsible for anticoagulant activity [31]. 

Mesobuthus martensii is one of the most populous scorpions in eastern Asian countries. 

The venom proteome of this species was characterized by 2DE, SDS-PAGE and HPLC 

applications where 134 proteins were identified comprised of 43 typical toxins and 7 

atypical toxins (including 3 Na+ channel toxins, 3 K+ channel toxins and 1 no-annotation 

toxin) 72 cell-associated proteins and 12 venom enzymes. This venom proteome is most 

abundantly comprised of lower molecular massproteins (around 10 kDa). M. martensii 

crude venom contained three novel Na+ channel toxin sequences: comp201_c0_seq1_3, 

comp162_c0_seq1_6 and MMa37864. Only 29.58% of comp201_c0_seq1_3 511 

sequence identity was found with neurotoxin 8 (Amm VIII) in in public database 

searches, which was a Androctonus mauretanicus derived long-chain (4 C-C) α-Na+ 

channel toxin [32]. Comp162_c0_seq1_6 showed a maximum similarity of 32.35% 

(mature peptide) with Androctonus crassicauda derived peptide, acra3 (a β-Na+ channel 

toxin) [33]. MMa37864 possessed a identity of 30.43%  with toxin Tx273 (β-Na+ channel 

toxin) isolated from the Buthus occitanus israelis. The poor similarity among these three 

peptides and the other recognised scorpion toxins led researchers to hypothesise that they 

might be categorised as novel Na+ channel toxins [11]. 

Proteomic analysis of Androctonus bicolour by LC–MS/MS analysis also revealed 16 

various venom peptides which include ion channel toxins and some antimicrobial 

peptides [34]. One of the deadliest scorpions in existence is Buthus occitanus (B. 
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occitanus). By enabling a global perspective of the structural elements of such complex 

matrices, top-down and bottom-up proteomic analyses are implemented to ease 

screening. The nano-high liquid chromatography coupled with nano-electrospray tandem 

mass spectrometry (nano-LC-ESI MS/MS) was used in conjunction with top-down and 

bottom-up strategies. From the mass spectrometry analysis, it was found that B. occitanus 

venom contains 200 molecular masses ranging from 1868 to 16,720 Da and among them, 

the most representative venom peptides were between 5000 and 8000 Da. Interestingly, 

combined top-down and bottom-up LC-MS/MS results showed the finding of several 

toxins, preferably ion channels toxins which target the ion channels, including Na+ 

(NaScTxs), K+ (KScTxs), Ca2+ (CaScTx) and Cl- (ClScTxs) channel toxins, amphipathic 

peptides, antimicrobial peptides (AMPs), hypothetical secreted proteins and myotropic 

neuropeptides. This investigation reveals the molecular diversity of B. occitanus scorpion 

venom and determines components that could be pharmacologically active [35]. 

The Colombian scorpion Tityus pachyurus is fetal and has potential to cause deadly 

incidents to humans. From mass spectrometry analysis of T. pachyuru,  104 distinct 

compounds were identified. A strong Shaker B K+-channel (shaker B K+-channel is a 

type of ion channel) blocker was discovered during electrophysiological experiments 

using heterologously produced ion channels in Sf9 cells. This peptide, which goes by the 

moniker Tpa1, has a molecular mass of 2457 atomic mass units and consists of 23 amino 

acid residues that are tightly bound together by three disulfide bridges. It is the third 

member of subfamily, and -KTx13.3 has been suggested as its systematic name. The 

peptide has the descriptive name Tpa1 and has a molecular mass of 2457 atomic mass 

units. It has 23 amino acid residues that are tightly packed together by three disulfide 

bridges. The systematic name for it is suggested to be -KTx13.3; it is the third member of 

subfamily. The in vivo experiment with mice model convincingly demonstrated that 

these venom peptides had harmful consequences [36]. One of them is Tpa2, stabilized by 

four disulfide bridges and it contains 65 amino acid residues and a molecular mass of 

7522.5 atomic mass units.  Similar to the β-scorpion toxins, it was found to alter the Na+-

currents of the F-11 and TE671 cells in culture. These findings show that toxic peptides 

are present in T. pachyurus venom and support the notion that encounters with this 

species of scorpion pose a significant risk to people in Colombia [36]. 
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Among 86 poisonous species of scorpions found in India, M. tamulus is the most lethal 

with reported fatalities mostly in children and adults [37]. There are reports on the 

characterization of active fractions from the scorpion venom M. tamulus that act on 

various ion channels. Several toxins, for example, Iberiotoxin, a blocker of high 

conductance Ca2+- activated K+ channel [38]; tamapin, inhibitor of small conductance 

