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CHAPTER-3 

 

INVESTIGATION OF NON-LINEAR FLUCTUATION DYNAMICS IN 

COMPLEX VISCOELASTIC ASTROFLUIDS 

 

Abstract: The non-linear evolutionary dynamics of self-gravitational instability of the 

model mentioned in Chapter-2 is semi-analytically investigated on the Jeansian scales of 

space and time. Ϯ A non-linear normal mode (local) analysis yields a Korteweg-de Vries 

(KdV) equation with a unique set of multi-parametric coefficients. The KdV dynamics 

excites an interesting spectral class of compressive solitary chain patterns as the 

evolutionary eigen-modes having atypical dynamical behaviour. Their diversified 

characteristic features are explained elaborately alongside phase-plane analysis. Various 

stabilizing (destabilizing) and accelerating (decelerating) factors of the instability are 

illustratively explored together with a validated reliability checkup. The relevancy of our 

investigated results in the context of super-dense compact astro-objects and their 

circumvent viscoelastic atmospheres is briefly outlined. 

 

3.1 INTRODUCTION 

The dynamical mechanism responsible behind aggregation of matter and formation of 

various astrophysical structures, such as comets, asteroids, etc., in astro-cosmic 

environments are widely described by so-called gravitational (Jeans) instability [1]. Such 

instabilities occur when the internal pressure force (randomizing outward) is not sufficient 

to prevent the gravitational pressure (organizing inward) leading to dynamic fragmentation 

or collapse [2, 3].  

A good number of investigations have been made on the gravitational instabilities 

in different self-gravitating fluid configurations in the past. The studies are mainly focused 

on exploring the various stabilizing and destabilizing agencies for the instability having a 

great impact in the initiation processes of astro-proto-structures [4-9]. In this direction, 

Chandrasekhar has found that the non-local self-gravitational collapse dynamics is 

independent of the action of both the uniform rotation and the uniform magnetic field 

separately or conjointly in an infinite homogenous fluidic medium [4]. Tsiklauri has 

investigated such instabilities in interstellar neutral gaseous cloud in the presence of weakly 
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interacting massive particles (WIMPs). The WIMPs always reduce both the Jeans length 

and the Jeans mass for the onset of the instability in the cloud [7]. Besides, various 

instability features on gravitationally coupled complex bi-fluidic admixture of neutral fluid 

and dark matter fluid in the viscoelastic framework have also been reported in both the 

linear [5, 6] and non-linear [8] regimes. In addition, several authors have found that the 

linear instability in a self-gravitating viscoelastic medium occurs at a lower wavenumber 

against the purely neutral gas scenarios. The thermo-elastic pressure effects have been 

reported to introduce stabilizing influences to the instability [9, 10]. It can be eventually 

noted that the non-linear gravitational dynamics excitable in a self-gravitating complex 

viscoelastic medium in the presence of all the possible hydrodynamic complications has 

still been lying as an open problem to be well explored. In Chapter-2, we have discussed 

the linear gravitational instability excitable in neutral viscoelastic media under the 

simultaneous effects of polytropicity, fluid buoyancy, thermal fluctuation, volumetric 

expansion, and so forth [10]. The investigation of non-linear dynamics of such systems may 

alter the characteristics of various parameters in the system at a macroscopic level. 

We, herein, propose a theoretical study on non-linear evolutionary dynamics of the 

gravitational instability of the model as described in Chapter-2. A non-linear normal mode 

(local) analysis around a hydrostatic homogeneous equilibrium yields a Korteweg-de Vries 

(KdV) equation with a unique set of multi-parametric coefficients. The analytic reliability 

of our calculations is reliably validated in the light of the existing reports in similar 

astrophysical environs. We construct a numerical illustrative standpoint to demonstrate 

how the KdV dynamics excites an interesting spectral class of compressive solitary chain 

patterns as the evolutionary eigen-modes of different features explained elaborately 

alongside applicability. 

