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CHAPTER-2 

 

STUDY OF LINEAR STABILITY DYNAMICS IN COMPLEX  

VISCOELASTIC ASTROFLUIDS 

 

Abstract: A semi-analytic study on the evolutionary excitation dynamics of gravitational 

instability in a self-gravitating viscoelastic non-thermal polytropic complex uni-component 

fluid is carried out on the astro-scales of space and time. We apply a generalized 

gravitating hydrodynamic model. It concurrently considers the effects of fluid buoyancy, 

thermal fluctuations, volumetric expansion, and so forth.Ϯ A normal mode (local) analysis 

yields a quadratic linear dispersion relation with a unique set of multi-parametric 

coefficients. The analytical reliability is checked by comparing with the existing reports on 

purely ideal inviscid nebular fluid and non-ideal viscoelastic fluids in isolation. The 

stabilizing (destabilizing) and accelerating (decelerating) factors of the instability are 

illustratively explored. The instability features are judged in the light of both impure non-

ideal viscoelastic fluid and pure ideal inviscid nebular fluid scenarios of real importance.  

 

2.1 INTRODUCTION 

The dynamical mechanism of star and other bounded structure formation in the interstellar 

medium (ISM) is triggered by the so-called gravitational (Jeans) instability of self-

gravitating fluids [1]. The self-gravitating fluids exhibit a rich spectrum of waves, 

instabilities, and oscillations on the astro-scales of space and time. As a result, 

agglomeration of matters take place in the astroclouds of ISM building up the early phase 

of bounded structure to form.  The dynamics of the astrofluids, in addition to the Jeans 

criterion, gets modified due to the presence of various realistic inevitable physical factors. 

Many researchers have investigated such gravitational instabilities and involved 

dynamics in different fluidic configurations in the past. They explored diversified 

underlying stabilizing and destabilizing agencies having great impact in the initiation 

processes of astrophysical proto-structures. Chandrasekhar have studied the effects of 

uniform rotation and uniform magnetic field on the evolutionary dynamics of gravitational 

instability in an infinite homogenous medium [2]. They have found that the instability 

dynamics is independent of both the rotation and field. However, the presence of weakly 
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interacting massive particles (WIMPs) in interstellar gas cloud reduced the Jeans length, 

and Jeans mass. The instability of a gravitationally coupled viscoelastic system of neutral 

fluid and dark matter fluid has been addressed both in the linear regime [3, 4] as well as 

non-linear regime [5]. It has been shown semi-analytically that the instability has been 

significantly affected by the conjoint action of both viscosity and relaxation effects in a 

simplified way. Furthermore, the threshold for the onset of the instability occurs at lower 

wavenumbers in a viscoelastic medium against the conventional pure inviscid nebular fluid 

picture [6]. It can be clearly seen that the gravitational instability in such correlated 

viscoelastic media in the presence of all the possible realistic agencies has still been 

remaining as an unaddressed, unsolved and unexplored problem for years.  

A comprehensive rigorous study of the non-local gravitational instability needs a 

proper inclusion of all the important fluid properties, such as polytropicity, buoyancy, 

thermal fluctuation, volumetric expansion, etc. This motivates us to report a new 

generalized viscoelastic fluid model to investigate the gravitational instability in the 

presence of all the above key realistic factors. A realistic instability analysis, as being 

presented herein, plays an important role in the structure formation mechanism in 

diversified realistic compact astro-cosmic structures and environs [2, 7]. It indeed forms 

the originality and basis of the current problem of the stability analysis. Thus, after 

implementing all the fluid complication in our model, the new basic set of the generalized 

fluid equations are carefully constructed, interpreted and analyzed. 

 

2.2 PHYSICAL MODEL AND FORMALISM 

A polytropic self-gravitating viscoelastic fluid model is considered in the fabric of a self-

gravitational generalized uni-component hydrodynamic model configuration on the 

astrophysical scales of space and time. It simultaneously considers realistic factors, such as 

the effect of fluid buoyancy, thermal fluctuation, volumetric expansion, and so forth. The 

lowest-order viscoelasticity here comes from the collective correlative transport processes 

among the fluid constituent particles [3-6, 8-10]. The fluid is characterized with two kinds 

of viscosity, namely shear viscosity (offering resistance to flow), and the bulk viscosity 

