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CHAPTER-4 

 

A GENERALIZED MAGNETOHYDRODYNAMIC MODEL FORMALISM OF 

GRAVITATIONAL INSTABILITY IN SPHERICAL ASTROCLOUDS 

 

Abstract: This Chapter offers a generalized magnetohydrodynamic (g-MHD) meanfluidic 

model theoretically constructed to analyze the gravitational instability dynamics excitable 

in a spherical complex astrocloud on the non-relativistic classical astroscales of space and 

time.Ϯ It concurrently includes the effects of viscoelasticity, buoyancy, polytropicity, 

volumetric thermal expansion, and so forth. A spherical normal mode analysis yields a 

unique form of a generalized linear cubic dispersion relation. It is interestingly found that 

the magnetic field in the presence of adopted non-ideality effects in the spherical astrocloud 

acts as a destabilizing agent. It sets out a new theoretic support to the existent various 

astronomic observations on the magnetic field acting as a cloud destabilizing agency in the 

presence of geometrical curvature (spherical) effects extensively reported in the literature.  

 

4.1 INTRODUCTION 

The dust molecular clouds (DMCs), well-known as the stellar nurseries, are featured with 

the physical properties of high density and low temperature relative to the background 

interstellar medium (ISM). The major constituents of such DMCs are heavy heterogeneous 

dust grains in the solid phase mixed-up with the gaseous phase of the interstellar hydrogen 

[1]. The dust is composed of graphite, silicate, and complex derivatives [2, 3]. The mean 

dust-to-gas ratio varies locally in the dense DMCs from the canonical ISM value of about 

1% to the cloud value of 20-30% [4]. The variation of such dust abundance is amid various 

naturalistic dust accumulative processes, such as the Bondi accretion, Jeans accretion, and 

so on [2]. Besides, this dust enrichment is mainly due to the presence of larger grains (0.1 

µm grains by 10%, 10 µm by 40%); and so forth [5]. Such DMCs undergo the self-

gravitational collapse subjected to the threshold condition that the inward gravitational 

force beats the outward thermal force [1, 6]. This leads to the formation of diversified 

bounded structures such as, star, planets, dwarf stars and various compact astroobjects  [1].  

This instability has been extensively studied in the HII region of DMCs [2, 3, 7-11]. 

The radiations from newly born stars or associated emission nebulae ionize the background 
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gas into plasmas ( 410~T K). The contact electrification with the electron-ion thermal 

currents renders the grains electrically charged ( 41010~ dZ ) [2, 3, 7, 8]. The resulting 

long-range electric force modifies the Jeans instability into a new hybrid pulsational mode 

amid gravito-electrostatic coupling [9-11]. The Jeans threshold criterion and propagation 

dynamics is hugely affected due to the charged dust [9-11]. Such environs are confirmed to 

exist in the HII regions in the DMCs by the Hubble space telescope [2, 3, 7, 8].  

The charged dust in the DMCs is a strongly coupled state with a higher Coulomb 

coupling parameter [ )}/()){(4/1( 2

0 dBdCou TkaeZ >>1] [12, 13]. Here, 
31)4/3( dna   

is the Wigner-Seitz radius of the constitutive identical solid dust grains. dn  is the non-

equilibrium dust number density. In the regime, 1601  Cou
, the dust fluid shows 

“viscoelasticity” [12]. It hereby exhibits simultaneously the properties of both liquid and 

solid in a generalized hydrodynamic (GH) landscape. Their conjoint conjugate action 

results in the excitation of a rich spectrum of collective oscillations, waves and instabilities 

[14-17]. To name a few, such instability classes include the viscoelastic relaxation 

instability [15], viscoelastic pulsational instability mode [17], gravito-acoustic instability 

[18], Buneman instability [19], Kelvin-Helmholtz (shear) instability [20], and so forth. 