  

3.2 PHYSICAL MODEL AND FORMALISM 

A generalized hydrodynamic (GH) model to study the non-linear evolution of the 

gravitational (Jeans) instability in a complex viscoelastic correlated fluid is considered. It 

takes into account all the possible realistic effects in the fluid dynamics, such as 

polytropicity, fluid buoyancy, thermal fluctuations, volumetric expansions, and so forth 

[10]. The viscoelasticity in the considered configuration arises due to the mutualistic 

interactions among the diversified constituents of the fluid [11]. As a result, it exhibits the 

properties of both viscosity and elasticity. The viscoelastic nature of the fluid is reported to 

cause the development of a plethora of collective excited waves, fluctuations and 
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oscillations [11, 12]. It subsequently indicates that astrophysical and cosmic fluids are to 

be categorically treated in a more profound justified fabric of the lowest-order 

viscoelasticity [12]. Such physical circumstances are realistically encountered in a large 

number of astro-cosmic environs, such as super-dense compact astro-objects and their 

surrounding gaseous atmospheres [9-14].  

The macroscopic dynamics of the net flux-density (continuity equation) and the net 

force-density (momentum equation) of the fluid with all the customary notations [9, 10] are 

respectively given in a coupled form as  
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where,   is the fluid material density, v  is the bulk fluidic flow velocity, m  is the 

viscoelastic relaxation time,   is the volumetric expansion coefficient, T  is the fluid 

temperature,   is the polytropic exponent, and  11 n  is the polytropic index [2, 3]. 

  is the non-local long-range gravitational potential. Furthermore,   and   are the shear 

viscosity coefficient (first viscosity, offering resistance to flow) and bulk viscosity 

coefficient (second viscosity, offering resistance to volumetric expansion), respectively [5, 

6, 8, 9]. The

 

normal sound phase speed (Newtonian) in the fluid is given as 

  21

0 mTkc Bs  , with m as the constituent mass of the fluid and 
231038.1 Bk J K-1 as 

the Boltzmann heat-energy coupling constant [5, 6, 8]. 

The bulk fluidic state amid expansion and compression processes incorporating heat 

transfer is described by the polytropic equation of state given as 

  0,v P
t x
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  

  
                                                                                                         (3.3)  

where,  d dt t v x       is a linear temporal operator representing the convective 

(material) derivative. A few remarks on equation (3.3) are as the following. The 

gravitational instability in self-gravitating complex fluids naturalistically leads to 

aggregation or rarefaction of matter in space leading subsequently to structure formation. 

The interplay between gravitational force (inwards) and pressure force (outwards) 

generates various thermo-dynamical processes including compression and expansion of the 

constitutive fluid matter. These processes are explained in a combined generalized form 
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with the help of a polytropic equation of state P C   , where   is the polytropic 

exponent and C  is the polytropic constant [2, 3]. The different values of   signify different 

polytropic processes depending on the involved thermodynamic. For instant, 0   for 

isobaric process, 1   for isothermal process,    for isochoric process, a p vc c    

termed as the adiabatic exponent indicates to an adiabatic process, and so forth.   

The evolution of the fluid temperature due to the microscopic thermal motion of the 

fluid constituent particles can be given with the help of heat diffusion law [10] as 
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where,
 

TK  is the thermal diffusivity of the fluid. Similarly, the evolutionary equation for 

the the  - field [13] is cast as 

2

2Mv K
t x x

    
 

  
 ,                                                                                                            (3.5)  

where, 
MK  is mass diffusivity of the fluid. Finally, the closure is given by the gravitational 

Poisson equation [5, 6, 8, 9] which relates the spatial  -distribution with the  - field as 
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where, 111067.6 G  N m2 kg-2 is the universal (Newtonian) gravitational constant via 

which the constituent particles of the fluid gravitationally interact. 0  is the equilibrium 

density accounting for modelling the so-called Jeans swindle [1-3]. Needless to add that 

the swindle ignores the zeroth-order force field effects and considers the unperturbed 

macroscopic state of the fluid as a hydrostatic homogeneous one. This is possible when the 

inward self-gravitational attraction in the fluid is balanced by the outward expansive 

repulsion in the fluid caused by the cosmic pressure field force effects [1-3]. 
 