(offering resistance to volumetric expansion). The main motivation behind considering the 

viscoelasticity is that viscoelastic fluids are rich in collective wave excitation processes 

under the combined action of both viscosity (energy dissipation source accounting for 

damping effects) and the elasticity (energy restoration source accounting for memory 

effects). In this context, it is worth mentioning that the nuclear matter in most of the 
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superdense compact objects and their surroundings is indeed viscoelastic (rheological) fluid 

in nature [6, 11]. In addition, this is a well-established generalized fact that cosmic fluids 

are highly viscoelastic in nature thereby exhibiting rich plethora of collective excitation of 

waves, oscillation and fluctuation [3-5, 7]. It is to be noted here that the role of plasma 

effects in such wave activities is ignored on the grounds that astro-cosmic fluids on a large 

scale are neutral in nature because of the negligible value of the ratio of the plasma Debye 

length to the instability scale length termed as the Jeans length [12].  

 It is a well-known fact that astrophysical macroscopic fluids are inhomogeneous 

and non-uniform in nature. A good number of transport activities keep on going even in the 

so-called equilibrium. It has been found that the presence of diversified diffusion-induced 

effects (such as, mass and thermal energy diffusion) noticeably modify the excitation of 

gravitational instability behaviours [13-15]. This motivates us to see whether we can find 

any possible diffusion-induced influence on the instability in complex our fluid model 

governed by a coupled set of generalized hydrodynamic (GH) equations.  

The one-dimensional (1-D) evolutionary fluid dynamics is described by the 

continuity equation for the net flux-density conservation and momentum equation for the 

net force-density conservation in the customary notations [6, 9], respectively given as  
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where,  , v , m ,  , T ,  ,  ,   and   are the fluid density, flow velocity, viscoelastic 

relaxation time, volumetric expansion coefficient, fluid temperature, polytropic exponent, 

gravitational potential, shear viscosity coefficient, and bulk viscosity coefficient, 

respectively. The symbol,   21

0 mTkc Bs  , denotes the

 

normal sound phase speed with m 

as the constituent mass of the fluid and 
231038.1 Bk J K-1 as the Boltzmann constant.  

The macroscopic (bulk incompressible fluid) state is described by the evolution equations 

relating the fluid pressure (P), and fluid density   , given as                                                                                                   
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The thermal diffusion and mass diffusion processes are given as 
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where, TK  and 
MK  are the thermal diffusivity and mass diffusivity, respectively. 

 The considered fluid is finally closed by the Poisson equation relating the spatial 

distribution of the non-local gravitational potential ( ) with the source fluid density as 

  ,4 02
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where, 111067.6 G  N m2 kg-2 is the universal (Newtonian) gravitational constant 

signifying the coupling strength of gravitational interaction of matter and 0  is the 

hydrostatic equilibrium density accounting for the so-called Jeans swindle [1, 16, 17]. The 

swindle considered here is an ad-hoc homogenization assumption needed for ignoring the 

zeroth-order force field effects on the grounds that the inward self-gravitational attraction 

in the fluid is balanced by the outward expansive repulsion in the fluid caused by the cosmic 

pressure force effects in the initially homogeneous equilibrium fluid configurations [1, 16, 

17]. It judiciously allows us to perform a local normal mode analysis around the initially 

hydrostatic homogeneous equilibrium of the macroscopic bulk fluidic state.    

A standard normalization technique [3-5] is used to execute a scale-free non-

dimensional analysis. The normalized set of equations (2.1)-(2.6), thus constructed, are 

respectively given as 
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Here, Jx    and 
Jt    are the normalized forms of distance and time, where 

JsJ c  
 
is the Jeans scale length and   21

0

1 4
  GJJ   is the Jeans time scale, 

respectively. Furthermore, 
2

sc , 0 
, 

0
PPP 

, and 
0

TTT 
 denote the 

normalized gravitational potential, fluid density, pressure and temperature, respectively. 

Here, 0P  and 0T
 
are the equilibrium values of the pressure and temperature, respectively. 

Also, 
s

cvM 
 
is the Mach number (normalized flow speed) of the bulk viscoelastic fluid. 

Needless to say, ‘1’ in equation (2.12), as previously in equation (2.6), accounts for the so-

called Jeans swindle [1, 16, 17]. 