Ca2+-activated K+ channel [39]; lepidopteran-selective toxin (BtTx3 (3,796 Da) and 

ButaIT (3,856.7 Da)), act as insecticidal agents against lepidopteran insect species [38; 

40] have been isolated from M. tamulus venom (MTV). This venom also contains potent 

cardiopulmonary toxinscausing pulmonary oedema [41]. Hyaluronidase isolated and 

purified from various scorpion venoms such as Palamneus gravimanus, Heterometrus 

fulvipes, Tityus serrulatus, Buthus marthesi is necessary for the spread and absorption of 

venom’s toxic components [42; 43; 29; 44]. 

2.2  Pharmacological targets of scorpion venom toxins 

2.2.1 Na+ and K+channel toxins: pathophysiology and mechanism of action 

Animals, plants, and bacteria all contain ion channels, which control the flow of ions 

across cell membranes [45]. These channels participate in the generation of membrane 

potentials, signal transduction, the release of neurotransmitters, contraction of muscles, 

release of hormones, sensation of physical and chemical stimuli, motility, and growth of 

cells [46; 47]. They can be divided into groups based on their homologous sequence, ion 

selectivity, and gating mechanisms for both opening and closing. There are three types of 

gating channels: a) Voltage-gated channels, b) ligand-dependent channels, and c) 

Channels with mechanical sensitivity [48]. Voltage-gated Na+, K+, and Ca2+ channels all 

have similar structures in mammals and are typically made up of a pore-forming subunit, 

or subunit.  

Peptide toxins, which regulate voltage-gated Na+/K+ channel activity, are prevalent in the 

venom of scorpions. In K+ channels, the selectivity filter is made up of the conserved 

signature sequence TVGYG in the P-loop [49; 50], while four amino acid residues 

(DEKA) found in an analogous location in each of the domains of Na+ channels regulate 

selectivity for the Na+ ion in those channels [51]. Several different voltage-gated ion 

channel types are involved in the action potential, the electrical signal produced by nerve 

cells [52]. Our understanding of the action potential is based on the analysis of the squid 

axon [53], in which voltage-gated Na+ (Nav) channels open for a short period before 
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rapidly deactivating; after a short while, K+ channels are activated and remain open for a 

longer interval [54; 52]. Na+ ions influx into the cell and K+ ions efflux to the 

extracellular environment as a result of the action potential travelling on depolarization. 

Action potentials serve a variety of purposes in the neuron cell bodies and axons, and 

different types of neurons have unique action potential patterns as well (Fig. 2.1) [52]. 

 

 

 

Fig. 2.1. General architecture of a voltage-gated ion channel. (A) Each subunit is 

made up of six transmembrane helices (S1-S6 lined with intracellular N and C 

termini). (B) The four sub-units tetramerize to shape an ion channel with a pore-

forming central unit (orange) enclosed by four VSDs (green). (C) S4 charges 

move in an outward direction withan alteration in membrane voltage that leads to 

the ion channel opening [49].  

 

The toxins found in scorpion venom are similar in structure and have comparable 

physicochemical properties, but they have distinct pharmacological effects that have 

evolved over millions of years as a result of evolution and natural selection, favouring the 

animals with neurotoxins that can block or regulate ion channels [55; 56]. The primary 

mechanism causing the pharmacological effects of neurotoxins is their interaction with 

ion channels [56]. Regarding the Buthidae family, whose neurotoxins are extremely toxic 

and exhibit variation in their affinity for ion channels found in mammals and arthropods, 
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as well as within and between species, it is possible that peptides acting on ion channels 

may play a fundamental and functional role in envenomation during evolution. This is 

particularly relevant concerning scorpions, which share a common ancestor with them 

[57]. 

2.2.1.1 K+ channel blockers and mechanism of action 

The four primary categories of K+ channels are as follows: voltage-gated, tandem pore 

domain, inwardly rectifying, and calcium triggered. Although these channels have similar 

structures, the distinctions between these types primarily relate to how the gate receives 

its signal [50]. The subunit in K+ channels is made up of the tetramerization of four 

distinct domains and thus clustered to form a pathway for the ion-permeation across the 

membrane [58; 59]. Each domain of the subunit is made up of helical segments with six 

transmembrane (TM) (S1-S6) [60], and are further divided into a pore-forming domain 

(PD), which consists of S5 and S6 segments, and a voltage-sensing domain (VSD), which 

is made up of segments S1 through S4 and has positively charged residues in segment S4 

[58; 59]. Four VSDs are located throughout each of the four PDs that are clustered 

together in the pore.  

