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CHAPTER-6 

 

A HYBRID GNA INSTABILITY MODE IN NEUTRON STAR INTERIORS 

 

Abstract: The local stability of the inner crust regions in non-rotating neutron stars is 

methodically analyzed. It consists of the viscoelastic heavy neutron-rich nuclei, superfluid 

neutrons, and degenerate quantum electrons.Ϯ All the constitutive species are coupled 

gravito-electrostatically. A normal spherical dispersion analysis predicts the excitation of 

a hybrid gravito-nucleo-acoustic (GNA) instability mode. Its stabilizing (destabilizing) and 

accelerating (decelerating) agents are illustratively discussed in a numerical platform. It 

shows that the high- K regions are the more unstable spectral windows for its stability. The 

reliability of our investigated results is ensured in light of the recent astronomic scenarios. 

  

6.1 INTRODUCTION 

A neutron star (NS) is a seismically active compact astrophysical remnant object composed 

mainly of degenerate nuclear matter in spherically confined geometry [1, 2]. It is formed 

from the gravitational core-collapse of massive stars (
 MM )108(~ , 30102M  kg is the 

solar mass). Its organizing energy of the gravitational pull is balanced by the disorganizing 

elastic energy stored in the neutron Fermi-continuum [3]. The typical physical properties 

of such astroobjects are mass [4, 5], 
 MM )14.24.1(~ ; size, 2010~ R  km [1, 2], 

temperature [2, 6], 126 1010~ T  K, and so forth. The internal structure of such stars are 

revealed by analysing the observed spectra of neutron star oscillation. Its interior structure 

is categorically subdivided into five distinct concentric regions on the basis of its 

compositional matter density )(  [2, 7]. These constituent regions are: (i) thin atmosphere 

of light elements surrounding an ocean of superhot liquid iron; (ii) an outer crust composed 

of dense plasma of neutron-rich nuclei and quantum degenerate electron gas (

147 1010~   kg m-3); (iii) inner crust composed of inhomogeneous neutron-rich nuclei, 

neutron superfluid, and electron quantum fluid ( 1714 1010~   kg m-3); (iv) outer core 

made of neutrons, non-degenerate protons and muons; and (v) abstract inner core [2, 7].  

The dynamics of the interior of the neutron star is important to understand a rich 

varieties of phenomena, such as observed spin glitches, thermal evolution, waves and 
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oscillations, and diversified instabilities [8]. In this regard, the importance of hydrodynamic 

instabilities in such neutron stars has become a question of considerable interest. It may be 

surprisingly noted that the inner crust region has received only a little research attention as 

of now from the fluidic stability viewpoint. In the inner crust, if 14103.4   kg m-3, 

neutrons drip out of the neutron-rich nuclei and form a free neutron gas. Above critical 

density value of 17108.2   kg m-3, the nuclei dissolve so that the protons get unclustered 

to move freely [9, 10]. Between these two densities, the matter consists of neutron-rich-

nuclei in a Coulomb lattice (strong coupling), a gas of free neutrons, and a degenerate 

electron gas penetrating the lattice [9]. In this regime, when the temperature is below 
910  

K, the free neutrons become superfluid by forming isotropic 1S0 Cooper pairs [10, 11].  

It is to be noted here that Epstein has for the first time proposed the superfluidic 

behaviour of neutrons in the constitutive matter of non-rotating and unmagnetized neutron 

stars to study their bulk acoustic instability properties [10]. The flow of neutron superfluid 

has been considered both around and through the constitutive nuclei. It has been found that 

the sound phase speed corresponding to the excited shear mode gets enhanced as the 

constituent neutron-rich nuclei are weakly coupled with the outer superfluidic neutrons in 

the inner crust region [10]. The results are applicable to the wave propagation in a neutron 

star as long as the perturbation wavelength is smaller than the density gradient scale lengths, 

also termed as spatial inhomogeneity scale lengths [10]. Besides, the main effect of the 

non-local gravitational field on the sound modes associated with the superfluidic matter has 

also been studied [12]. Two distinct sound modes have been reported to exist in the 

superfluid: the first sound (density wave) and the second sound (entropy wave). It has 

generalized the Jeans instability criteria of the sound mode in the normal fluidic counterpart 

[12]. It has been found that the Jeans scale length in the superfluid is 32  times larger 

than that in the usual case of a normal fluid medium [12]. 