We now allow the fluid model relevant parameters (F) to undergo small-scale linear 

perturbations ( 1F ) around their local hydrostatic homogenous equilibrium parametric 

values ( 0F ) on the grounds that the perturbations evolve as sinusoidal homology signals 

[5] given as  

     KiFFF  exp, 10 ,                                                                             (2.13)  
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In the newly defined wave-space  K, , the linear operators transform as  iK   

and   i ; where   is the Jeans-normalized angular frequency and K  is the 

Jeans-normalized angular wavenumber. Accordingly, equations (2.7)-(2.12) get 

respectively auto-transformed as 
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Substitution of the expression for 
1M  from equation (2.17) and 

1  from equation (2.22) in 

equation (2.18) yields 
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Thus, the various dispersive properties of the gravitational instability under consideration 

is dictated by the generalized dispersion relation, equation (2.23), in full form under the 

active influence of all the adopted hydrodynamic realistic properties. Comparing the 

imaginary parts on both sides of equation (2.23), one obtains the reduced form of the 

modified dispersion relation involving all the considered key fluid effects as  
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where, mn 00   is the equilibrium number density of the fluid constituents,  11 n  

is the polytropic index [2], and    34  is the effective generalized viscosity of the 

fluid. Similarly, another reduced form of the dispersion relation could be obtained by 

comparing the real parts of equation (2.23), but excluded here due to over-simplicity in it.  

 Let us now have further reliability checkups on equation (2.24) by reductive 

comparative analysis in the light of the previous results [1, 6]. If 0  and 1 , then 

equation (2.24) reduces to  
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which is the normalized form of the dispersion relation for the gravitational instability in a 

viscoelastic fluid as reported previously [6]. Moreover, if viscoelastic effects are ignored, 

for which 0 , then equation (2.24) simply gets transformed into 

 2
1

2 1 K ,                                                                                                                        (2.26) 

which is the well-familiar normalized form of the usual gravitational dispersion relation in  

pure inviscid nebular fluids as previously reported by Jeans [1]. A close comparison 

between equations (2.25)-(2.26) clearly indicates how the usual Jeans instability gets 

modified due to inclusion of viscoelasticity in our proposed model. Evidently, the analytical 
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results on the proposed dispersion relation (equation (2.24)) have a two-fold reliability 

validation via equations (2.25)-(2.26). 

It is clearly noticeable from equation (2.24) that the perturbations undergo dynamic 

growth provided the condition      00

2 1 TknK Bm  <  01 T  is well-fulfilled. In 

that case, equation (2.24) reveals the growth rate  i  of the fluctuations given as  
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It is interesting to note from equation (2.27) that the growth rate of the instability is affected 

by the conjoint action of polytropicity, buoyancy, thermal fluctuations, volumetric 

expansion and viscoelasticity. If we assume that 0K  , then equation (2.27) gives  
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It is seen from equation (2.28) that the growth rate depends only on the volumetric 

expansion  0T  in this limiting case ( 0K  ). In this case, the growth rate  i  attains the 

maximum value (>1) as given by equation (2.28). Thus, the volumetric expansion acts as a 

destabilizing agency to the fluctuations. On the other hand, when 0K  , the effect of other 

parameters comes into play to reduce the instability growth rate. It happens due to the 

negative contribution towards the instability (equation (2.27)). Thus, it is clearly evident 

that the volume expansion acts as a growth-enhancer and the combined action of all other 

factors acts as a growth-reducer. 

Now, the phase velocity and the group velocity of the fluctuations derived from 

equation (2.24) can respectively be derived and written as 

  2

1

2

0

00

1
1

1







 

















K

T

TknK
V

Bm

p






,                                                                            (2.29) 

  2

1

2

0

0000

1
1

1
1

1









 





































K

T

TknTkndK

d
V

BmBm

g










.                                          (2.30) 

The multiplicative inter-relation between pV  and gV of the fluctuations can be derived as  
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For an accuracy checkup of equation (2.31), let us consider an ideal isothermal inviscid 

situation of the complex fluid. In that case, we have 0  and 1 . As a result, equation 

(2.31) reduces to  

1gp VV ,                                                                                                                             (2.32) 

which in the unnormalized (dimensional) form can be transformed into 

2

sgp cvv  .                                                                                                                            (2.33) 