For a scale-invariant (scale-free, non-dimensional) analysis, a standard 

astrophysical normalization technique relevant on the Jeansian scales of space and time is 

used [5, 6, 8]. The normalized fluid governing equations (3.1)-(3.6), thus constructed, are 

respectively given as
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Here, the independent parameters Jx    and Jt    are the normalized distance and 

time, respectively. The symbols, 
JsJ c    and   21

0

1 4
  GJJ  , represent the 

Jeans scale length and Jeans time scale, respectively. 
s

cvM 
 
is the normalized (by sc )  

flow speed (Mach number) of the fluid.    is the normalized (by 
2

sc ) gravitational 

potential. *  is the normalized (by 
0 ) fluid material density. 

*P  is the normalized (by 

equilibrium pressure, 0P ) pressure. 
*T  is the normalized (by equilibrium temperature, 0T ) 

temperature.  

We apply a standard reductive perturbation technique for investigating the non-

linear instability dynamics in the considered self-gravitating complex fluid [15-18]. It is 

based on the assumption that the non-linearly perturbed relevant parameters are much 

feebler than their corresponding equilibrium parametric values. Accordingly, all the 

relevant dependent fluid parameters (F) undergo weakly non-linear perturbations ( F ) 

around their local hydrostatic homogeneous equilibrium parametric values ( 0F ) in an 

expansive form as follows 

0

1

F F F









  ,                                                                                                                 (3.13)

* * *[ ] ,TF M T P                                                                                                       (3.14)



40 
 

0 [1 0 1 1 0] ,TF                                                                                                                  (3.15)

* * *[ ] ,TF M T P                                                                                                       (3.16) 

The running spatiotemporal coordinates,   and  , are now transformed into a new space 

defined by the stretched coordinates as  * 1 2:x      and * 3 2:t   , respectively. 

Here,    1  is a smallness order parameter that signifies the normalized relative wave 

amplitude of the lowest-order collective perturbations. In the newly defined space  * *,x t

, the linear differential operators are auto-transformed as  1 2 *x      , 

 2 2 2 *2x      , and    3 2 * 1 2 *t x          . Application of equations 

(3.13)-(3.16) in equations (3.7)-(3.12) generates different non-linearly perturbed forms of 

the relevant physical parameters. An order-by-order analysis on the both sides of equation 

(3.7) yields 
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Similarly, the perturbed form of equation (3.8) comes out as 
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Again, the perturbed form of equation (3.9) reduces as 
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Now, equation (3.17) yields 
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Again, from equation (3.18), one derives 
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Like-wise, from equation (3.19), we get 
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A spatial differentiation of equation (3.27) yields 
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 Now, equation (3.20) in the light of equation (3.24) and equation (3.29) results in 
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Here, 
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It is evident from equation (3.33) that the non-linear wave steepening (second term, 

convective effect due to fluidity) in our complex fluid model is caused by the referral frame 

velocity (via 2A  , equation (3.34)). In contrast, the linear wave dispersion (third term, 

broadening effect) is sourced from the crisscross coupling of the conjoint influences caused 

by the referral frame velocity, volumetric expansion, thermo-polytropicity, and generalized 

effective viscosity (via B, equation (3.35)). We are interested in the steady-state (stationary) 

evolution of the fluctuations. It is done conveniently in a Galilean comoving coordinate 

transformation [15-18], * *s x t  , such that linear differential operators go as 

*x s      and *t s     . So, equation (3.33) turns into an ordinary differential 

equation in a time-stationary form as                            
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                                                                                              (3.36) 

It is seen that the weakly non-linear dynamics of the gravitational instability supported in 

the viscoelastic complex fluid is collectively governed by the stationary KdV equation 

(equation (3.36)). In order for exploring the macrophysical insights of the exact patterns of 

the instability, we execute a constructive numerical analysis to illustrate the results in the 

next section. 

3.3 RESULTS AND DISCUSSIONS 

The non-linear dynamics of the self-gravitational instability supported in a complex 

viscoelastic fluid model is analyzed in the GH framework on the Jeans scales of space and 

time. It includes the effects of polytropicity, thermal fluctuations, volumetric expansions, 

fluid buoyancy, and so forth. A non-linear normal mode analysis reduced the perturbed 

infinite planar fluid into a stationary KdV equation (equation (3.36)) governing the 

instability. The KdV equation is semi-analytically treated to explore various propagatory 
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features of the instability illustratively. The results are pictorially depicted as in figures 3.1-

3.8. 