In addition, the analysis of collective excitations of diversified waves, oscillations, 

and glitches in the neutron stars ensures the superfluidic behaviour of their inner crust 

regions. The occurrence of the spin glitches can be manifold from the viewpoint of several 

authors. The glitches are developed due to the sudden reorganization of the neutron star 

crust (by star-quake). In such models, a neutron star is a two-component structure of a 

superfluid core surrounded by a rigid crust [13-15]. As already reported elsewhere, the 

glitches are due to the sudden release of the elastic energy [3]. In such a system, a heavy 

nucleus is assumed to be a spherical piece of a viscoelastic Fermi-continuum compressed 
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to the normal nuclear density. In the inner crust regime, superfluid vortices interact with 

the heavy nuclei and pin up with the nuclei in the Coulomb lattice as already mentioned 

before. The unpinning of large-scale vortices from the nuclei can also result in the form of 

spin glitches well observed in neutron stars [16-18]. Such glitches can also result due to the 

instability of vortex creeps through the nuclear lattice [8, 19, 20]. Only a few models have 

discussed that the interaction of neutron superfluid vortex filaments with the proton 

superconducting flux tubes in the core of the neutron star results in the evolution of glitches 

[21]. The glitches can also be produced because of the coupling of the crust with the 

superfluid inside the neutron stars [22-24]. Recently, the glitch formation is explained as a 

repeated phenomenon from the quasi-period 2

3P  neutron superfluid B-phase (magnetic 

moment of 2

3P  Cooper pairs aligned with the magnetic field) to A-phase (magnetic 

moments are very chaotic), and then back to B-phase repeatedly, resulting in many repeated 

glitches with quasi-periods [25]. But, the mechanisms operating behind the origin of such 

glitches from the simplistic fluidic viewpoint is yet to be illuminated.  

It is to be noted here that the glitches are the potential agents to excite various 

collective waves and oscillation modes with different periods )(  in neutron stars; viz., 

pressure (p-)mode, gravity (g-)mode, fundamental (f-)mode, shear (s-)mode, interfacial (i-

)mode, torsional (t-)mode, Rossby (r-)mode, and gravitational wave (w-)mode [26]. The p-

mode is an acoustic mode, like an ordinary sound signal, the propagation of which is 

dependent on the material density and temperature of the stellar media ( 1.0~  ms). 

Besides, the g-mode is completely confined to fluid core and caused by the buoyancy acting 

as a restoring force ( 40010~   ms) and f-mode is a surface g-mode overlying the crust (

8.01.0~   ms). Similarly, the s-mode is a normal mode of velocity shear wave present in 

the solid neutron star crust ( 1~  ms -10 s). The i-mode is a hybrid pattern composed of 

the spectral waves propagating in the solid-fluid interfaces in the neutron star ( 100~  ms). 

The t-mode is the torsional motion caused by the tangential motion of the material from the 

neutron star surface ( 20  ms). The r-mode is excited in the rotating structure due to the 

Coriolis force acts as a restoring force along the surface ( 1001~   ms). The w-mode 

gets generated due to the space-time curvature-induced fluctuations (fully relativistic 

effects). It dissipates energy through the emission of gravitational waves ( 101~   µs) as 

extensively seen in the literature [26].  

This Chapter investigates the stability of the inner crust properties on the local 

collective waves and oscillations of nuclear origin excitable in non-rotating neutron stars. 
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The key motivation behind the present study is to explore the basic physical mechanism for 

the glitch formation from a modified multi-fluidic perspective for the first time. The normal 

mode sensibly supported here is the hybrid gravito-nucleo-acoustic (GNA) instability 

evolving in the complex inner crust. It is the low-frequency acoustic mode excited under a 

unique action originating from the GNA coupling. The electrostatic influence here is caused 

by all the Coulombic species (electrons + nuclei) and the self-gravitational effect originates 

from the Newtonian species (neutrons + nuclei). The various accelerating (decelerating) 

and stabilizing (destabilizing) agencies of the inner crust are semi-analytically explored. 

 

6.2 PHYSICAL MODEL AND FORMALISM 

We consider the inner crust region of neutron stars composed of the viscoelastic neutron-

rich nuclei, neutron superfluid, and degenerate electrons in a spherically symmetric 

geometry relative to the centre of the entire stellar matter mass distribution. The model 

setup includes the effects of electrostatic potential; gravitational force (due to neutrons and 

nuclei); thermal pressure (for nuclei); and quantum effects (degeneracy pressure and 

Thomas-Fermi-based Bohm potential) [27]. Here, the tiny electrons and neutrons are 

treated as quantum particles as their de-Broglie wavelengths ( dB ) have larger value 

relative to the interparticle separation distance (with super-populous de-Broglie sphere, 

13 dBn ) [27]. Against this de-Broglie super-criticality, the constitutive heavier nuclei are 

considered as classical particles. As a consequence, the quantum effects (i.e., degeneracy 

pressure and Bohm potential) for the electrons and neutrons are taken into account [28-31]. 