Thus, a well-established multiplicative inter-relationship between the phase velocity ( pv ) 

and the group velocity ( gv ) for the gravitational instability via the acoustic phase speed (

sc ) in the unnormalized form is revealed in equation (2.33). Applying a similar procedure, 

the divisional inter-relationship between pv  and gv  can be derived as  

  .                                                                          (2.34) 

It is clearly evident from equation (2.34) that the strength of phase transport is weaker than 

that of group kinematic counterpart ( pv < gv ). The main implication herein is that the 

collective viscoelastic wave transport features in the proposed stability work are faster than 

those associated with other wave activities available in the literature. The present 

investigation is focally intended to explore the microphysical insights of the growth 

(equation (2.27)) and the propagatory features (equations (2.29)-(2.30)) associated with the 

gravitational instability. We execute a numerical illustrative analysis to depict the 

dynamical features as shown in the next section. 

 

2.3 RESULTS AND DISCUSSIONS 

An evolutionary theoretical model is constructed to investigate the gravitational instability 

dynamics supported in a complex viscoelastic fluid on the astrophysical scales of space and 

time. A generalized linear dispersion relation (quadratic in degree) is obtained by a standard 

method of linear local normal mode analysis. The local dispersion relation (equation (2.24)) 

is numerically analysed to unveil the microphysical features of the instability illustratively. 

The different judicious input values for the numerical analysis are adopted from different 

reliable sources centred around the dwarf-family available in the literature [2, 18-20]. The 

investigated results obtained here are graphically depicted and illustrated in figures 2.1-2.6. 
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Figure 2.1: Profile of the Jeans-normalized (a) growth rate  i , (b) phase velocity  
pV , 

and (c) group velocity  
gV  with variation in the Jeans-normalized wavenumber  K  for 

different equilibrium number density  0n  values.  

 

 In figure 2.1, we show the profile of the Jeans-normalized (a) growth rate  i , (b) 

phase velocity  
pV , and (c) group velocity  

gV  for different values of the equilibrium fluid 

particle concentration  0n  with variation in the Jeans-normalized wavenumber  K . The 

distinct lines correspond to different concentrations as 
22

0 10n  m-3 (blue solid line), 

23

0 10n  m-3 (red dashed line), and 
24

0 10n  m-3 (black dotted line), respectively [20, 21]. 

The different input values used are the mean temperature  600 T  K [19], polytropic index  

1n  [2], volumetric expansion coefficient 
210   K-1 [18], effective generalized 

viscosity 110   kg m-1 s-1 [20], and viscoelastic relaxation time 
210m  s . It is seen 

that, for a given 0n , the growth rate of the fluctuations decreases towards the high-K regime 

relative to the Jeansian critical value (figure 2.1(a)). In other words, only the long-

wavelength (gravitational) fluctuations undergo active growth leaving the short-
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wavelength (acoustic) components marginally stabilized. In addition, as the 0n - value 

increases, the growth rate shifts towards the high-K regime (figure 2.1(a)). It indicates that 

denser the fluid, higher the growth of the mechanical perturbations in the fluid, and vice-

versa. Moreover, the magnitude of both the phase velocity (figure 2.1(b)) and group 

velocity (figure 2.1(c)) of the fluctuation reduces with the 0n -increment, and vice-versa. 

Thus, it can be inferred that 0n  acts as a deceleration agent to the instability dynamics. 

 

                                   

 

Figure 2.2: Same as figure 2.1, but with a fixed 
22

0 10n  m-3 for different 0T  values.  

 

As in figure 2.2, we portray the same as figure 2.1, but with a fixed 
22

0 10n  m-3 

for different values of the equilibrium fluid temperature  0T . It is seen that, for a given 0T

, the growth  decreases towards the high-K regime (figure 2.2(a)). As 0T increases, the 

growth rate increases, and vice-versa. It indicates that hotter fluids are more unstable, and 

vice-versa. The phase velocity (figure 2.2(b)) and group velocity (figure 2.2(c)) evolve in 

the same fashion as discussed previously (figure 2.1). Thus, 0T  acts as destabilizing and 

decelerating agency to the fluid instability evolution under the action of self-gravity. 
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Figure 2.3: Same as figure 2.1, but with a fixed 
22

0 10n  m-3 for different n  values.  