 

 

 

 

 

 

 

 

Figure 3.1: Profile of the normalized (a) perturbed density with variation in the normalized 

distance, (b) perturbed density gradient with variation in the normalized distance, and (c) 

density phase portrait in a phase plane defined by the perturbed density and its gradient 

for different values of the equilibrium fluid temperature  0T . 

 

In figure 3.1, we present the profile patterns of the normalized (a) perturbed density 

with variation in the normalized distance, (b) perturbed density gradient with variation in 

the normalized distance, and (c) density phase portrait in a phase plane defined by the 

perturbed density and its gradient for different equilibrium fluid temperature   0T  values 

[19]. The different input values used in the numerical analysis are: polytropic index, 1n

[20], mean number density, 22

0 10n m-3 [21, 22], volumetric expansion coefficient, 

210  K-1 [23], effective generalized viscosity, 
210   kg m-1 s-1 [14], viscoelastic 

relaxation time 210m  s [14], and normalized referral frame velocity 5.0  [16]. The 

various initial values used here are:   01.0
01  ,   0001.0

01 dsd  and 
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  00001.0
0

2

1

2 dsd  . It is seen that, for a given 0T , the dynamics of the complex fluid 

evolves as a compressive solitary chain pattern. As 0T  increases, the maximum solitary 

peak shifts inwards with no change in the wave amplitude, thereby indicating that it travels 

faster towards the centre (figure 3.1(a)). As a consequence, the wave patterns reorganize 

the fluid against the perturbation in a new redistributed form in the form of the fluid material 

transportation. It is further seen that, as 0T  increases, the amplitude of the field fluctuations, 

evolving as an admixture of compressive and rarefactive solitary chains, enhances with the 

peak positions shifting inwards (figure 3.1(b)). It indicates that, the fluid becomes unstable 

with the 0T -enhancement, and vice-versa. The phase portrait trajectories emerging out from 

the fixed point indicate stable limit cycles of the fluid dynamical oscillations. The closed 

nature of the geometrical patterns indeed reflects that the weakly non-linear fluid 

fluctuation dynamics is a conservative one. It is further revealed in the phase-plane analysis 

that, only the fixed points in all the non-chaotic phase portraits remain absolutely unaffected 

irrespective of the 0T - enhancement (figure 3.1(c)). Alternatively speaking, the fluid 

density extrema are stable fixed points. Thus, 0T  acts as a destabilizing agent for the 

complex self-gravitating fluid instability with the help of bi-fold action as the solitary pulse-

peak shifts towards the centre (figure 3.1(a)), and perturbed density fluid amplitude 

enhancer (figure 3.1(b)).  

As in figure 3.2, we display the same as figure 3.1, but for different normalized 

referral frame velocity )(  values at a fixed temperature, 
0 80T   K. It is seen that, as the 

 -value increases, the maximum solitary peak position shifts outwards with the wave 

amplitude getting reduced, and vice-versa (figure 3.2(a)). It indicates that the solitary peaks 

travel slower towards the centre. Also, the amplitude of the corresponding field fluctuations 

decreases with increase in  , and vice-versa (figure 3.2(b)). It is further seen that an 

increment in the  -value renders a phase curve contraction; but always in a closed 

conservative form with variable amplitude; and vice-versa (figure 3.2(c)). It may be 

physically attributable to the relative de-coherent (non-resonant) interaction between the 

gravitational fluid fluctuations of external macroscopic origin and the background acoustic 

random fluctuations of internal microscopic origin. In all and totality, it is found that the 

referral velocity,  , acts as an amplitude reducer. Therefore,   acts as a stabilizing agent 

to the fluid against the non-local self-gravitational collapse dynamics. 
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Figure 3.2: Same as figure 3.1, but for different values of the normalized referral frame 

velocity    at a fixed 
0 80T   K. 

 

 

 

 

 

 

 

Figure 3.3: Same as figure 3.1, but for different values of the generalized effective viscosity   

at a fixed temperature 0 80T   K.  
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Figure 3.4: Same as figure 3.1, but for different values of the viscoelastic relaxation time 

m  at a fixed temperature 
0 80T   K.  