Again, the Coulomb coupling parameter for the heavy nuclei, 

)}/()){(4/1( 2

0 TkaeZ BdCou  3108  [32]. Thus, 1Cou
, implying that the 

nuclei are strongly coupled (crystalline). It gives rise to the viscoelastic effects responsible 

for both the shear mode and the bulk mode in the classical heavy nuclear fluid [33, 34]. 

When the temperature falls below 
910  K, the neutrons are completely condensed into a 

superfluid state by forming the 1S0 Cooper pairs. The existence of such states in the inner 

crust of neutron stars has already been confirmed by astronomical observations of giant 

pulsar frequency glitches as already well detected in Vela pulsar [7, 23]. 

It is noteworthy further that the local fluidic oscillation period of the inner crust 

material (
31055.1 J  s) is shorter than that of  the superfluid vortex oscillation (

110v  

s) [11]. It upholds the ignorance of the dynamics involved in quantized superfluid vortices 
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in the local oscillation of the inner crust of the neutron stars. Hence, we can ignore the 

scattering of electrons via the constitutive lattice phonons and impurities sourced in the 

constitutive nuclei; and hence, subsequent frictional effects [35], intrinsic dynamics of the 

vortices, possible pinning effects, and other vortex-vortex interactions [36]. In this limit of 

the charged-superfluid form of the magnetohydrodynamic phase in an ordinary plasma 

system, the electromagnetic forces empower only the electrical charge neutrality on a bulk 

microscopic scale. As the adopted fluid medium is macroscopically neutral one, the 

presence of electromagnetic forces is ignored herewith [11].  

It may be further noteworthy that the neutron star rotation is sourced in the 

dynamical rotation of the constitutive neutron vortices [37]. As the dynamics of such 

vortices play no significant role in the overall neutron star dynamics, one could ignore the 

rotational effects of the model neutron star without violating the generality. Moreover, 

51018.6 sc  m s-1 << speed of light, c . It shows that we consider every constitutive 

component of the inner crust of NS to behave as non-relativistic one. It is physically well 

validated at densities below a critical density value of 
910  kg m-3 [38]. So, it is expedient 

to consider the simplified multi-component fluid outline in such compact astroenvirons 

with sub-luminal fluctuations of physical variables. 

 The evolution dynamics of the heavy viscoelastic neutron-rich nuclei fluid, neutron 

superfluid, degenerate electron fluid are governed by a continuity equation for flux-density 

conservation, momentum equation for force-density conservation, polytropic equation of 

states, and finally closing the system by the electro-gravitational Poisson equations.

 The basic governing equations of viscoelastic heavy nuclei )(h  fluid are continuity 

equation and momentum equation in spherically symmetric geometry in a coordination 

space ),( tr  with all the usual generic notations given below respectively as 
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Here, m  is the viscoelastic relaxation time [32]. 
hZ , h , and hm  are the proton number, 

material density, and mass, respectively, of the neutron-rich heavy nucleus. hv  is the flow 
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velocity of heavy nucleus fluid. ))34((    is the generalized effective viscosity. hP  

is the thermal pressure due to the heavy nucleus [33].   and   are the electrostatic and 

gravitational potentials developed due the charge and mass density fields, respectively. 

 In a similar way, the governing equations of the superfluid neutron )(n  with all the 

usual symbols are given respectively as 

  0
1 2

2










nn

n vr
rrt




,                                                                                                         (6.3) 



















































































r
r

rrrm

hv

rt

v n

nn

n
nn




 2

22

22 11

22
.                                            (6.4) 

Here, nv  is the neutron superfluid flow speed. n  is the neutron chemical potential. n  and 

nm  are the neutron material density and mass, respectively.  DD 3/)2(   is a Bohmian 

quantum correction prefactor for the Fermions; where D  is the dimension of the system 

[27, 30]. Here, in the momentum equation (equation (6.4)), the convective term does not 

occur in the LHS. Instead, there arises a kinetic term, 22

nv , termed here as kinetic potential 

in correlation with other type of potential. The reason behind such terms is in the fact that 

the superfluid streams without viscosity with no exchange of collisional momentum with 

other component fluids in the composite fluid system [12, 39]. 