The intracellular activation gate, which is found at the intersection of the four S6 helices, 

prevents the entrance of ions when it is closed or deactivated and is opened and closed by 

the VSD [58; 59] (Fig. 2.2). K+ channels are distinguished by two transmembrane helices 

and a short loop between them known as the P LOOP. K+ channels all share this same 

canonical structure, known as 2TM/P, which consists of two inner helices and a loop. 

After changes in membrane potential, the S4 segment moves outward or inward, causing 

conformational changes that, in turn, cause the channel pore to open or close, as 

appropriate [51]. The domains' pore-lining loops (P-loops), which connect S5 and S6, 

include the selectivity filter and is made up of conserved residues specific to each 

channel, enables selectivity for particular ions [58]. 

"K+ channel toxins" are scorpion toxins that inhibit various K+ channels and have been 

extensively studied [61]. They are shorter than Nav toxins but are closely related to them 

[7]. K+ channel-specific toxins (KTx), which have been exploited in the structural and 

functional characterisation of several K+ channels, are abundant in scorpion venom. KTx 

has been divided into four families: α-, β-, γ- and κ-KTx based on the primary amino acid 

sequences and cysteine pairing [62; 63]. Previous studies demonstrated that many KTxs 
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from M. eupeus and M. martensii scorpions were isolated which block different K+ 

channels [64] such as maurotoxin acting on the Kv1.2 channel [65], BeKm-1 block hERG 

channel [66; 65], Kunitz-type toxins block the Kv1.3 channel [67], charybdotoxin acting 

on the BKCa channel [68], and BmP05 block the SKCa3 channel [69; 70]. Additionally, 

several active components of scorpion venom that affact Ca2+ and Cl- channels have been 

identified [71; 72; 73; 74]. 

Pore-blocking peptides bind tightly to the outer vestibule of the K+ channel, obstruct the 

ion channel's selectivity filter, and prevent K+ ion transit [75; 76]. The conformational 

changes in the channel protein determine the mechanism of K+ channel activity. At the 

resting membrane potential, the ion channel is shut and does not conduct ions. The 

voltage sensor is impacted by increased membrane potential, and this results in the 

channel opening [77]. The ion channel responds to any slight shift in membrane potential 

due to the high sensitivity of the voltage sensor, and the open channel carries ions until it 

reaches the inactivation phase [78]. K+ channel inactivation causes by two mechanisms: 

(1) N-type and (2) C-type (Fig. 2.2). The channel remains in an open conformational state 

during the N-type of inactivation, but the pore is blocked by the N terminal of the α-

subunit of the K+ channel. In the N-type mechanism, when the N terminal fragment is 

removed, the inactivation is abolished, and when the N terminal fragment is reinserted as 

a peptide, the inactivation is restored. However, the N terminal is not implicated in the C-

type of inactivation. This sort of inactivation is caused by structural components located 

in the vestibule of the selectivity filter. in the C-type of inactivation, the N terminal is not 

involved [78]. 
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. 

 

Fig. 2.2. The four primary classes of K+ channels. a | 2TM/P channels, b | 6TM/P 

channels, c | 8TM/2P channels, d | 4TM/2P channels. The presence of positive 

signs on S4 denotes its function in voltage sensing in voltage-gated K+ channels 

[49]. 

 

2.2.1.2 Na+ channel blockers and mechanism of neurotoxin binding with Na+ 

channel 

Voltage-gated Na+ channels (VGSCs)  are responsible for the rapid input of Na+ ions that 

raises the action potential in muscle, nerve, and endocrine cells [8]. The body's excitable 

cells (muscles, neurons, and endocrine cells) are all distributed with VGSC isoforms, 

each of which is associated with distinct characteristics in the relevant cells and tissues. 