 

In figure 3.3, we show the same as figure 3.1, but for different generalized effective 

viscosity )(  values with a fixed temperature, 
0 80T   K. It is found that, as   increases, 

solitary peak position shifts outward with no change in amplitude (figure 3.3(a)). It 

indicates that the solitary peaks travel slower towards the centre. The fluid viscosity is high 

enough to resist the bulk fluid flow and volumetric fluid expansion. So, the fluid is 

reorganized against the perturbation applied to it. In addition, the amplitude of the 

corresponding field fluctuations decreases with the  -value, and vice-versa (figure 3.3(b)). 

Moreover, it is found that the phase curves are in closed conservative form, remaining 

unaffected with   at the fixed point (figure 3.3(c)). As a consequence,   acts as a 

stabilizing agent to the fluid instability dynamics. 

In figure 3.4, we portray the similar periodic solitary chain patterns as figure 3.1, 

but now for different viscoelastic relaxation time )( m  values at a fixed temperature, 

0 80T   K. The instability evolves here (figure 3.4) in a similar fashion as in figure 3.1, but 
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in new conditions. The only distinction found here is that, as m  increases, the amplitude 

of the solitary field fluctuations, evolving as an admixture of compressive and rarefactive 

solitary chains, enhances with the peak positions shifting inwards (figure 3.4(b)).  Thus, m  

acts as destabilizing agent to the instability dynamics. 

In figure 3.5, we depict the same as figure 3.1, but for different mean equilibrium 

number density )( 0n  values at a fixed temperature, 
0 80T   K. It is found that the 

evolutionary instability patterns here are the same as in figure 3.1. As a result, we infer that 

0n  acts as the destabilizing agent to the instability leading to diversified structure formation 

processes [5-9]. 

 

 

 

 

 

 

 

 

Figure 3.5: Same as figure 3.1, but for different values of the mean equilibrium number 

density 0n  at a fixed temperature 0 80T   K. 

 

In figure 3.6, we display the same as figure 3.1, but for different polytropic index 

)(n  values at a fixed temperature, 0 140T   K. The variation of the instability patterns due 

to the different n -values are the same as figure 3.3. So, it can be inferred that n  acts as a 

stabilizing agent to the fluctuation dynamics leading to non-local structure formation 

mechanisms. 
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Figure 3.6: Same as figure 3.1, but for different values of polytropic index n  at a fixed 

temperature 0 140T   K.  

 

In figure 3.7, we portray the same as figure 3.1, but for different volumetric 

exponent )(  values at a fixed temperature, 
0 80T   K. It is seen that the peak-to-peak 

separation in the perturbed potential increases with decrease in the volumetric thermal 

expansion, and vice-versa. It is interesting to note that the potential fluctuation amplitude 

remains almost the same (figure 3.7(a)). The corresponding field fluctuation evolves in 

such a way that the peak-to-peak separation increases with decrease in the volumetric 

thermal expansion, but the field amplitude goes on reducing; and vice-versa (figure 3.7(b)). 

The remaining instability patterns, particularly in the geometrical trajectories (figure 3.7(c)) 

due to the  -variation, is the same as figure 3.1. The main physical mechanism responsible 

behind may be ascribable to the fact that larger the fluid volume, more massive the fluid is; 

thereby, the fluid getting more unstable, and vice-versa. As an overall consequence, it can 

be concluded that volumetric exponent behaves as a destabilizing agency to the instability 

evolutionary dynamics.  
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Figure 3.7: Same as figure 3.1, but for different values of volumetric exponent   at a fixed 

temperature 
0 80T   K. 

 

In figure 3.8, we show the same as figure 3.1, but for different fluid configurations 

on a comparative footing for a fixed 
0 80T   K. The different lines link to (i) pure inviscid 

nebular fluid model (blue solid line), (ii) non-ideal viscoelastic fluid model (red dashed 

line), and (iii) our complex non-ideal viscoelastic fluid (black dotted line), respectively. In 

case (i), we take 22

0 10n  m-3, and  11 1n    . In case (ii), we take 
110   kg m-1 s-

1, and 210m  s in addition to case (i). In case (iii), we take 1n , and 
210   K-1 in 

addition to case (ii). It is seen that the solitary peak-to-peak separation decreases with 

enhanced fluid complications, and vice-versa. Thus, the peak-to-peak separation in case (i) 

is the maximum and that in case (iii) is the minimum with case (ii) lying as an intermediate 

in the peak-separation value in the coordination space. It is clearly evident that viscoelastic 

non-ideal fluids are more stable than pure ideal inviscid fluids against non-local 

gravitational collapse due to the combined action stemming from the effects of temperature, 

generalized viscosity, relaxation time, referral frame velocity and number density. Our 
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considered complex fluid is more unstable than the remaining two fluids as mentioned 

above. This is due to the additional destabilizing effects by the thermometric volume 

expansion in contrast with those without thermal expansion. 