The similar governing equations for the constitutive degenerate electron fluid )(e  in 

spherically symmetric geometry in the coordination space ),( tr  are respectively cast as 
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Here, ev  is the electron flow speed. e  is the electron chemical potential. em  is the 

electronic mass. e  is the electron material density of the electronic fluid. It may be noted 

here that the quantum effects are considered in the above, but viscous effects are ignored 

because of the asymptotically small em -value.  

In our description of the considered NS model, equation (6.4) and equation (6.6) 

are the momentum balance equation of the quantum fluid of neutron (superfluid) and 

electron (normal fluid), respectively. The last terms therein stand for their respective 

quantum potentials, termed orginally as the de-Broglie-Bohm potentials, which arise 
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because of the inhomogeneous wave field curvature associated with the constitutive 

quantum particles. It physically signifies the potential energy (self-energy) function of the 

matter wave field associated with the particles. It gives rise to the quantum trajectories 

followed by the quantum particles [40]. It facilitates the transference of energy from the 

wave field to particle and back again which accounts for energy conservation in isolated 

quantum system [41]. The value of quantum potential does not give (in a non-stationary 

quantum state) the total energy but represents an amount of energy in the wave field that is 

available to the particle at its specific position in the field. It is also found that more 

pronounced the change of wave shape, the greater the amount of energy exchanged between 

particle and the wave field [41]. The change of shape of the wave-field is an important 

ingredient in determining energy transfer and storage. These factors clearly imply that the 

mechanism of energy transfer and storage processes here is completely different from the 

corresponding classical cases and cannot be wavefunction amplitude-dependent [41]. 

 The generalized polytropic equation of state of the composite system describing 

various thermodynamical processes in a compact form [42] is given as 



 KP  .                                                                                                                              (6.7) 

Here, 
K  is the polytropic constant, )1( 1  n  is the polytropic exponent, and n  is 

the corresponding polytropic index. The polytropic equation of state is valid for both non-

relativistic and extreme relativistic limit. But, in non-relativistic approach, 3/5 ; and in 

extreme-relativistic approach, 3/4  with different value of 
K in both the limit [43]. 

In our considered model, for electron )( e  and neutron )( n , 3/5  with 

 3822   mhK . This represents electron degeneracy pressure and neutron degeneracy 

pressure of quantum mechanical origin in non-relativistic limit. For the classical heavy 

nuclei, h , 2/ shbhh cmTkZK  , and 1h ; where, sc  is the isothermal sound speed in 

the bulk fluid. In this case the polytropic equation takes the form: hsh cP 2 , which is the 

well-known isothermal equation of state in the non-relativistic regime.  

The electrostatic Poisson equation coupling the diverse constitutive charged species 

with the help of the electrostatic potential )(  distribution sourced in their charge density 

fields reads as 
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Here, 12

0 1085.8   N C2 m-2 is the absolute permittivity of the free space (vacuum) 

characterizing the dense fluid exactly [44]. 

Finally, we close the extreme fluid model system with the help of the self-

gravitational Poisson equation relating the gravitational potential )( distribution with the 

constitutive sourced material density fields given in the customary notation [45] as 
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Here, 111067.6 G  N kg-2 m2 is the Newtonian gravitational coupling constant signifying 

the strength of the non-local gravitational interactions undergone by gravitating matter. 

The principal goal of this chapter is to develop a theoretical model to investigate 

the GNA instability dynamics evolving in the complex inner crust of non-rotating neutron 

stars. All the relevant physical parameters  F  describing the composite fluid are assumed 

to undergo small-scale linear perturbations  1F  relative to their corresponding hydrostatic 

homogeneous equilibrium values (
0F ) in the presence of active geometrical curvature 

modulation effects (via 1r ). Thus, such homology perturbations grow in the harmonic 

form of spherical spatiotemporal waves given in the generic notations  as [44, 46] 
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 Tii PF 000 000   ,                                                                                                        (6.12) 

 Tirii PvF 111111  ;                                                                                                    (6.13) 

where,   is the angular frequency, k  is the angular wavenumber of the collective 

fluctuations and subscript, hnei ,, . Application of equations (6.10)-(6.13) in equations 