Nav 1.5 and 1.4 are significantly expressed in the cardiac muscle and skeletal muscle, 

respectively, while Nav 1.9, 1.8, and 1.7 isoforms are present in the peripheral nervous 

system. The central nervous system contains Nav 1.6, 1.3, 1.2, and 1.1 isoforms [79]. The 

term "Nav channel long chain toxin" refers to highly lethal toxins that alter the voltage-

gated Na+ channel (Nav) [80; 81; 82; 9]. According to Rodriguez et al. (2005)[9] and Cao 

et al. (2014) [83], the Na+ toxin (BmKIM) from scorpion M. martensii inhibited Na+ 

currents in rat ganglion neurons and myocytes and stopped cardiac arrhythmia in a mouse 

model [84]. 
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Na+ channels being transmembrane complexes consist of two subunits: the large core 

protein is α-subunit (220–260 kDa), and it is associated with a different small regulatory 

unit i.e β-subunit (22–36 kDa). The pore containing α-subunit is selectively permeable to 

Na+ ions, which are composed of four homologous domains (DI–DIV). All of which 

include six transmembrane segments (S1–S6) [66]. Three cytoplasmic loops connect 

these four domains to create a bell-shaped protein (Fig 2.3). The voltage sensing module 

generated by S1-4 is the first module found in each of the four domains (DI-DIV), and 

the second module is the pore-producing module developed by S5, S6, and the 

connecting loop [85]. There are two ways in which toxins affect VGSCs. When the 

neurotoxin physically blocks the pore and reduces Na+ ion conductance, it either causes a 

blockage of the pore or a modification of the gating that changes the voltage dependence 

and gating kinetics of the ion channels. The first method is used by toxins when they 

interact with site 1. For instance, site 1 pore blockers include tetrodotoxin (TTX) and 

saxitoxin (STX). Site 2 toxins like grayanotoxin and batrachotoxin block inactivation, 

causing channels to stay continuously active [79]. Toxins from sea anemones and 

scorpions bind to site 3 and prevent inactivation [72]. Site 4 toxins like those seen in 

scorpions and spiders cause the activation to become hyperpolarized [86]. When 

associating with VGSC, site 5 toxins such as ciguatoxins and brevetoxins show a 

noticeable effect, such as activation inhibition and a voltage-dependent activation shift 

towards hyperpolarization. Finally, through blocking inactivation, δ-conotoxins interact 

with site 6 and have effects that are comparable to those of the neurotoxins that affect site 

3 (Fig. 2.3) [79]. Proteases and protease inhibitors are some other components in addition 

to these neurotoxins. 
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Fig. 2.3. Diagram showing the neurotoxic binding regions on the voltage-gated 

Na+ channel's -subunit (VGSC) [79]. 

 

2.2.2 Glycaemic response of scorpion venom and administration of insulin 

Post-scorpion envenomation induces a severe autonomic storm through the massive 

release of catecholamines, cortisol, elevated glucagon levels, thyroid hormones, and 

either suppressed insulin levels or hyperinsulinemia (insulin resistance) [87; 88]. 

Previously, it was studied that scorpion venom (Mesobuthus tamulus concanesis, Pocock) 

(4 mg/kg) treated in dog models lower the release of insulin when the mode of venom 

injection was intravenous [88]; whereas insulin secretion become suppressed 30 min after 

venom injection, and increased insulin levels 60 min post venom injection by 

subcutaneous mode [89]. Glucose-induced release of insulin become inhibited from the 

islets’ β cells in the endocrine pancreas by adrenalin storms and the abrupt inhibition of 

insulin secretion leads to hyperglycaemia. Increased levels of the counter-regulatory 

hormones (glucagon, cortisol, and catecholamines) obstruct the anabolic effects of insulin 

and cause hyperglycemia through increased glycogenolysis or insulin resistance [90; 91]. 

2.2.3 Scorpion venom-induced inflammatory response  

The inflammatory response is initiated by a cascade involving systems, the release of 

mediators and cell elements. Balanced cytokine production is essential for health to 
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maintain homeostasis. Some cytokines are overproduced, leading to disorders with 

severity ranging from moderate to fatal. A well-adapted anti-inflammatory response may 

also be able to control local inflammation in the presence of local infection or tissue 

damage and stop it from spreading to the entire body. 

Scorpion venoms can release catecholamines, corticosteroids, bradykinin, and 

prostaglandins, all of which have been shown to increase the release of immunological 

mediator cytokines. Sofer in 1995, [92] first studied the involvement of inflammatory 

response post scorpion stings in humans. The classification of cytokines into pro- and 

anti-inflammatory responses is crucial for the structural and functional regeneration of 

damaged tissue, but excessive production of pro-inflammatory signals can exacerbate 

tissue damage due to the products produced by inflammatory cells [93]. IL-1, IL-6, and 

TNF are the main pro-inflammatory cytokines that start an efficient defence against 

external infections. The overproduction of these mediators, however, has the potential to 

be deleterious and can eventually result in shock, multiple organ failure, and death (Table 

2.1) [94; 95]. Contrarily, anti-inflammatory cytokines such as IL-4, IL-5, IL-6, and IL-10 

are essential for reducing the exacerbated inflammatory process and maintaining 

homoeostasis for the proper functioning of vital organs, but an excessive anti-

inflammatory response may also suppress body immune function (Table 2.1) [96; 97; 98; 

99]. 

