This thesis is dedicated

...to my beloved daughter Niyara,

...to my beloved husband Daoharu,

...to my beloved parents and parents-in-law

DECLARATION

I hereby declare that the thesis entitled "Physical modification of rice starch, its characterization and application" submitted to the School of Engineering, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of research carried out by me under the guidance of Prof. Charu Lata Mahanta, Professor in the Department of Food Engineering and Technology, Tezpur University.

All assistance received from various sources and people have been duly acknowledged. No part of this thesis has been submitted elsewhere for the award of any other degree.

Date: 22 09 2023

Mairao Alira Gayany

Mainao Alina Gayary Reg. No. TZ120697 of 2012

Roll No. FPP14001

Place: Tezpur

Professor

Dr. Charu Lata Mahanta

DEPARTMENT OF FOOD ENGINEERING & TECHNOLOGY TEZPUR UNIVERSITY NAPAAM, TEZPUR- 784 028 Ph:(03712) 267007-09, Extn. 5702 Fax:(03712)-267005/06 Cell: 09435092658 E-mail: charu@tezu.ernet.in

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "Physical modification of rice starch, its characterization and application" submitted to the School of Engineering, Tezpur University, Assam in partial fulfilment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of research work carried out by Ms. Mainao Alina Gayary (Reg. No. TZ120697 of 2012 and Roll No. FPP14001) under my supervision and guidance.

All assistance received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for the award of any other degree.

Date: 22 09 2023

Place: Tezpur

Charn late Mahanta

Prof. Charu Lata Mahanta Professor Department of Food Engineering and Technology School of Engineering, Tezpur University Napaam: 784028, Tezpur, Assam, India

Acknowledgments

At the very beginning I humbly express my deep obeisance to the supreme power "Jwi Bwrai Bathou" for his blessings and everything bestowed upon me so far and for making this moment happen that I could make this scientific contribution to the scientific community.

I would like to express my profound sense of gratitude to my supervisor Prof. Charu Lata Mahanta Madam, for all the help, guidance and encouragement throughout this journey which were instrumental in completing my research work. I shall remain indebted to her for her patience, advice, constructive suggestions and resources that led me construct and complete my thesis. I am deeply grateful to have undergone my PhD work under her supervision.

I express my sincere gratefulness to esteemed members of my Doctoral Committee, Prof. Suvendu Kumar Ray, Department of Molecular Biology and Biotechnology, Tezpur University and Prof. Raj Kumar Duary, Department of Dairy Science and Food Technology, Banaras Hindu University for their valuable suggestions and encouragements.

I take this opportunity to express my deep reverence to Prof. Dhruba Kumar Bhattacharya, Vice Chancellor (Acting), Tezpur University, Prof. Mrinmoy Kumar Sarma, Dean, Academic Affairs, Dr. Binanda Khungur Narzary, for their concern and constructive suggestions and encouragements.

I sincerely acknowledge and express my gratefulness to the respected faculty members of the Department of Food Engineering and Technology, Prof. Sankar Chandra Deka, Prof. Manuj Kumar Hazarika, Prof. Brijesh Srivastava, Prof. Nandan Sit, Prof. Poonam Mishra, Prof. Laxmikant S. Badwaik, Dr. Amit Baran Das and Dr. Nishant R. S. Hulle for their encouragement and valuable suggestions throughout my PhD period.

I am also thankful to the staff members of Department of Food Engineering and Technology, Dr. Dipankar Kalita, Dr. Arup Jyoti Das, Mr. Labadeep Kalita, Ms. Swdwmsri Mushahary, Mr. Anjan Bora for all the official and laboratory assistance received during the entire PhD tenure. I would like to extend my gratitude to Mr. Bhaskar Jyoti Kalita, Ms. Pankhi Chetia, Dr. Sourav Chakraborty, Dr. Pallab Kumar Borah, Dr. Ritesh Watharkar, Mr. Sankur Phukan, Mr. Biju Boro, Mr. Prakash Kurmi, Mr. Nipu Dutta for their assistance during my PhD work. I would like to sincerely acknowledge all the infrastructure facilities provided by the Central Institute of Technology Kokrajhar that helped me to complete my experimental works. My sincere gratitude goes to the ex-Directors and the present Director (Acting) of Central Institute of Technology Kokrajhar, Prof. Hemanta Kumar Kalita and the Registrar Mrs. Chaitali Brahma for their support and cooperation received during my PhD tenure.