(6.1)-(6.9) transform the fluidic system to evolve in the Fourier space  ,k   against the 

earlier coordination space ),( tr . Thus, the involved linear differential operators get 

autotransformed in the new space  ,k   as:  1r ik r    ,  t i    , 

   2 2 2 2 12 2r k r i kr       , and   33 r     32312 663 kkrirrk   . So, equations 

(6.1)-(6.9) get Fourier-transformed respectively as 
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 This is to note further that, in obtaining equations (6.17) and (6.19), we use the 

“Gibbs-Duhem relation”, which clearly relates the perturbed pressure with the perturbed 

chemical potential in the isothermal fluid condition [45] given as 

110 iii P .                                                                                                                          (6.22) 

Now, the perturbed pressure term after equation (6.7), as used in equations (6.15), (6.17), 

and (6.19), is expressed as 

1

/

1 ppp KP  .                                                                                                                           (6.23) 

Here, 
1

0

/ 
 p

pppp KK


  is a new modulated polytropic constant relating the polytropic 

parameters with the constitutive material density of the composite fluid under 

consideration. 

 It is now clearly evident that the fluctuation dynamics of the considered neutron star 

model is dictated by a canonically coupled set of perturbed governing equations as enlisted 

in the form of equations (6.14)-(6.21).  In order for a simplified analysis of the complex 

instability, we get interested in the ultra-low frequency limit )1,0(  aa  of the 

triggered fluctuations [43]. As a result, equations (6.14)-(6.21) respectively simplify 

canonically to 
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We now apply the standard method of algebraic elimination and simplification so as to 

decouple equations (6.24)-(6.28) into a generalized linear dispersion relation describing the 

ultra-low-frequency hybrid GNA instability given explicitly as           
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The various multi-parametric symbols in equation (6.29) are respectively given as  
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In order for executing a scale-invariant analysis, a standard astronomical normalization 

scheme is adopted to normalize equation (6.29) [47, 48] as  
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Here, 21

0 )4( hJ G   is the Jeans frequency corresponding to constitutive heavy nuclei. 

J /  is the Jeans-normalized fluctuation frequency. The Jeans-normalized radial 

distance and wavenumber are Jr  /  and JkkK / , respectively. The values of the 

Jeans angular frequency, 21048.6 J  s-1, the Jeans time, 31055.1 J  s 1~ ms, the 

Jeans wavenumber 1~Jk  mm-1, the Jeans wavelength, 310~J  m, and 510~sc  m s-1.  

The resulting various symbols of physical relevance, appearing in equations (6.30)-

(6.42) for the fluctuation dynamics get accordingly auto-normalized, respectively as  
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It is clearly evident that the dispersion properties of the low-frequency GNA fluctuations 

(governed by equation (6.43)) excited in the inner crust region of neutron stars are basically 

dictated by the multiparametric dispersion windows featuring the interior of neutron stars 

(described judiciously by equations (6.44)-(6.56)). 

 

6.3 RESULTS AND DISCUSSIONS 

In the proposed semi-analytic work, we study the collective excitation of radial waves and 

oscillations in the inner crust region of neutron stars in the strategic framework of 

generalized hydrodynamic model in an assumed spherically symmetric geometry. The 

inner crust is composed of degenerate electrons, superfluid neutrons, and heavy neutron–

rich nuclei inconclusively coupled via the gravito-electrostatic Poisson formalism. The 

small-amplitude spherical normal mode analysis yields a linear dispersion relation 

(equation (6.43)), modulated by an atypical set of coefficients (equations (6.44)-(6.56)), 

multiparametrically dependent on the diversified inner crust features. It is numerically 

analysed to explore the various instability properties (figures 6.1-6.8). The various reliable 

inputs [10, 11, 30, 38, 49] used herein are: 31101.9 em  kg, 271067.1 nm  kg, 

25103.1 hm  kg, 9

0 101e  kg m-3, 17

0 101n  kg m-3, 14

0 105h  kg m-3, 

36hZ , 810T  K, 310m s, 1010  kg m-1 s-1, and 3/1 . 