 

Figure 3.8: Same as figure 3.1, but for different fluid configurations on a comparative 

footing for a fixed 
0 80T   K.  

 

It may be noted here that in the case of the Newtonian fluids, the threshold condition 

required for the onset of the linear gravitational instability is given on the angular 

wavenumber with all the generic notations as Jk k , where 04J sk G c   is the critical 

Jeans angular wavenumber [9]. In the present case of the non-linear gravitational 

instability, the instability onset condition is analogously given by the fact that the scale size 

of the self-gravitating viscoelastic fluids must be greater than J , which means that the 

normalized cloud fluid size must be greater than 1 for the gravitational perturbation to grow 

as clearly evident in figures (3.1)-(3.8),  where 
1

J Jk   is the critical Jeans wavelength. 

In order for further validation of our results, it would be nice to compare the 

presented study, despite its infancy stage, with the existing closely related reports, if any. 

Accordingly, let us now compare the analysis at least with the gravitational fluctuation 
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dynamics associated with the co-rotating viscoelastic neutral gas fluid gravitationally 

coupled with the viscoelastic dark matter fluid [8]. In this case, the dynamics is conjointly 

governed by a unique conjugated pair of viscoelastic forced Burgers (VFB) equations 

thereby yielding solitons and shocks of hybrid characteristics. The non-linear eigen-mode 

patterns explored here are furthermore in good agreement with the non-linear waves 

excitable as “clump-filament entities” in self-gravitating star-forming molecular clouds 

with partial ionization previously reported elsewhere [24]. In addition, the investigated non-

linear wave features may be used as an alternative analytic element to understand the 

various interesting multi-space satellite (e.g., Freja, Viking, and so forth) observations on 

the existence of diversified atypical non-linear solitary pulse-like wave disturbances in 

different broad-band astro-space-cosmic environs collectively [25-27]. The theoretically 

investigated non-linear density wave structures are fairly in good accord with the 

observations of the irregular pulse-pattern features. It hereby judiciously puts forward both 

the analytic reliability and astro-space applicability of the proposed semi-analytic fluid 

stability analysis alongside the associated non-linear wave structures. Most importantly, 

the investigated eigen-mode signatures could play influential concretized roles in the 

mechanism of energization, transportation and redistribution of the fluid constitutive 

particle producing non-homologous dense sites in diversified interstellar fluid media 

subsequently converted into bounded neonatal astrophysical structures, such as 

stellesimals, planetsimals, and so forth. 

 

3.4 CONCLUSIONS  

A semi-analytic investigation is systematically carried out to see the non-linear 

evolutionary dynamics of self-gravitating viscoelastic complex fluids on the Jeansian scales 

of space and time. The complex fluid is assumed to be illimitable in nature, thereby paving 

the wave for planar geometry approximation. It concurrently incorporates key realistic 

influential factors relevant for astrofluid, such as polytropicity, thermal fluctuations, 

volumetric expansions, fluid buoyancy, etc. A new basic set of governing generalized fluid 

equations is procedurally formulated in the light of all such key factors. A standard 

reductive perturbation technique reduces the non-linearly perturbed fluid into a KdV 

equation of atypical shape and construct. 