It was reported the release of high levels of IL-6 in mice sera treated with Centruroides 

noxius and T. serrulatus scorpion venoms. IL-6 is commonly used as an indicator of 

systemic pro-inflammatory cytokine activation. Elevated levels of IL-6 were observed in 

mice sera exposed to C. noxius and T. serrulatus venoms [100; 101]. IL-6 is often used as 

a marker for systemic activation of pro-inflammatory cytokines [102]. The Brazilian T. 

serrulatus venom-treated human and mice sera show an increased level of IL-1 mediator 

and high concentrations of this cytokine were found in the macrophage supernatants of 

mice exposed to T. serrulatus venom [103; 104]. Increased levels of IL-1β were found in 

the plasma of people who had been moderately or severely stung by T. serrulatus [105]. 

High levels of IL-1 and IL-1 in the serum of mice exposed to the Mexican scorpion C. 

noxius [101].  
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Table 2.1. Inflammatory mediators involved in scorpion stings. 

Scorpion Cytokines produced References 

Androctonus australis hector  

Experimental animals (rats) 

IL-1β, IL-4, IL-6, IL-10, 

and TNF-α. 

[106] 

Buthus martensi Karch NO and paw oedema [107] 

Centruroides noxius 

Experimental animal (mice) 

IL-1β, IL-1α, IFN-γ IL-6, 

IL-10, and TNF-α. 

[101] 

Hemiscorpius lepturus 

(Experiment with human 

monocytes and venom-induced 

human serum) 

 

IL-12, TNF-α. [108; 109] 

Leiurus quinquestriatus 

Human and animal 

experimental model (rabbits) 

IL-6, IL-8, NO, and TNF-

α. 

[110; 111; 92] 

Tityus serrulatus 

Human and animal 

experimental model (rabbits) 

IL-1β, IL-6, IL-8, IL-10, 

IFN-γ, IL-1α, -1β, NO, 

TNF-α, and GM-CSF. 

[105; 112; 103; 100; 104; 

113] 

 

 

2.2.4 Erectile dysfunction by scorpion stings 

Particularly in the past 20 years, the venoms of some arthropods have been linked to the 

mechanism of erectile dysfunction (ED). A persistent inability to maintain or obtain a 

penile erection that is sufficient for adequate sexual performance is known as ED [114]. 

The majority of the toxins found in arthropod venoms are ion channel-active, ie, they 

might elicit physiological alterations in cells directly or indirectly. Neurotransmitter 

release or inhibition, as well as enzyme activation, may be examples of such alterations. 

It has been asserted that certain arthropod toxins facilitate cavernosal relaxation and 

enhance erectile function. As a result, the activation of these toxins in corpus cavernosum 

(CC) results in NO release has demonstrated by many authors [115; 116; 117; 118]. 
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All members of the Buthidae family of scorpions, except for the hemiscorpion [119], may 

sting, resulting in priapism, especially in children [120]. The venom of the scorpions 

Buthus martensi Karsh and the African scorpion Leiurus quinquestriatus quinquestriatus 

relaxed the isolated anococcygeus muscle in rats by releasing NO [121; 122]. Toxins 

isolated from the venom of the scorpion T. serrulatus, however, have only been studied 

as a pharmacological tool in the research of penile erection. According to Gomez et al. 

(1973) [123], this venom is known to operate on nerve terminals to stimulate the 

secretion of neurotransmitters like acetylcholine, which activates eNOS in endothelial 

cells. According to the study by Teixeira and his team [116; 117], the toxin Ts3 isolated 

from this species causes human corpus cavernosum (CC) relaxation like that elicited by 

acetylcholine activation. Ts3 delays the kinetics of inactivation [124] via binding to site 3 

of Na+ channels [125]. 