 

As in figure 2.3, we display the same as figure 2.1, but with a fixed equilibrium 

density 
22

0 10n  m-3 for different values of polytropic index  n . It is seen that, for a given 

n, the growth rate decreases towards the high-K regime (figure 2.3(a)). It hereby indicates 

that only the long-wavelength (gravitational) fluctuations undergo active growth. 

Furthermore, as the n value increases, the growth rate shifts towards the low-K (long-

wavelength) regime (figure 2.3(a)). It implicates that, bigger the n-value, more stable is the 

fluid. Moreover, the magnitude of the phase velocity (figure 2.3(b)) increases and that of 

the group velocity (figure 2.3(c), wave packet) decreases towards the low-K regime. This 

correlation between the phase velocity and group velocity is supported by our obtained 

two-fold velocity relationship (equation (2.31)). Thus, it may be inferred that n acts as both 

stabilizing and decelerating agents towards the dynamical fluctuations. 

 Like-wise, in figure 2.4, we depict the same as figure 2.1, but with a fixed 
22

0 10n  

m-3 for different values of effective generalized viscosity   . It is found that the growth 

rate (figure 2.4(a)) of the instability varies in a similar pattern as in (figure 2.3(a)) for a 

given polytropic index, n. As the  value increases, the magnitude of both the phase 
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velocity (figure 2.4(b)), and the group velocity (figure 2.4(c)) increases, and vice-versa. 

Thus,   acts as both stabilizing and accelerating agents for the instability. 

         

                                        

 

Figure 2.4: Same as figure 2.1, but with a fixed 
22

0 10n  m-3 for different   values. 

 

 Parallelly, as in figure 2.5, we show the same as figure 2.1, but with a fixed 

22

0 10n  m-3 for different values of viscoelastic relaxation time  m . The growth rate 

(figure 2.5(a)), phase velocity (figure 2.5(b)), and group velocity (figure 2.5(c)) vary in a 

similar fashion as in the case of the 0n variation highlighted above (figure 2.1).  Thus, m  

plays as both stabilizing and decelerating influential agents to the instability.  

Lastly, as in figure 2.6, we present comparative profiles of the normalized (a) 

growth rate  i , (b) phase velocity  
pV , and (c) group velocity  

gV  with variation in the 

Jeans-normalized wavenumber  K  for different fluid configurations. The different lines 

link to (i) pure inviscid nebular fluid model (blue solid line) [1], (ii) viscoelastic fluid model  

(red dashed line) [6], and (iii) our complex viscoelastic fluid (black dotted line), 

respectively. In pure inviscid nebular fluid model (case (i)), we take the mean temperature 

600 T  K, equilibrium number density 
22

0 10n  m-3, and polytropic exponent 
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 11 1n    . In viscoelastic fluid model (case (ii)), we take the effective generalized 

viscosity 110   kg m-1 s-1, and viscoelastic relaxation time 
210m  s in addition to 

case (i). In our complex fluid model (case (iii)), we take the polytropic index 1n , 

volumetric expansion coefficient 210   K-1 in addition to case (ii). The pure Jeans 

growth extends over a critical Jeans length scale alone (K=1). The viscoelastic Jeans growth 

spectrally extends over a sub-critical Jeans length (K<1). The complex Jeans growth 

extends over a super-critical Jeans length (K>1). At the same time, both the pure Jeans and 

viscoelastic Jeans growths achieve a common maximum value of unity in the same K-

regime; whereas, the complex Jeans growth surpasses the former two (in both 
i , K). As 

a consequence, all the realistic factors considered in our complex model afresh combine 

together hand-in-hand to both enhance (in 
i ) and broaden (in K ) the Jeans instability 

against the pure idealistic simpler situations mentioned previously. In other words, it is seen 

that viscoelastic fluids are the most stable, our complex fluid is the most unstable and pure 

ideal nebular fluid is lying in between the two. The reason behind this is that all the factors 

considered before lead the fluid system towards reduced stability. It is only the combined 

effects of the volume expansion and polytropicity (which are not considered before) lead 

the complex fluid of our interest towards enhanced instability.    

 

                                           

Figure 2.5: Same as figure 2.1, but with a fixed 
22

0 10n  m-3 for different m  values.  
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Figure 2.6: Same as figure 2.1, but for different fluid configurations. 