 In figure 6.1, we show the Jeans-normalized (a) Real frequency )( r , (b) Imaginary 

frequency )( i , (c) Phase velocity )( pv , and (d) Group velocity )( gv  of the fluctuations in 
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the reciprocal wave space defined by the Jeans-normalized wavenumber )(K . The distinct 

lines herein link to 
14

0 105h  kg m-3 (blue solid line),  14

0 107h  kg m-3 (red dashed 

line), and 
14

0 109h  kg m-3 (black dotted line), respectively. The normalized heavy 

nucleus density is herewith scaled down as 14

0

14

0

*
1010  hhhh mn  with the rescaling 

factor taken to be 
1410 ; where, 0jn  is the equilibrium concentration of the species-j, with 

hnej ,, . It is seen that, with increase in 
*

h , r  increases and shifts towards the high-K 

regime, and vice-versa (figure 6.1(a)). We further see that the fluctuations are highly 

dispersive in nature in the quasi-acoustic domain against the gravitational one. It means 

that the short-wavelength acoustic mode are excited in the high-K regime, and vice-versa. 

Again, it is seen that, both the r -value (figure 6.1(a)) and the i -value (figure 6.1(b)) 

increase with increase in 
*

h , and vice-versa. This implies that with the increase in 
*

h , the 

inward gravitational force increases, weakening the radially outward non-gravitational 

counter-force. It results in an enhancement of the harmonic oscillations executed by the 

inner crust region; thereby, finally, leading to the inner crust collapse if there exists no fuel 

to counter the inward self-gravity. It is seen that the minimum decay separation 

corresponding to the 
*

h - variation occurs in a narrow-K region at around 17.0K  (figure 

6.1(b)). Both before and after this K-region, the wave decay rates are flattened in the K-

space. It is further seen that, both pv  (figure 6.1(c)) and gv  (figure 6.1(d)) decrease with 

*

h , and vice-versa. The negative value of pv  (figure 6.1(c)) implies that the wave is 

propagating towards the centre of the neutron star core. It is attributed that the decrease in 

both pv  (figure 6.1(c)) and gv  (figure 6.1(d)) is due to an enhanced viscosity of the 

constituent heavy nuclear matter fluid. It hereby implies that the acoustic wave fluctuations 

slow down as this move radially inward to a stability point in the inner crust region. This 

result is contrary to that obtained by Epstein, where the sound phase speed is enhanced as 

the neutron rich nuclei are weakly coupled to the neutron in the crust [10]. The difference 

is due to the Epstein consideration of the neutron superfluid flow through the constitutive 

nuclei. In contrast, we consider that the constitutive neutron and heavy nuclear fluids are 

coupled via the long-range non-local gravitational force. The GNA mode propagation is 

indeed a two-step process in the monochromatic picture (figure 6.1(c)). It means that the 

bulk mode under consideration behaves as a dispersive g-mode in the K space defined 
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by 5.00  K . Beyond this, the mode undergoes a quasi-linear transformation into a non-

dispersive acoustic p-mode in the K space. It is evident now that the bulk mode 

propagation is a three-step process in the polychromatic wave-packet modal picture (figure 

6.1(d)) against the previous monochromatic portrayal (figure 6.1(c)). It means that the 

modal spectral components move inward in a dispersive fashion in the K space defined 

by 1.00  K . After this limit, the bulk mode moves radially outward in a quasi-dispersive 

manner. A close comparison between the velocity profiles allows us to draw a common 

inference that 
*

h  acts as a deceleration agency to the propagatory GNA mode. At the same 

time, a single monochromatic pulse and its equivalent group counterpart significantly differ 

in terms of the propagatory features (figures 6.1(c-d)). The basic physics behind is in the 

incoherent phase and amplitude coordination among the background constitutive spectral 

components (via coherence and decoherence). It infers that 
*

h  acts as a decelerating and 

destabilizing agency to the fluctuations towards the neutron star core. 

                       

               

Figure 6.1: Profile of the Jeans-normalized (a) real frequency )( r , (b) imaginary 

frequency )( i , (c) phase velocity )( pv , and (d) group velocity )( gv  of the fluctuations with 

variation in the Jeans-normalized wavenumber )(K  for the different 0h values.    
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Figure 6.2: Same as figure 6.1, but for different 
0n -values with a fixed h . 