The Jeans instability problem has been widely addressed in different astronomical 

viscoelastic fluid media in plane parallel geometry in the past, both in the linear [14, 16, 

17] and nonlinear [18] regimes. It has been found that the viscoelastic relaxation time 

stabilizes the instability in the linear regime (Chapter-2). But, it goes opposite in the non-

linear regime (Chapter-3). The fluid viscosity has been found to stabilize the astrofluid 

system in both the cases. It is realistically relevant to various astrostructures and environs, 

such as the neutron stars, dwarf stars, planetary disks, planetary interiors, and so forth [21, 

22]. Clearly, there has been a great long-sought model necessity for the inclusion of fluid 

viscoelastic properties in non-planar geometry as per the realistic spherical magnetized 

DMCs amid all the possible key electromagnetic fluid dynamical effects [1, 23]. 

In this Chapter, we consider an astronomical situation comprising of a spherically 

symmetric magnetized viscoelastic polytropic DMC treated in the framework of a 

generalized magnetohydrodynamic (g-MHD [24]) model. The goal is to see the excitation 

dynamics of gravitational instability on the non-relativistic classical astrofluidic scales of 

space and time. The spherical geometry consideration is due to the fact that the astrofluidic 

clouds (DMCs) are usually spherical in geometric shape against the traditionally treated 
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simplified planar ones [25, 26]. Examples are the Lagoon Nebula (M8) and Trifid Nebula 

(M20) in Sagittarius, Rosette Nebula (NGC 244) in Monoceros, and, so forth [1]. A 

standard technique of spherical wave analysis [27, 28] over the cloud results in a unique 

form of a generalized cubic linear dispersion relation. A numerical illustrative scheme, after 

the Cardan cubic decomposition method [29], reveals the key stabilizing and destabilizing 

factors for the first time. The temperature, polytropicity, viscoelastic relaxation time, 

effective viscosity and cloud size act as stabilizing factors. The mean constitutive mass and 

magnetic field act as destabilizing influential sources against the gravity. It is herewith 

interestingly conjectured that the field moderated with the diversified non-ideality effects 

destabilizes the spherical (non-planar) DMC. It is against the typical stability picture in the 

magnetized ideal case [30-33]. It is in fair agreement with the past astronomic observations 

that the measured magnetic pressure field is weaker than the cloud self-gravitational 

pressure field in a spherical geometry against the traditional field-stabilizing picture of 

planar (flat sheet-like) DMCs [30, 31]. The relevancy of our investigated non-trivial results 

in the inhomogeneous global cloud fragmentation instability triggering local bounded 

astrostructure formation is finally outlined. 

  

4.2 PHYSICAL MODEL AND FORMALISM 

We consider an astronomical star-forming situation constituted of magnetized spherical 

polytropic viscoelastic DMC in the g-MHD framework. It is microscopically composed of 

tiny electrons and ions (both weakly coupled species) and negatively charged heavier dust 

particulates (strongly coupled). Thus, it is only the dust fluid that has high collective 

correlation (Coulombic) against the mutualistic thermal interplay (randomizing). When the 

dimension of the DMC ( L ) in the ISM is much larger than its plasma Debye length ( D ), 

the dust-plasma system is treated as a globally quasi-neutral fluid. In our considered model, 

we estimate 6103.1 L  m and 3109.6 D  m, thereby implying a quasi-neutral DMC 

approximation as a well validated one. All the judicious inputs used in the estimation are 

discussed later in the numerical analysis. The quasi-neutrality condition allows the 

constitutive multicomponent fluids to evolve collectively as a single meanfluid landscape 

based on the small mean-free path approximation [34]. A non-relativistic approach is 

sought herein because of the relatively small magnitude of the meanfluidic flow velocity 

on the non-relativistic classical astrofluidic scales of space and time. The plasma flow speed 
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( 12.0sc  m s-1) is indeed too small for the relativistic effects [33]. Such astrofluids get 

unstable against the perturbations of all wavelengths due to the inward self-gravity [25, 28]. 