My heartiest thankfulness goes to my colleagues (and senior colleagues), Dr. Santosh Kumar, Dr. Prakash Kumar Nayak, Dr. Radhakrishnan Kesavan, Dr. Anuck Islary, Mr. Abhijit Das, Dr. Sucharita Sen Maiti, Dr. Subhajit Ray, Dr. Avik Mukherjee, Dr. Anjalu Albis Basumatary, Dr. Tanushree Nayak, Dr. Bornali Bora Patowary, Dr. Rajib Chetia, Dr. Pranjal Barman for their valuable suggestions, encouragements, motivation and assistance that I received during many instances.

I would like to sincerely thank the staff members, Mr. Jaydeep Kar, Dr. Kailash Barman, Mrs. Bhaskar Jyoti Barman and Mr. Khanidra Saloi, and assistants of Department of Food Engineering and Technology and Civil Engineering who have helped me in operating the laboratory instruments for my research works.

I would like to extend my gratitude to Prof. Sandeep Das and Mr. Sibo Boro for their support and for providing the laboratory facility to carry out some experiments in the Technology Incubation Centre, Bodoland University.

I am also thankful to Sophisticated Analytical Instrument Centre (SAIC) Institute of Advanced Study in Science and Technology (IASST), Guwahati, Department of Chemistry, Gauhati University, Guwahati, India for the instrument facility.

My heartiest gratitude goes to my friends specially Dr. Gitanjali Gautam and Ms. Manisha Medhi, Ms. Kuntala Dowarah, Dr. Dipsikha Kalita, Mr. Jinku Bora, Dr. Hilal Ahmad Makroo, and who supported me, encouraged me and motivated me in the hardest time during the entire PhD journey and I will always be grateful to them.

I would like to sincerely thank all my lab seniors and juniors particularly, Dr. Himjyoti Dutta, Dr. Sangeeta Saikia, Dr. Anjan Borah, Dr. Manashi D. Purukayashtha, Dr. Kanwaki Patowari, Dr. Nikhil Kumar Mahnot, Dr. Vegonia Marboh, Mr. Shubham Rohilla, Mr. Hemanta Chutia, Ms. Fogilla Begum and Ms. Beatrice Basumatary for their help and moral support during my research work.

I would like to thank my husband for his constant moral and emotional support that kept me going through all the ups and downs, who have always supported me and stood beside me in my hardest times and make sure that I do not give up on this journey called PhD.

I would like to thank my beloved daughter who in her own way has truly motivated and taught me to be strong, patient, kind, optimistic and perseverant.

I am ever thankful to my parents and my parents-in-law for letting me fly my wings, for encouraging me to pursue my dreams and teaching me the importance of education. Heartiest gratitude goes to my younger brother, sister, brothers-in-law, sisters-in-law, uncle and aunts, uncles-in-law and aunts-in-law who always have supported me, blessed me and helped me in my needs.