2.3 Epidemiological study of scorpion stings 

Scorpionism is significant in seven select regions of the world on various levels. More 

than 1.2 million scorpion stings and 3250 deaths caused by scorpion envenoming are 

registered annually worldwide, and about 2.3 billion people live in areas of scorpionism 

risk [126; 127; 128; 129]. However, the epidemiological statistics on scorpionism are still 

limited due to unreported instances and a lack of studies on this issue, despite its 

widespread prevalence and risk [130; 1]. The continents which are most susceptible to 

scorpion envenomation are reported and they are Australia, the Near and Middle-East and 

Mexico, South Asia, Southern Latin America, Saharan Africa (North), Sahelian Afric, 

South Africa [131; 129; 132]. 

2.3.1 Epidemiology of scorpionism in America 

In several tropical countries, scorpion sting envenomation is a significant public health 

issue due to its frequent occurrence and possible severity. In South America, scorpions 

that are deadly to humans belong predominantly to the genus Tityus.  

In Brazil, a country in South America, scorpionism is a neglected public health issue, and 

around 160 species of the scorpion genus Tityus are responsible for stings that are 

significant from a medical perspective. Four of these Tityus species—T. serrulatus, T. 

bahiensis, T. stigmurus, and T. obscurus—are of medicinal interest [133] and among 

them; the T. serrulatus is the most significant [134; 135; 136]. The number of confirmed 

deaths from scorpion stings has increased in the previous eleven years, from 61 in 2007 
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to 90 in 2017, according to the nation's public health system. During this time, there has 

also been an increase in scorpion sting cases, from 37,370 to 124,982. About 83% of 

deaths in the past five years (2013 to 2017) happened within 48 hours of being stung 

[136]. The fatality rate is often less than 0.09% in the other age groups, although it is 

0.32% and 0.13%, respectively, for victims under 10 and over 75. However, the fatality 

rate for children between the ages of 1 and 5 is 0.40 % [136].  

In some parts of Brazil, Mexico, and North Africa, this condition is prevalent [137; 138; 

139]. The majority of serious illnesses and fatalities are caused by the sting of T. 

serrulatus [134; 135]. Although its origin is uncertain, previous documents point to the 

Brazilian state of Minas Gerais. Species identification, whether by capture or 

photography, is crucial, especially if it's one of the four Tityus species with significant 

medical value. T. obscurus needs to be recognized in the Amazon region since it has the 

potential to induce acute cerebellar impairment [134; 135; 140]. 

2.3.2 Epidemiology of scorpionism in Asia 

Worldwide, the prevalence of scorpion stings is high in some countries of South Asia 

such as India, Iran, Pakistan, Sri Lanka, Saudia Arabia, Turkey, Spain, France, China, 

and Mongolia etc [128; 132]. Most of them are associated with the Iranian provinces of 

Khuzestan, Bueyerahmad, and Kohgiluyeh [141; 132]. 

Scientists from all over the world have long been interested in the scorpion fauna in Iran 

from the perspectives of systematics, biology, and ecology. Evaluation of species 

distribution data is based on research published in the scientific literature until 2012. 

Scorpion stings were observed all over Iran, and among the 51 species of scorpions found 

in different parts of the country, the Buthidae family comprises the majority of the 

scorpion fauna in Iran, accounting for 88.5% of all species and 82% of all genera [131]. 

The Androctonus genera contain the majority of the recognised medically relevant 

species within the Buthidae family. Other families of scorpions which are distributed in 

Iran are Hemiscorpiidae and Scorpionidae. Among provinces of Iran, Khuzestan province 

stands out for having scorpions and scorpion stings [142]. With 19 kinds of scorpions, 

Khuzestan is one of the most hazardous regions in the south-west of Iran for scorpion 

stings. There have been reports on the medical significance, epidemiology, and 

geographic distribution of scorpions in Iran [143; 131; 144].  
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Due to the importance of scorpion stings and the lack of epidemiological information on 

this concern in public health, the study was conducted to gather fresh information on 

scorpion stings in Iran. There are different types of weather in Iran, including a hot 

summer and a cold, snowy winter. One study reported that between 2002 and 2011, there 

were 54.8 to 66 scorpion stings per 100,000 people. These differences were likely caused 

mostly by diverse climatologic factors and preventative strategies. Around 3250 deaths 

are predicted to occur worldwide each year, affecting 1.2 million individuals. According 

to Chippaux and Goyffon (2008), the global mean rate of sting occurrences per 100,000 

people per year is approximately 17.14 [1]. It demonstrates that Iran experiences higher 

scorpion stings than the global average. The crucial fact is that, from 2002 to 2011, 

scorpion stings occurred at a similar incidence of 54.8 to 66 per year. According to 

research conducted in Kashan, central Iran [145], and Ahvaz, south-west Iran, scorpion 

stings were most common among people aged 15 to 34 [146]. The highest incidence of 

scorpion sting cases in 2011 took place in the summer (44.16%). This is consistent with 

findings from Iran [147], Saudi Arabia [18], Turkey [148], and Turkey [145; 131; 146; 

149]. According to their data, 49.7-93.4% of scorpion sting incidents happened in the 

summer. The severity of envenoming depends on the variability of scorpion venoms. 