It is pertinent to add that the physical processes responsible behind the various dust-

dust interactions (e.g., direct bombardment, Coulomb scattering and Coulomb attraction-

repulsion forces) in various dusty plasma configurations are highly scale-dependent in 

nature [35-37]. The Coulomb interactions among the dust grains in a vast partially ionized 

dusty plasma is well known to affect the pure Jeans instability mode significantly by 

introducing an impure hybrid gravito-electrostatic pulsating mode [9, 10]. In the present 

case dealing with the fully ionized dusty plasma configurations in the meanfluidic 

approximation on the astrophysical spatiotemporal scales however, the collective dust-dust 

interaction mechanisms are fully averaged out. As a consequence, the consideration of the 

Coulombic interactions among the constitutive massive dust grains on the astrophysical 

spatiotemporal scales is physically irrelevant in the present astronomic backdrop.  

In our model, the Coulomb coupling parameter for the dust-dust interaction is 

261025.1 dCou Z 
 21025.1    [12, 13]. It is well in the critical domain [12, 13], which 

is needed for the fluid viscoelasticity as, 1601  Cou
. When 1Cou , the relaxation time is 

as, 
1 pm  ; where, 123  

Coump  [38]. This collision-dominated situation links to the 

"hydrodynamic continuum regime”, thereby validating the present g-MHD to use. 

We apply the non-Newtonian (Maxwellian) fluidic formalism to monitor the DMC-

dynamics on the relevant spatiotemporal scales. It is accordingly portrayed in a spherically 

symmetric coordinate system (r, t) in a usual meanfluidic g-MHD shape as 
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which is the continuity equation stating the fluid constitutive particle flux-density 

conservation law [38-41]. The meanfluid velocity is rv  and mean density is  .  
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where,  is the viscoelastic relaxation time (causing memory effects), 
11  pn  is the 

polytropic exponent (typifying cloud-centric mass condensation) with pn  is the polytropic 

index,   is the coefficient of volumetric expansion (thermal expansion).   and   are the 

shear viscosity (first viscosity, resistance to flow) and bulk viscosity (second viscosity, 

resistance to volumetric expansion) in the unnormalized (dimensional) form, respectively. 

 is the self-gravitational potential developed due to the fluid material density field.  is 

the meanfluidic temperature (in Kelvin, K).  21)/( mTkZc Bds   is the normal sound phase 

speed. The mean mass of the constitutive particles is m . The meanfluidic approach to derive 

the momentum equation is described in the Appendix-4.A.  

It is noteworthy that, in the meanfluidic approach of the current interest, the various 

heterogeneous collisional processes between the constitutive massive dust grains and other 

lighter constitutive species are averaged out to a net-zero momentum exchange in the dust 

meanfluidic frame of reference [42]. As a consequence, no conventional collisional 

momentum exchange terms are retained in the momentum equation (equation (4.2)) in the 

current g-MHD framework. In contrast, the different collisional exchange terms could be 

present in the various constitutive momentum equations describable in the fabric of a 

multifluidic formalism instead of the presented g-MHD framework. Such approaches have 

widely been reliably applied in various astrophysical and space environments with no 

violation of any generality in the past [42]. 

In this adopted meanfluidic formalism, the basic postulate inherent in equation (4.2) 

is that   and    do not spatiotemporally change on the scales of our observation. Now,   

and    in terms of the known plasma parameters are respectively given [13, 38] as 

)( 2* anm p  ,                                                                                                                       (4.3) 

)(
3

4 2* amn p  ,                                                                                                           (4.4) 

where, 
*  and 

*  are the reduced kinematic shear viscosity and reduced kinematic bulk 

viscosity in the normalized (non-dimensional) form [38] given, respectively, as 
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Here, vpsp cc /  is the ratio of the specific heat at constant pressure )( pc  to that at constant 

volume )( vc  [13, 38]. 10 )(  Tnkk BT
 denotes the isothermal ideal gas compressibility. 