Mainao Alina Gayary

List of Tables

Table No.	Table legends	Page No.
Table 2.1	Dual modification of starches from different sources by	31
	HMT in combination with various modification methods.	
Table 3A.1	Chemical composition of SBs, MBs and HR flours.	62
Table 3A.2	Loose and packed bulk density, water and oil absorption	62
	capacity of SBs, MBs and HR flours.	
Table 3A.3	Pasting properties of SBs, MBs and HR flours.	65
Table 3B.1	Water and oil absorption capacity, loose and packed bulk	75
	density of medium broken rice flours with different particle	
	size.	
Table 3B.2	Pasting properties and gel hardness of medium broken rice	77
	flours with different particle size.	
Table 3B.3	Cooking properties of rice noodles prepared using medium	79
	broken rice flours with three different particle size.	
Table 3B.4	Textural properties of rice noodles prepared from medium	82
	broken rice flours with different particle size.	
Table 3C.1	Experimental ranges and levels of coded and actual values	87
	of independent variables of FCCD for OPT and HMT of	
	rice starch.	
Table 3C.2	Experimental design matrix of OPT of rice starch with	90
	experimental and predicted responses.	
Table 3C.3	Experimental design matrix of HMT of rice starch with	91
	experimental and predicted responses.	
Table 3C.4	Regression equations of the predicted response variables of	92
	OPT and HMT in coded values.	
Table 3C.5	ANOVA for the response surface quadratic polynomial	94
	model for OPT and HMT (Final viscosity).	
Table 3C.6	ANOVA for the response surface quadratic polynomial	96
	model for OPT and HMT (setback).	
Table 3C.7	ANOVA for the response surface quadratic polynomial	98
	model for OPT and HMT (Gel hardness).	

Table 3C.8	ANOVA for the response surface quadratic polynomial	101
	model for OPT and HMT (Swelling power).	
Table 3C.9	ANOVA for the response surface quadratic polynomial	103
	model for OPT and HMT (Solubility).	
Table 4.1	Chemical composition of native and modified starches.	123
Table 4.2	RVA pasting properties and gel hardness of native and	126
	modified starches.	
Table 4.3	Short-range molecular order of native and modified	131
	starches.	
Table 4.4	Intensity of major peaks and RC of native and modified	133
	starches.	
Table 4.5	Gelatinization parameters of native and modified rice	135
	starches.	
Table 5.1	The nomenclature of composite rice noodles based on the	150
	type and quantity of starches added.	

List of Figures

Figure No.	Figure legends	Page No.
Fig. 2.1	Molecular structure of native and heat moisture treated starch.	20
Fig. 2.2	Formation of amylose-lipid complex in cereal starch after HMT.	22
Fig. 2.3	The model of starch gelatinization, formation and degradation of granule ghost plotted in a hypothetical DSC curve. Images of starch envelope formation (a), rupture of starch (b) and coiling of starch envelope after rupture (c).	29
Fig. 3A.1	Swelling power and solubility of SBs, MBs and HR flours.	63
Fig. 3A.2	Pasting properties of SBs, MBs and HR flours.	65
Fig. 3A.3	Scanning electron micrographs of surface of head rice and broken rice. SBs (A1: 40X, A2: 200X, A3: 2000X and A4: 4500X); MBs (B1: 40X, B2: 200X, B3: 2000X and B4: 5000X); and HR (C1: 40X, C2: 200X, C3: 2000X and C4: 5000X).	67
Fig. 3A.4	Scanning electron micrographs of cross section view of head rice and broken rice. SBs (A1: 40X, A2: 200X, A3: 2000X and A4: 5000X); MBs (B1: 40X, B2: 200X, B3: 2000X and B4: 5000X); and HR (C1: 40X, C2: 200X, C3: 2000X and C4: 5000X).	68
Fig. 3A.5	Scanning electron micrographs of flours of head rice and broken rice. SBs (A1: 200X, A2: 2000X and A3: 5000X); MBs (B1: 200X, B2: 2000X and B3: 5000X); and HR (C1: 200X, C2: 2000X and C3: 5000X).	69
Fig. 3B.1	Swelling power and solubility of medium broken rice flours with different particle size. Values presented in the bar diagram are the means of triplicate determinations. The error bars are the standard deviation of mean values. Significant difference ($p \le$ 0.05) exists between the means in a column group with different letters (a-c) on the column.	75