A judicious numerical analysis is performed to explore various stabilizing and 

destabilizing factors to the fluid instability dynamics in an illustrative platform. The 

analysis shows that the perturbed density evolves as an admixture of compressive and 
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rarefactive solitary chain patterns. The closed loops in the form of geometrical trajectories 

confirm the conservative nature of the weakly non-linear perturbation dynamics in the fluid 

system. It is found that the fluid temperature, viscoelastic relaxation time, number density 

and volumetric expansion play as destabilizing agencies to the instability dynamics. In 

contrast, referral frame velocity, generalized effective viscosity and polytropic index act as 

a stabilizing agent to the fluctuating system against the non-local gravity. A comparative 

analysis is provided for a comparative reliability checkup of our model under the auspice 

of pure ideal nebular fluid, non-ideal viscoelastic fluid and our considered complex fluid 

simultaneously. It is furthermore found that the complex fluids are the least stable, 

viscoelastic fluids are the most stable, and pure ideal nebular fluid is in intermediate 

stability lying between the two. The characteristics of key instability featuring factors is 

shown in Table 3.1 in the Appendix-3.A. 

The analytic reliability and astro-space applicability of the proposed semi-analytic 

fluid stability analysis alongside the associated non-linear wave structures resembling the 

various previously reported multi-space satellite observations are briefly indicated. The 

investigated eigen-mode signatures may be relevant in the mechanism of energization, 

transportation and redistribution of the fluid constitutive particle producing non-

homologous dense sites in diversified interstellar fluid media subsequently converted into 

bounded neonatal astro-physical structures, such as stellesimals, planetsimals, etc. The 

eigen-mode structures may also be of extensive significance in understanding the complex 

fluid dynamics and associated instabilities in super-dense compact astroobjects, their 

surrounding atmospheres, and so forth.   

 

REFERENCES 

[1]  Jeans, J. H. The stability of a spherical nebula. Philosophical Transactions of the 

Royal Society, 199: 1-53, 1902. 

[2] Binney, J. and Tremaine, S. Galactic Dynamics. Princeton university press, 

Princeton, 1987. 

[3] Mo, H., Van den Bosch, F., and White, S. Galaxy Formation and Evolution. 

Cambridge University Press, Cambridge, 2010. 

[4] Chandrasekhar, S. Hydrodynamic and Hydromagnetic Stability. Clarendon Press, 

Oxford, 1961. 



53 
 

[5] Karmakar, P. K. and Das, P. Instability analysis of cosmic viscoelastic gyro-

gravitating clouds in the presence of dark matter. Astrophysics and Space Science, 

362: 142. 1-13, 2017. 

[6] Das, P. and Karmakar, P. K. Instability behaviour of cosmic gravito-coupled 

correlative complex bi-fluidic admixture. Europhysics Letters, 120: 19001. p1-p7, 

2017. 

[7] Tsiklauri, D. Jeans instability of interstellar gas clouds in the background of weakly 

interacting massive particles. Astrophysical Journal, 507: 226-228, 1998. 

[8] Karmakar, P. K. and Das, P. Stability of gravito-coupled complex gyratory 

astrofluids. Astrophysics and Space Science, 362: 115. 1-9, 2017. 

[9] Janaki, M. S., Chakrabarti, N., and Banerjee, D. Jeans instability in a viscoelastic 

fluid. Physics of Plasmas, 18: 012901. 1-5, 2011. 

[10] Gresho, P. M. and Sani, R. L. Incompressible Flow and the Finite Element Method. 

Wiley, New York, 1998. 

[11] Frenkel, J. Kinetic Theory of Liquids. Oxford University Press, Oxford, 1946. 

[12] Brevik, I. Temperature variation in the dark cosmic fluid in the late universe. 

Modern Physics Letters A, 31: 1650050. 1-12, 2016. 

[13] Raymond, J. and Skarda, L. Convective Instability of a Gravity Modulated Fluid 

Layer With Surface Tension Variation. AIAA-98-2599, New Mexico, 1998. 

[14] Borah, B., Haloi, A., and Karmakar, P. K. A generalized hydrodynamic model for 

acoustic mode stability in viscoelastic plasma fluid. Astrophysics and Space 

Science, 361: 165. 1-11, 2016. 

[15] Das, P. and Karmakar, P. K. Nonlinear waves in viscoelastic magnetized complex 

astroplasmas with polarized dust-charge variations. AIP Advances, 8: 015010. 1-14, 

2018. 

[16] Karmakar, P. K. and Dutta, P. Nonlinear eigen-structures in star-forming gyratory 

nonthermal complex molecular clouds. Physics of Plasmas, 25: 012306. 1-9, 2018. 

[17] Ablowitz, M. J. Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons. 

Cambridge University Press, New York, 2011. 