TT PK )/)(/1(   )/)(9/1({)( 1

BvB NkcTnk   1)}/)(3/4(  TNkU B
 is the isothermal 

generalized meanfluidic compressibility. U  is the excess internal energy of the fluid system 

[39]. )/)}(3/(1{ 0

TTCou KKd   is a dimensionless quantity which interrelates the Coulomb 

coupling parameter and these compressibilities. The different numerical values of the above 

standard intergrals 
1I , 2I , 

1H , 3H  are tabulated for the varied 
Cou -values, derived from 

extensive molecular dynamics simulations, but founded on statistical approach [38]. 

The electromagnetic induction equation governs the magnetic field-line evolution 

with the g-MHD wave propagation dynamics in the usual notations [40] as 
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The polytropic equation of state relates the pressure (P) with density )(  expressing 

a perfect balance between the DMC heating-cooling processes [41], given as 

 pKP ,                                                                                                                              (4.8) 

where, pK  denotes the polytropic constant of the astrofluid as a polytrope.  

The self-gravitational Poisson equation relates the gravitational potential evolution 

with the material density distribution in space locally given as 




G
r

r
rr

4
1 2

2

















.                                                                                                       (4.9) 

Thus, the complex meanfluidic dynamics of the spherical DMC in the g-MHD framework 

of our interest is concurrently governed by equations (4.1)-(4.2), (4.7)-(4.9) as a closed 

dynamical system. 

The main goal of this Chapter is to see the stability of the considered spherical DMC 

in non-relativistic domain. So, we allow the relevant parameters )(F  depicting the 

spherical DMC undergo small-scale (linear) perturbation [43, 44] )( 1F  relative to their 

homogeneous equilibrium values ( 0F , 1F F  ) as 
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 TBTPF 00000 00  ,                                                                                             (4.12) 

 T

r BTPvF 1111111  ,                                                                                           (4.13) 

where,   is the angular frequency and k  is the angular wavenumber of the fluctuations in 

the unnormalized form. The symbol “[]T” here represents the “transpose” of the matrix “[]”.  

Use of equations (4.10)-(4.13) yields  1/  rikr , )(/ it   and 

 22 / r )]2()2[( 122   krirk . In the new ),( k -space, equations (4.1)-(4.2), (4.7)-

(4.9) respectively read as 

110

1
 iv

r
ki r 








 ,                                                                                                          (4.14) 

    






























r

BBBB
T

c

r
ikvii s

rm

0

10

0

10

1001

2

10

2
1

1
1






2

1
1

2

3

1
2

3

4

r

v
vk r

r 
















  ,                                                                                        (4.15) 

101 rvB
k

B 


 ,                                                                                                                         (4.16) 

1

1

01   PKP ,                                                                                                                       (4.17)                                                                                                                        

121

4
d

k

G



  .                                                                                                                     (4.18) 

A standard procedure of decomposition and elimination in equations (4.14)-(4.18) results 

in a generalized cubic dispersion relation amid geometric curvature effects as 
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where,  )3/4(  is the effective generalized (composite) meanfluidic viscosity and 

21

000 )(  BvA  is the Alfven wave phase velocity in the g-MHD approach. 

After a standard astronomical normalization scheme [14, 16], equation (4.19) is 

standardized from the old Fourier space ),( k into the new one ),( K , cast as 
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Here, Jr  /  is the Jeans-normalized radial distance relative to the cloud centre. 

J /  and JkkK /  are the Jeans-normalized angular frequency and wavenumber, 

respectively. 