Fig. 3B.2 Pasting properties of medium broken rice flours with different 76 particle size: PV: Peak viscosity; HPV: hot paste viscosity; BD: breakdown; SB: setback; and FV: final viscosity. Values presented in the bar diagram are the means of duplicate determinations. The error bars are the standard deviation of mean values. Significant difference ($p \le 0.05$) exists between the means in a column group with different letters (a-c) on the column. Fig. 3B.3 Sensory evaluation of rice noodles made from medium broken 83 rice flours of different particle size. MRN: marketed rice noodle, 150N: Noodle made from 150F, 180N: noodle made from 180F and 212N: noodle made from 212F. 95 Fig. 3C.1 Response surface 3D plots: (a) Effect of time and temperature on final viscosity of OPT starch, (b-d) effect of time, temperature and moisture content on final viscosity of HMT starch. 97 Fig. 3C.2 Response surface 3D plots: (a) Effect of time and temperature on setback of OPT starch, (b-d) effect of time, temperature and moisture content on setback of HMT starch. 99 Fig. 3C.3 Response surface 3D plots: (a) Effect of time and temperature on gel hardness of OPT starch, (b-d) effect of time, temperature and moisture content on gel hardness of HMT starch. Fig. 3C.4 Response surface 3D plots: (a) Effect of time and temperature on 102 swelling power of OPT starch, (b-d) effect of time, temperature and moisture content on swelling power of HMT starch. Fig. 3C.5 Response surface 3D plots showing (a) Effect of time and 104 temperature on solubility of OPT starch, (b-d) effect of time, temperature and moisture content on solubility of HMT starch. Fig. 4.1 Amylose content (a), swelling power (b), and solubility (c) of 124 native and modified rice starches. Results presented in the bar diagram are the means of duplicates. The error bars indicate the standard deviation of the mean. Significant difference ($p \le 0.05$) exists between the mean values with different letters (a-e) on the bars.

Fig. 4.2	Plane polarized light micrographs (1000X) of native rice starch	128
	and modified starches at 20 µm scale bar.	
Fig. 4.3.	Scanning electron micrographs of native and modified rice	130
	starches at 3 μ m scale bar; 5 kV acceleration voltage and 5000X	
	magnification; black arrow shows inward folding or indentation;	
	white arrow shows eroded or rough surface of the modified	
	starches.	
Fig. 4.4	FTIR spectra of native and modified rice starches.	131
Fig. 4.5	X-ray diffractograms of native and modified starches. The	133
	numbers 1 to 5 represent the highest peaks detected in the X-ray	
	diffractograms at 2θ =15°, 17°, 17.8°, 20° and 23°, respectively.	
Fig. 4.6	Angular frequency (ω) dependence of storage modulus (G') (a),	137
	loss modulus (G") (b), phase shift angle (δ) (c) and complex	
	viscosity (η^*) (d) for NRS, HMTS, OPTS, HMT-OPTS and	
	OPT-HMTS gels at 25 °C.	
Fig. 4.7	Estimation of the RDS, SDS and RS of native and modified rice	139
	starches. Results presented in the bar diagram are the means of	
	duplicates. The error bars indicate the standard deviation of the	
	mean. Significant difference ($p \le 0.05$) exists between the mean	
	values with different letters (a-e) on the bars.	
Fig. 5.1	Physical properties of dry noodles viz. water absorption (a), and	154
	soluble loss (b). Results presented in the bar diagram are the	
	means of duplicate determinations. The error bars indicate the	
	standard deviation of the mean. Significant difference ($p \le 0.05$)	
	exists between the mean values with different letters (a-h) on the	
	bars.	
Fig. 5.2	Cooking properties viz. cooking time (a), rehydration (b),	156
	cooking loss (c) and swelling index (d) of noodles prepared from	
	blends of rice flour and native, single and dual modified starches.	
	Results presented in the bar diagram are the means of duplicate	
	determinations. The error bars indicate the standard deviation of	
	the mean. Significant difference (p ≤ 0.05) exists between the	
	mean values with different letters (a-g) on the bars.	