Therefore, identifying the species that caused the sting is crucial and may have an impact 

on the clinical procedures used to treat the patient. 

Scorpion stings cases can also be found in Saudi Arabia, Turkey, Spain, France, China, 

and Mongolia due to their climate and geographic location. Recently, two studies on 

scorpion stings were reported in Pakistan, one in the Sargodha district of Punjab [150] 

and the other in the Lasbella district of Balochistan [151]. 

In India, the western states of Maharashtra, Saurashtra, Kerala, Andhra Pradesh, Tamil 

Nadu, and Karnataka are regularly affected by morbidity and mortality brought on by 

scorpion stings. According to a case study involving 141 children who were admitted to 

the Government Raja Mirasdhar Hospital in Thanjavur, southern India, after being stung 

by a M. tamulus species, children between the ages of 1-3 and 7–12 showed the most 

adverse effects to envenomation. Eight individuals had priapism, and five of them were 

older than six years. The fatal and life-threatening sting effect of pulmonary oedema was 

observed in one patient older than 6 years [152]. According to records from a tertiary care 

and teaching hospital in southern India, 50 patients who were stung by a M. tamulus 
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species, had dyspnea (13, 26%), chest discomfort (9, 18%), vomiting (6, 12%), sweating 

(5, 10%), nausea (3, 6%), priapism (7, 14%), and piloerection (6, 12%) [153].  

An epidemiological study conducted in Mahad (200 km south of Mumbai, Western India) 

from 1984 to 1995 also showed that children <16 years tend to respond more rapidly to 

MT stings [154]; out of 293 patients, six deaths were reported before hospital arrival. 

Patients were further divided into three broad groups based on the clinical symptoms; i) 

111 (38%) patients exhibited hypertension within 1-10 h (mean 3.5 h), ii) 87 (30%) 

patients with tachycardia reported within 1-24 h (mean 6.7 h), and iii) 78 (24.5%) patients 

with pulmonary oedema reported within 6-24 h (mean 8 h) post scorpion sting [155; 154]. 

Twenty-three MT stings have been documented in three localities of Jaffna, Sri Lanka, 

consisting of 13 (57%) males and 10 (43%) females where the average age was 30, while 

5 (22%) of the cases were children under the age of 12. All patients had signs of 

envenoming, either local or systemic, upon admission to the hospital [156; 157]. While 

the coastline regions and the nearby islands have limited vegetation on sandy soil, the 

central region of the district is rich with overgrazed red soil. Over a year, there were 90 

admissions to hospitals with a history of scorpion stings. Of those, the M. tamulus was 

the offending scorpion in 84 of the cases, and black scorpions primarily stung the others. 

The offending scorpions were identifiable in 23 MT sting cases (confirmed cases), and in 

the remaining 61 cases (n), the victims or witnesses had sightings of the offending 

scorpions but were unable to capture them [156]. 

From 2009 to 2014, 33 reports of scorpion stings were made at the Rims Teaching 

Hospital in Raichur, Karnataka, India, of which 22 were caused by the Indian black 

scorpion and 11 by the Indian red scorpion. The patients experienced hypotension, 

hypertension, cutaneous symptoms, bradycardia, and drowsiness [158]. It has come to 

light that scorpion stings in the northern region of Sri Lanka, particularly in the Jaffna 

District, were causing severe envenoming. 

2.3.3 Epidemiology of scorpionism in Africa 

Despite the diversity of scorpion species found in South Africa, statistical data on the 

frequency and severity of scorpion envenomation is limited. A study conducted with  

52,163 consultations in Tygerberg Poisons Information Centre (TPIC) reported 740 

(1.4%) cases involved in scorpion stings. 146 (19.7%) of them were considered to be 
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significant envenomations. Adults (>20 years) accounted for 71.4% of the victims in 

these cases, and they were more likely to suffer from less harmful stings (OR 0.57; 95% 

CI 0.37 to 0.86). In 356 (48.1%) cases with significant associations to decreased severity 

(OR 3.51; 95% CI 1.9 to 6.3), the TPIC was contacted within six hours of the sting 

occurrence. However, only 15% of the scorpions were able to be identified [159]. 