The mathematical construct of equation (4.20) reveals an interesting fact that the 

oversimplified cloud fluctuations in a field-free planar geometry ( ,  ,1dZ  00 B

) would experience resonant growths if )1( 0T > ])}]/({1)[/[( 00

2 TknK Bm . 

mn /00  is the equilibrium number density of the constitutive particles. So, equation 

(4.20) now reduces as 
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which is in fair agreement with the previous dispersion results on the viscoelastic Jeans 

instability as in Chapter-2 of this thesis. Besides, equation (4.20) is similar to the reduced 

cubic form of the Cardan polynomial [29]  given in a regular standard fashion as 

0233   ,                                                                                                              (4.22) 

where, the various coefficients appearing in equation (4.22) are given respectively as 
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The macroscopic fluid dynamics, as obtained by the Cardan method [29], is governed only 

by the sensible dispersion root with positive imaginary part (any r , but 0i ) given as  
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where, the unknowns ),( 11 vu  in equation (4.25), with the corresponding predefined factors 

),(  in equations (4.23)-(4.24), are respectively defined as 
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Clearly, equation (4.25) can be employed to see the dispersion features of the instability in 

the spherical DMC. The free energy source for exciting the instability onset obviously arises 

from the combined action of the buoyancy, gravitational energy, and plasma currents self-

consistently driven via the inhomogeneous g-MHD convective flow dynamics. 

  

4.3 RESULTS AND DISCUSSIONS 

A theoretic model for the stability of a complex magnetized self-gravitating spherical DMC 

in the g-MHD framework is proposed. It considers the important fluid properties, such as 

the buoyancy, polytropicity and viscoelasticity in a spherically symmetric geometry. A 

Fourier-based spherical wave analysis over the DMC results in a cubic linear dispersion 

relation. It is analyzed numerically to see the instability features as in figures 4.1-4.8. 

 

 

Figure 4.1: Profile of the Jeans-normalized growth rate )( i  of the fluctuations with 

variation in the Jeans-normalized wavenumber )(K  for the different 0T values.  

 

In figure 4.1, the profiles of the Jeans-normalized instability growth rate )( i with 

variation in the Jeans-normalized wavenumber )(K  at different equilibrium temperatures 

)( 0T  are depicted. The different inputs used in the analysis are adopted from various reliable 

sources available in the literature [1, 3, 23, 25, 38, 45]. We now quantify the input properties 

of the constitutive (dust) particles [3, 25, 45] as 1310m  kg, 
8

0 10n  m-3, 
5

0 10  kg 

m-3 and 
410dZ  at 10 .  The other inputs are 10100.1   kg m-1 s-1 [38]; 

310m  

s, 1  [38]; 
10

0 10B  T [1, 23]; and 410  K-1 [46]. It is seen that, as 0T  increases, 

i  decreases, and vice-versa. It is attributable to the fact that, as 0T  increases, the thermal 

outward pressure increases, and vice-versa. In other words, the fluid exerts the thermal 
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randomizing pressure (outward) in an anti-cloud-centric direction, thereby, preventing the 

spherical DMC to collapse against the organizing gravity (inward). Thus, 0T  acts as a 

stabilizing agent against the DMC. So, the hotter the cloud, the more stable it is against the 

gravity, and vice-versa. 

 

 

Figure 4.2: Same as figure 4.1, but with a fixed 4

0 101T  K for different m  values.  

 

 

Figure 4.3: Same as figure 4.1, but with a fixed 
4

0 101T  K for different   values. 

 

In figure 4.2, we show the same as figure 4.1, but with variation in the mean 

constitutive particle mass )(m  at fixed 
4

0 10T  K. It is seen that, as m  increases, i  

increases, and vice-versa. As m  increases, the cloud becomes heavier, and vice-versa. A 

dynamical state is reached when the inward gravitational pull exceeds the resultant outward 

cloud pressure. So, an enhanced m  results in a destabilizing influence, thereby paving the 

way for the cloud collapse to occur. So, m  acts as a destabilizing agent to the magnetoactive 

collapse dynamics against gravity. 



67 
 

 

Figure 4.4: Same as figure 4.1, but with a fixed 4

0 101T  K for different m  values. 

 

 

Figure 4.5: Same as figure 4.1, but with a fixed 4

0 101T  K for different   values. 