xxi

- Fig. 5.3Texture properties of noodles viz. hardness (a), adhesiveness (b),159springiness (c), cohesiveness (d), gumminess (e), and chewiness(f). Results presented in the bar diagram are the means of 5replicates. The error bars indicate the standard deviation of themean. Significant difference ($p \le 0.05$) exists between the meanvalues with different letters (a-k) on the bars.
- Fig. 5.4Tensile properties viz. tensile strength (a) and breaking distance160(b) of noodles prepared from blends of rice flour with native,
single and dual modified starches. Results presented in the bar
diagram are the means of 5 replicates. The error bars indicate the
standard deviation of the mean. Significant difference ($p \le 0.05$)
exists between the mean values with different letters (a-g) on the
bars.
- Fig. 5.5Sensory attributes of noodles prepared from blends of rice flour161with native, single and dual modified starches.
- Fig. 5.6Rice starch fractions viz. RDS (a), SDS (b), and RS (c) of noodles162obtained by *in vitro* starch digestibility study. Results presentedin the bar diagram are the means of 2 replicates. The error barsindicate the standard deviation of the mean. Significantdifference ($p \le 0.05$) exists between the mean values withdifferent letters (a-h) on the bars.

%, db Percentage in dry basis Lesser than < Greater than > $\times g^*$ Relative centrifugal force \leq Less than or equal to 150F Rice flour with 150 µm particle size 150N Noodle made from 180 µm particle size rice flour 180F Rice flour with 180 µm particle size 180N Noodle made from 180 µm particle size rice flour Rice flour with 212 µm particle size 212F 212N Noodle made from 212 µm particle size rice flour 2θ Bragg's angle of diffraction Arbitrary unit a.u. AACC American Association of Cereal Chemists AAS Atomic absorption spectrometer AGU Amyloglucosidase ANN Annealing ANOVA Analysis of variance AOAC Association of Official Analytical Chemists Approx. Approximately B.C. **Before Christ** Metric unit of pressure bar BD Breakdown Centimetre cm cm⁻¹ Per centimetre/ centimetre inverse cP Centipoise Coefficient of variation CV DF Degree of freedom DMRT Duncan's multiple range test DP Degree of polymerization DSC Differential scanning calorimetry

Glossary of terms, symbols, and units

ET	Extrusion
etc.	Et cetera
FCCD	Face-centred central composite design
FG	Free glucose
FTIR	Fourier transform infrared spectroscopy
FV	Final viscosity
g	Gram
G'	Storage modulus
G"	Loss modulus
g/g	Gram per gram
g/ml	Gram per millilitre
G ₁₂₀	Glucose released during 120 min of enzymatic hydrolysis
G ₂₀	Glucose released during 20 min of enzymatic hydrolysis
GH	Gel hardness
GI	Glycaemic index
h	Hour
HHP	High hydrostatic pressure
HMT	Heat moisture treatment
HMT-OPTS	Heat moisture and osmotic pressure treated starch
HMTS	Heat moisture treated starch
HOSN10	Noodle made from blends containing 10% heat moisture-osmotic
	pressure treated rice starch
HOSN20	Noodle made from blends containing 20% heat moisture-osmotic
	pressure treated rice starch
HOSN30	Noodle made from blends containing 30% heat moisture-osmotic
	pressure treated rice starch
HPV	Hot-paste viscosity
HR	Head rice
HSN10	Noodle made from blends containing 10% heat moisture treated rice
	starch
HSN20	Noodle made from blends containing 20% heat moisture treated rice
	starch