2.3.4 Epidemiology in Mexico 

The harmful scorpion Centruroides infamatus infamatus, which lives in the Mexican state 

of Guanajuato, has been seen to become more active during the warmer months [160]. 

Similar results were seen in Argentina, where scorpion sting incidence increased from 

October to April due to Tityus trivittatus [161]. Dehesa-Dávila correlates a decline in 

scorpion stings with the arrival of the rainy season [162; 163]. The majority of scorpions 

are nocturnal that spend the daytime in burrows, rocks, or leaf litter. However, Chowell et 

al [162] report a significant and positive correlation between Mexico's minimum 

temperature and scorpion activity. Instances of scorpion stings increased to their 

maximum levels in 2000 and 2001 when the lowest temperature fell to 19.4°C and 

18.8°C, respectively. This association is consistent with studies from Brazil and 

Argentina [161; 160]. The authors noticed a "threshold" relationship between scorpion 

sting frequency and pluvial precipitation [162]. There were extremely few scorpion stings 

when rainfall was lower than 30 mm/month; when rainfall was greater than 30 

mm/month, scorpion sting incidence was independent to actual rainfall. This might be as 

a consequence of rain, which disturbs scorpions and forces them to seek for new hiding 

places. 

2.4 Limitation of antivenom therapy and their improvement protocol for better 

treatment of scorpion stings 

Antitoxins and antivenoms have been used successfully for more than a century. 

Throughout this period, these products have consistently demonstrated their ability to 

cure infections and envenomation in a very successful manner. For each antivenom, the 

indications, route of administration, and frequency of adverse effects vary substantially. 

Since the earliest antivenom was produced at the start of the 20th century, the technique 

to produce antivenom has gradually changed. Early antisera were frequently associated 

with severe reactions including serum sickness. In theory, new F(ab')2 products could 

theoretically result in less immunological responses when used in clinical applications 
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since they are produced using pepsin digestion together with precipitation of undesired 

protein and albumin serum fractions. The risk of morbidity or fatality from antivenom 

itself varies greatly, which has significant effects on public health [164; 165]. More 

specifically, less refined products may have a high enough risk of anaphylaxis to prevent 

such usage, thereby limiting access to vital emergency therapy. More refined products 

may be safe enough for everyday use in geographically inaccessible clinics.  

According to a study, antivenom was administered to 1534 individuals with scorpion 

envenomation in Arizona and Mexico, ranging in age from 0.1 to 90.5 years. After 

treatment with antivenom, three patients (0.2%) experienced acute antivenom infusion 

responses, including urticaria, urticaria with dyspnea, and panic attack. No one got the 

entire symptoms of serum sickness, although eight (0.5%) of the participants exhibited 

rashes that were indicative of Type 3 immunological responses. Two pregnant women 

had envenomation treatment in the first trimester; one of them later had a spontaneous 

abortion. Thus before using antivenom for therapeutic purposes, these procedures can be 

used to assess the quality, effectiveness, stability, and safety of the antivenom [166; 167]. 

There is a high demand to discover alternative approaches for better improvement of 

scorpion stings treatment devoid of any adverse effects.  

Furthermore, the failure of ASAs to immunorecognized the venom toxins due to the 

presence of a low proportion of venom-specific antibodies in ASA is another hurdle for 

efficient hospital management of scorpion sting victims [168; 169]. Commercial ASA 

and prazosin (an α1-adrenergic inhibitor), frequently in conjunction with insulin, are used 

in clinical treatment to reduce several complications caused by scorpion venom. These 

therapies do have certain limits, though, which renders it necessitate to investigate ethno-

medicines, particularly traditional medicinal plants, to cure scorpion stings. A list of more 

than 200 medicinal herbs that have been utilised for treating scorpion stings traditionally 

in various nations. Although various myth-based treatments for scorpion stings are used, 

there is no actual data to support this aspect of conventional knowledge [170]. To 

establish their neutralisation potency against scorpion stings, only 38 traditional 

medicinal plant extracts have been examined in-vivo and in-vitro. Even though a small 

number of bioactive plant components with scorpion venom neutralisation potency have 

been identified, they are not currently commercially available for use in clinical settings 

[170]. Therefore, such drawbacks of conventionally used antivenom therapy demand 
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modern science to develop an effective, specific, alternative, and advanced treatment for 

scorpion envenomation. 
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