 

As in figure 4.3, we display the same as figure 4.1, but at fixed 
4

0 10T  K for the 

different  -values. It is seen here that, as   increases, i  decreases, and vice-versa. In 

other words, the polytropic exponent,  , acts as a stabilizing agent. It is attributable mainly 

to the fact that the deviation from the thermalized configuration ( 1 , isothermal, 

optically thin [47]) towards the non-thermal one ( 1 , non-isothermal, optically thick 

[47]) develops anti-cloud-centric randomizing forces, thereby preventing the cloud 

collapse. In other words, the cloud undergoes a dynamic transformation from an unstable 

(former) to a stable (latter) configuration. 

In figure 4.4, we portray the same as figure 4.1, but at fixed 
4

0 10T  K for the 

different m -values. It is seen that, with increase in m , i  decreases, and vice-versa. The 

long-range gravitational force (inward) fails to boost up the cloud collapse against the 
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strong restoring elastic force (outward). Thus, m  acts as a stabilizing agent to the cloud 

dynamics against the mutualistic gravitoelastic interplay (counteracting). 

 

Figure 4.6: Same as figure 4.1, but with a fixed 4

0 101T  K for different 0B  values. 

 

As in figure 4.5, we show the same as figure 4.1, but at 
4

0 10T   K (fixed) for the 

different  - values. As the  - value increases, the i - value decreases, and vice-versa. 

With increase in  , the mean cohesive force among the major constituents increases, 

thereby restricting the fluid motion to a considerable extent. As a result, the meanfluidic 

system tends to a greater stability against the inward gravity and any other like possible 

operative forces. Thus,   acts as a stabilizing agent to the fluctuation dynamics against the 

self-gravitational cloud collapse.  

As in figure 4.6, we depict the same as figure 4.1, but at 
4

0 10T   K (fixed) for the 

different 0B -values. As the 0B -value increases, i  increases; and vice-versa. If the 0B

-strength increases in magnitude, the geometric curvature of the magnetic field lines 

increases, thereby contributing to the enhanced hoop stress, also termed as magnetic tension 

[42, 48]. As a result, it exerts more radially inward (cloud-centric) force. In the real 

interstellar circumstances, 
10

0 10B  T, which is a considerably weak field [1, 23]. So, the 

conservative non-local gravitational force (inward, destabilizing) due to the highly 

populated constituent particles [25, 45] (
8

0 10n  m-3) in the spherical DMC beats over the 

non-conservative local magnetic tensile action (outward, stabilizing) in the presence of 

strong geometric curvature moderation. Due to the conjoint action of the complex gravito-

magnetic interplay, the moderated magnetic field acts as a destabilizing agent to the 

spherical DMC fluctuations – an unusual behaviour of the magnetic field in the presence of 
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ambipolar diffusion – as previously reported elsewhere [4, 30, 31, 33, 49]. Interestingly, it 

is against the conventional picture of the DMC stabilization against the self-gravity action 

[30, 31]. The magnetic field-destabilizing the spherical DMC is in full agreement with the 

previous astronomic observations experimented with the Zeeman effects [30, 50, 51]. 

 

 

Figure 4.7: Same as figure 4.1, but with a fixed 4

0 101T  K for different   values. 

 

In figure 4.7, we display the same as figure 4.1, but at 
4

0 10T   K (fixed) for the 

different  -values. As the  -value increases for a given cloud (of fixed mass, population, 

temperature, etc.), the i -value decreases, and vice-versa. Thus,   acts a stabilizing agent 

to the spherical DMC against the self-gravity. It is attributable to the universal Newtonian 

picture of the long-range (inverse square) self-gravity (cloud-centric), which decreases with 

the interparticle separation in the DMC in a given thermodynamic environ. In other words, 

it happens due to the well-known fact that the cloud self-gravitational pressure force 

decreases with increase in size, and vice-versa. Again, for bigger clouds, only the long 

(short)-wavelength perturbations undergo resonant-type of growths (decays), thereby 

rendering the cloud gravitationally unstable (stable). Such stabilizing effects caused by the 

geometric curvature radius (i.e., deviation from the plane-parallel geometry) are quite 

bolstered with the previous reports in similar astrophysical isothermal gaseous fluids 

enclosed in spherical shells [52].  