HSN30	Noodle made from blends containing 20% heat moisture treated rice starch
HTT	Hydrothermal treatment
HTT-GRF	Hydrothermally treated glutinous rice flour
Hz	Hertz
IMC	Initial moisture content
IR-RS	Indica rice resistant starch
J	Joule
K ⁻¹	Kelvin inverse
kg	Kilogram
kPa	Kilo Pascal
kV	Kilo volt
L	Litre
LBD	Loose bulk density
LBs	Large brokens
L-W	Length-width
Μ	Molarity
mA	Milli ampere
MBs	Medium brokens
mg	Milligram
min	Minute
ml	Millilitre
mm	Millimetre
mm/s	Millimetre per second
mol^{-1}	Mole inverse, mol is the SI unit of substance
MRN	Market rice noodle
Ν	Normality
n	Number of replicates
Ν	Total number of experiments
n_a	Number of experiments carried out at $+a_m$ and $-a_m$
n_c	Number of experiments carried out at the centre point
n_f	Number of factorial design experiments
nm	Nanometre

NRS	Native rice starch
NSN10	Noodle made from blends containing 10% native rice starch
NSN20	Noodle made from blends containing 20% native rice starch
NSN30	Noodle made from blends containing 30% native rice starch
OAC	Oil absorption capacity
°C	Degree centigrade
OHSN10	Noodle made from blends containing 10% osmotic pressure-heat
	moisture treated rice starch
OHSN20	Noodle made from blends containing 20% osmotic pressure-heat
	moisture treated rice starch
OHSN30	Noodle made from blends containing 30% osmotic pressure-heat
	moisture treated rice starch
OPT	Osmotic pressure treatment
OPT-HMTS	Osmotic pressure and heat moisture treated starch
OPTS	Osmotic pressure treated starch
OSN10	Noodle made from blends containing 10% osmotic pressure treated
	rice starch
OSN20	Noodle made from blends containing 20% osmotic pressure treated
	rice starch
OSN30	Noodle made from blends containing 30% osmotic pressure treated
	rice starch
Pa.s	Pascal second
PBD	Packed bulk density
PT	Pasting temperature
PV	Peak viscosity
R	Gas constant
R^2	Correlation coefficients of determination
rad/s	Radian per second
RC	Relative crystallinity
RDS	Rapidly digestible starch
RF	Rice flour
RFN	Rice flour noodle
rpm	Revolution per minute

RS	Resistant starch
RS type 3	Resistant starch type 3
RS type 5	Resistant starch type 5
RSM	Response surface methodology
RVA	Rapid visco analyser
S	Second
SB	Setback viscosity
SBs	Small brokens
SD	Standard deviation
SDS	Slowly digestible starch
SEM	Scanning electron microscope
SL	Soluble loss
SNT	Sonication treatment
SOL	Solubility
SP	Swelling power
Т	Temperature
T _c	Conclusion temperature
T _c -T _o	Gelatinization temperature range
TG	Total glucose
To	Onset temperature
T _p	Peak temperature
TPA	Texture profile analysis
U/ml	Units per millilitre
USD	United states dollar
Viz.	Namely
w/w	Weight by weight
WA	Water absorption
WAC	Water absorption capacity
wb	Wet basis
X_1	Coded value of temperature
X_2	Coded value of time
X ₃	Coded value of moisture content
X_i, X_j	Coded independent variables

XRD	X-Ray diffraction
Y_{FV}	Experimental or predicted value of final viscosity
Y_{GH}	Experimental or predicted value of gel hardness
Y _{SB}	Experimental or predicted value of setback
Y _{SOL}	Experimental or predicted value of solubility
\mathbf{Y}_{SP}	Experimental or predicted value of swelling power
eta_i	Regression coefficient of variables for linear terms
eta_{ii}	Regression coefficient of variables for quadratic terms
eta_{ij}	Regression coefficient of variables for interaction terms
eta_o	Regression coefficient of variables for intercept term
δ	Phase shift angle
η*	Complex viscosity
λ	Amplitude
μl	Microlitre
μm	Micrometre/ micron
π	Osmotic pressure