 

In summary, it may, consequently, be conjectured in a nutshell that the various 

stabilizing (destabilizing) and accelerating (decelerating) sources stemming from the 

considered complex fluid properties affecting the dynamics of the instability are 

numerically identified and characterized. Besides, a comparative numerical standpoint is 

provided to judge the significance features of our instability analysis over the previously 

reported results by others [1, 6]. In the all the cases discussed above (figures 2.1-2.6), the 

gravitational instability growth achieved the maximum value  1i   in the localized large-

scale gravitational wavelength regime  1K  ; elsewhere, the growth decreases to a non-

negative zero-value. It indicates that the simultaneously coupled action of growth and decay 

in the considered fluid model is not supported, which may in principle, be possible for an 

electrified self-gravitating fluid under the combined action of various long-range forces. 

As a reliability checkup of the investigated examination, the key model findings more 

specifically proposed here go in good accord with all the earlier predictions and results 

made by others separately in the context of gravitating fluid instability dynamics [1-6, 22]. 
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2.4 CONCLUSIONS 

We investigate herein the long-range self-gravitational instability dynamics in a large scale 

viscoelastic fluid medium. The formalism is centred in a self-gravitational GH model 

configuration of realistic astronomical relevancy. The key influential properties are 

simultaneously considered in the dynamical configurations. In the fabric of one component 

hydrodynamic fluid, it considers fluid polytropicity, non-thermality, buoyancy effects, and 

so on. A new set of base evolution equations is systematically built up in the fabric of the 

considered factors. The fluid configuration is assumed initially to be in a hydrostatic 

homogenous equilibrium. A local linear normal analysis decouples the perturbed fluid 

equations into a linear generalized dispersion relation of quadratic nature having a unique 

set of multi-parametric coefficients. It is worthwhile to mention here that the free energy 

source for such unipolar instabilities arises from the fluid currents driven by the self-gravity 

itself. More simply, the free energy source here is associated with the non-local fluid self-

gravity. The investigated instability remains unaffected due to the considered thermo-

mechanical diffusion processes unlike the traditional instability mechanisms in the 

presence of gravitational effects. The reliability of our analytic calculation scheme is 

fruitfully bolstered in light of the exact reproducibility of the well-established dispersion 

relations for the similar gravitational instability in both purely non-ideal viscoelastic fluid 

and purely ideal inviscid nebular fluid in isolation available widely in the literature [1, 6]. 

A numerical illustrative platform is subsequently put forward to explore the 

propagatory features of the gravitational instability in the light of judicious input multi-

parametric values available in the literature. An inter-relationship between the phase 

velocity and group velocity is reliably established in a perfect match with the existing usual 

one. The stabilizing (destabilizing) and accelerating (decelerating) factors affecting the 

instability evolution are explored. It is shown that the equilibrium fluid concentration, 

polytropic index, effective generalized viscosity and viscoelastic relaxation time act as 

stabilizing factors to the fluid against the self-gravitational collapse dynamics. In contrast, 

the equilibrium temperature behaves as a destabilizing agency. In addition, it is only the 

effective generalized viscosity that boosts up the instability (as a wave-packet). It is further 

speculated that the equilibrium concentration, equilibrium temperature and viscoelastic 

relaxation time accounting for the memory effects shift the instability growth towards the 

smaller wavelength regimes (high-K). On the contrary, the polytropic index and the 

effective generalized viscosity shift the instability growth towards the longer wavelength 
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domains (low-K). At the last, a comparative foundation is numerically illustrated to 

examine the validation of our proposed instability analysis reliably in the auspice of the 

Jeans instability naturalistically triggered in an ideal inviscid nebular fluid [1] and non-

ideal viscoelastic fluid [6] as elaborately described in the literature. 

The proposed model analysis can be widely continued to explore the non-linear 

eigen-mode structures existing in diversified realistic astronomical fluid environments with 

the help of applied perturbative techniques [23, 24]. In addition, the semi-analytic findings 

reported herein could be commodiously helpful in understanding the gravito-thermally 

triggered coupled collective instability and saturation phenomena in super-dense compact 

astrophysical objects and their circumvent ambient atmospheres. This is because of the 

well-established fact that this class of compact astro-structures indeed exhibit a plethora of 

conjoint correlative heterogeneous coupling effects in the form of wide-range collective 

viscoelastic wave excitations and evolutionary processes of real astronomical value [2, 7]. 
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