  

In figure 6.2, we display the same as figure 6.1, but for a fixed 
14

0 105h  kg m-3 

and for different rescaled values of  
17

0

17

0

* 1010   nnnn mn . Here, the density 

rescaling factor, 1710 , is used to produce smooth profiles. It is seen that, as 
*

n  increases, 

the magnitude of the r -peak remains unchanged; but, only gets shifted towards the high-

K regime (figure 6.2(a)). It implies that, the hybrid GNA waves get highly dispersive with 

enhanced 
*

n . It hereby implicates that the short-wavelength acoustic modes are excited 

against the inhomogeneous gravity-induced modes. Thus, it supports the fact that 

superfluidic modes are predominately acoustic in nature and the superfluidity prevents the 

g-modes to behave pulsationally [50]. In other words, the non-local gravito-acoustic 

coupling is significantly opposed, thereby, resulting in the non-pulsating g-modes as a new 

natural phenomenology. As a result, it can be herewith inferred that 
*

n  plays as a dispersive 

broadening agency to the GNA mode. It is found further that, as 
*

n  increases, i  decreases 

in the particular K-range defined by 45.005.0  K  (figure 6.2(b)). It means that the 

neutron degeneracy pressure increases with 
*

n ; thereby, opposing the inward pull caused 

by the non-local gravitational and Bohm potentials. The inward core-centric direction of 

the quantum mechanical Bohm potential is due to 0* n ; thus, making the Bohm potential 
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negative [40]. As a result, the curvature of the neutron density modulus is upward in this 

classically forbidden region and wave function is decreasing rapidly. It is further 

speculative that the maximum decay separation corresponding to the 
*

n - variation occurs 

in a short-K regime around 17.0K  (figure 6.2(b)). It is attributable to the high sensitivity 

of the neutron degeneracy pressure of non-gravitational origin against the quasi-linear 

coupling of the gravito-acoustic triggering effects. In addition, the patterns of pv  (figure 

6.2(c)) and gv  (figure 6.2(d)) vary similarly as before (figures 6.1(c-d)). Thus, 
*

n  acts as 

a decelerating and stabilizing agent to the said instability in the range 45.005.0  K .  

              

             

Figure 6.3: Same as figure 6.1, but for different 0e values with a fixed h . 

 

In figure 6.3, we portray the same as figure 6.1, but for a fixed 
14

0 105h  kg m-3 

and for different rescaled values of 
9

0

9

0

* 1010   eeee mn . Here, the density 

rescaling factor is 910  for smooth variations. It is seen further that, with increase in 
*

e , 

the magnitude of  the r - peak value does not change; but, it shifts towards the low-K 

value, and vice-versa (figure 6.3(a)). It implies that, in the inner crust region only electrons 

facilitate the long-wavelength gravitational fluctuations )0( K  to undergo resonance 

growth on the grounds of atypical gravito-electrostatic interplay mechanism. As a result, it 

can be herewith inferred that 
*

e  plays as an anti-dispersive narrowing agency. In contrast, 
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the i -value increases in the K-range defined by 3.00  K  (figure 6.3(b)). It implicates 

that, an enhancement in the electronic concentration intensifies the electron degeneracy 

pressure, thereby, reducing the neutron degeneracy pressure. This situation is realizable if 

negative beta decay )( eepn  
 occur in the regime 3.00  K . As a result, anti-

neutrinos are emitted from this regime of the neutron stars. It is further noticed that the 

maximum decay separation in the K-space corresponding to the 
*

e - variation occurs in a 

short-K regime around 07.0K  (figure 6.3(b)). It is attributable to the high (low) 

sensitivity of the electron (neutron) degeneracy pressure of non-gravitational origin against 

the quasi-linear coupling of the gravito-acoustic triggering effects. The pv - patterns (figure 

6.3(c) and gv - patterns (figure 6.3(d)) are just reversed with respect to the previous cases 

(figures 6.2(c-d)), but now with higher respective magnitudes. It indicates that 
*

e  acts as 

a speeding-up factor for the waves travelling core-wards of neutron stars. That is to say, 

interestingly, that 
*

e  acts as an accelerating and destabilizing agent to the collective hybrid 

GNA instability dynamics in the inner crust region of neutron stars. 

               

              

Figure 6.4: Same as figure 6.1, but for different  values with a fixed h .  
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Figure 6.5: Spectral profile of the Jeans-normalized (a) real frequency )( r , (b) 

imaginary frequency )( i , (c) phase velocity )( pv , and (d) group velocity )( gv  of the GNA 

fluctuations in a colour phase space functionally defined by the Jeans-normalized angular 

wavenumber )(K  and the rescaled heavy nuclear material density )( *

h .    