[18] Wazwaz, A.-M. Partial Differential Equations and Solitary Waves Theory. 

Springer, Berlin, 2009. 

[19] Tielens, A. G. G. M. The Physics and Chemistry of the Interstellar Medium. 

Cambridge University Press, Cambridge, 2005. 



54 
 

[20] Chandrasekhar, S. An Introduction to the Study of Stellar Structure. University of 

Chicago Press, Chicago, 1938. 

[21] Camenzind, M. Compact Objects in Astrophysics. Springer, Berlin, 2007. 

[22] Mihalas, D. and Mihalas, B. W. Foundations of Radiation Hydrodynamics. Oxford 

University Press, New York, 1984. 

[23] Schwalbe, L. and Grilly, E. Thermal expansion of liquid normal hydrogen between 

18.8 and 22.2 K. Journal of Research of the National Bureau of Standards, 89: 317-

323, 1984. 

[24] Adams, F. C. and Fatuzzo, M. Nonlinear waves and solitons in molecular clouds. 

Astrophysical Journal, 403: 142-157, 1993. 

[25] Karmakar, P. K. and Haloi, A. Pulsational instability of complex charge-fluctuating 

magnetized turbulent astroclouds. Astrophysics and Space Science, 362: 152. 1-9, 

2017. 

[26] Dovner, P. O., Eriksson, A. I., Boström, R., and Holback, B. Freja multiprobe 

observations of electrostatic solitary structures. Geophysical Research Letters, 21: 

1827-1830, 1994. 

[27] Eriksson, A. I., Holback, B., Dovner, P. O., Boström, R., Holmgren, G., André, M., 

Eliasson, L., and Kintner, P. M, Freja observatons of correlated small‐scale density 

depletions and enhanced lower hybrid waves. Geophysical Research Letters, 21: 

1843-1846, 1994. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

 APPENDIX-3.A 

Table 3.1: Key instability featuring factors 

Serial 

No. 

Featuring item  Perturbed 

density 

Density gradient  Phase portrait Inference 

1 Equilibrium 

temperature 

 oT   

Solitary peaks  

shift inward, 

with no change 

in amplitude 

(figure 3.1(a)) 

Peaks shift 

inward, with 

field fluctuation 

amplitude 

increases, and 

vice-versa 

(figure 3.1(b)) 

Closed geometric 

structure, 

conservative in 

nature, fixed point 

unaffected with 

oT  (figure 3.1(c)) 

Destabilizer 

2 Referral frame 

velocity     

Solitary peaks 

shift outward, 

with amplitude 

getting reduced 

(figure 3.2(a)) 

Peak shifts 

outward, with 

field fluctuation 

amplitude 

decreases. 

(figure 3.2(b)) 

Closed geometric 

structures, 

conservative, 

Phase portrait 

contract  

(figure 3.2(c)) 

Stabilizer 

3 Generalized 

effective 

viscosity     

Solitary peaks 

shift outward, 

with no change 

in amplitude 

(figure 3.3(a)) 

Peak shifts 

outward, with 

field fluctuation 

amplitude 

decreases  

(figure 3.3(b)) 

Closed geometric 

structure, 

conservative in 

nature, fixed point 

unaffected with   

(figure 3.3(c)) 

Stabilizer 

4 Relaxation 

time  m   

Same as 1 Same as 1 Same as 1 Destabilizer 

5 Number 

density  0n   

Same as 1 Same as 1 Same as 1 Destabilizer 

6 Polytropic 

index  n   

Same as 3 Same as 3 Same as 3 Stabilizer 
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7 Volumetric 

expansion 

coefficient 

   

Similar to 1, 

peak-to-peak 

separation 

decreases 

Similar to 1,  

amplitude 

drastically 

enhances 

Same as 1 Destabilizer 

8 Fluid 

complexity 

Peak-spacing 

decreases with 

complications, 

but with same 

amplitude 

 (figure 3.8(a)) 

Solitary field 

peak-separation 

decreases with 

complications 

with variable 

amplitude 

(figure 3.8(b)) 

Closed geometric 

structure, 

conservative in 

nature, fixed point 

unaffected 

(figure 3.8(c)) 

Destabilizer 

 

 


	07_chapter 3