 

                 

                  

Figure 6.6: Same as figure 6.5, but showing the 
*

n - variation with a fixed 
*

h . 
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As in figure 6.4, we portray the same as figure 6.1, but for a fixed 
14

0 105h  kg 

m-3 and for different values of   . It is seen that the instability spectral patterns vary in a 

correlative and similar consistent fashion with increase in  , as in figure 6.3, with 

arrangement in 
*

e . It means that, as the geometrical curvature of the inner crust region 

increases, the magnitude of the Bohm potential increases core-wards. As a result, the 

resultant inward pressure force overcomes the resultant pressure counterpart. It is further 

noted that the maximum decay separation in the K-space corresponding to the  - variation 

occurs in a short-K regime at around 05.0K  (figure 6.4(b)). Thus, it can be conjectured 

that   acts as an accelerating destabilizer to the GNA fluctuations. 

                   

                
Figure 6.7: Same as figure 6.5, but showing the 

*

e - variation with a fixed 
*

h . 

 

Clearly, figures 6.5-6.8 depict the same as figures 6.1-6.4, but in a more precise way 

describing the variation of  r , i , pv , and gv  with K using a colour spectral analysis in 

a defined colour phase space. The blue and red represent the least and most effectiveness 

of the parameter of concern in a particular regime of K , respectively. A common instability 

feature found in figures 6.5-6.8 is that r , i , and pv  are strongly dominated in the high-

K regime; whereas, gv  is in the low- K regime. In addition, it is interesting to note that the 

high- K regime is the most unstable zone indicating the fact that acoustic mode plays a 
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dominant role in the outer inner crust regime. All other features are very similar to the 

corresponding line profile depictions (figures 6.1-6.4). As a result, it could herewith be 

conjectured that the scale invariance of the basic physical insights behind the GNA 

instability features could be established in the compact neutron star family. 

                 

                  
 

Figure 6.8: Same as figure 6.5, but showing the  - variation with a fixed 
*

h .  

 

6.4 CONCLUSIONS 

We describe a theoretic generalized model development describing a three-component 

semi-analytic formalism to investigate the modal stability behaviours of the inner crust 

properties of non-rotating neutron stars in terms of the locally excitable collective GNA 

instability waves and oscillations. The adopted model consists of viscoelastic heavy 

neutron-rich nuclei, superfluid neutrons, and degenerate quantum electrons treated in a 

spherically symmetric geometry. The assumed symmetric geometry transforms the 

complex 3-D spherical problem into the corresponding simple 1-D radial problem free from 

the polar and azimuthal degrees of freedom. The model closure is obtained with the help 

of the electro-gravitational Poisson formalism describing the corresponding potentials.  

A normal spherical mode analysis yields a generalized linear dispersion relation, 

which has a unique set of dispersion coefficients, multiparametrically dependent on the 

inner crust features of neutron stars. It principally aims to analyse the most relevantly 

supported normal mode, the GNA modal wave and associated instability, evolving in the 
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complex inner crust. The electrostatic influence arises here from all the Coulombic 

(charged) species (electrons + nuclei) and the self-gravitational effect from the Newtonian 

(gravitating) species (neutrons + nuclei). A judicious numerical analysis explores various 

active accelerating/decelerating and stabilizing/destabilizing agencies of the inner crusts. It 

is conjectured that the acoustic (GNA) mode, analogously to the stellar p-mode case, plays 

a dominant role towards the crustal stability features before being fully collapsed up due to 

the dearth of nuclear fuel to counter the inward non-local self-gravity pressure effects.  

Besides the above qualitative reliability checkup, we now explore astronomical 

observational supports to our study. It seems noteworthy that, in the analysis of Rossi X-

Ray Timing Explorer (RXTE) data from the December-2004 hyperflare from SGR 

1806+20, the global oscillation mode frequency has been found to be 625 Hz [51]. Such 

detections link to the presence of, at least, one radial mode in the neutron star crusts. This 

observed frequency is consistent with our analytically estimated value of the Jeans critical 

frequency ( 648J  Hz). Thus, it provides a strong support and reliability to the presented 

GNA modal analysis. The famous space missions, such as CoRoT and Kepler [52], have 

found mixed p-g modes in the red giants and revealed their deep internal structure. The p-

mode depends on the properties of the envelope surrounding the core (outer) and the g-

mode depends on the properties of the core structure (inner). It is believed that such space 

missions can detect the presence of p-mode, and hence, the GNA mode, in the neutron star 

“inner crust” regions, subject to the achievement of required ultracam detection resolutions 

and refinements [52]. The proposed study could enable us to identify and characterize the 

diversified stabilization/destabilization factors significantly regulating the interior crustal 

behaviours of neutron stars and other compact astroobjects in a novel superfluidic fabric. 
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