Lastly, as in figure 4.8, we display the 3-D spatiospectral pattern of figure 4.7, with 

  as a new variable with the inputs as before. As in figure 4.7, i , here too, decreases with 

 , and vice-versa. Interestingly, for a given DMC, the i - behaviour is prominent only in 

the gravitational regime (low-K); but, not so in the acoustic one (high-K). The remaining 
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features are the same as the previous case (figure 4.7). It may be inferred herein that the 

central part of the spherical DMC is the most unstable zone against the non-local self-

gravity. As one moves radially outwards, the cloud acquires a unique propensity to become 

more and more stable against the self-gravity. It is seen further that, all the constitutive parts 

of the DMC are not regularly and uniformly sensitive to the applied local perturbations 

(figure 4.8), leading to the global DMC fragmentation.  

 

Figure 4.8: Profile of the Jeans-normalized growth rate )( i  of the fluctuations with 

conjoint variation in the Jeans-normalized wavenumber )(K  and Jeans-normalized radial 

cloud size )( . 

 

4.4 CONCLUSIONS 

A semi-analytic investigation is systemically carried out to see the gravitational instability 

behaviour of a spherically symmetric astrocloud (DMC) in the presence of the combined 

action of possible realistic dynamical factors. It considers the fluid viscoelasticity, 

polytropicity, fluid buoyancy and azimuthal (toroidal) magnetic field simultaneously. It is 

in the framework of a standard g-MHD meanfluidic model dynamically evolving on the 

non-relativistic classical astrofluidic scales of space and time. The basic set of the governing 

equations describing the fluid dynamical evolution is developed as a coupled dynamical 

system. The fluid is initially assumed to be in a magnetohydrostatic homogeneous 

equilibrium. Around it, small-scale perturbations (linear) are applied. Application of 

spherical wave analysis reduces the perturbed DMC into a unique generalized cubic linear 

dispersion relation. It transforms the model system into a simple algebraic form of the 

standard Cardan polynomial for executing the stability solvability.  
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A constructive numerical analysis over the Cardan-decomposed polynomial roots is 

systemically carried out to explore the various instability stabilizing and destabilizing 

factors. It is found that the meanfluidic temperature, polytropicity, viscoelastic relaxation 

time, effective generalized viscosity and radial cloud size act as active stabilizing factors 

against the self-gravity action. In contrast, the constitutive mass and magnetic field act as 

destabilizing agents against the canonical Jeans collapse. Besides, an increment in the cloud 

constitutive mass, effective generalized viscosity and radial cloud size causes the long 

wavelength fluctuations to undergo active growth noticeably. In contrast, an increment in 

the meanfluidic temperature, polytropicity, viscoelastic relaxation time and magnetic field 

renders the gravito-magneto-acoustic instability to grow in the acoustic range alone. It is 

theoretically seen for the first time that the magnetic field acts as the cloud destabilizer, 

which is in accord with the previous astronomic observations, experimentally centred on 

the Zeeman effect [30, 50, 51]. Clearly, it is a novel result caused due to the concurrent 

action of the diversified non-ideal meanfluidic factors in the curved (spherical) geometry, 

causing the field lines to curve (as if, induced by ambipolar diffusion phenomena [30]).  

In summary the key dynamical features of the collective correlative instability 

dynamics of the self-gravitating astrofluid are elaborately analyzed in a non-relativistic 

classical g-MHD formalism. The various stabilizing and destabilizing factors of the DMC 

against the self-gravity are identified and characterized. This analysis can enable us to see 

the collective wave-instability processes towards the compact structure formation and their 

correlated atmospheres, such as neutron stars, white dwarfs, planetary dense interiors, etc.  
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APPENDIX-4.A 

 

MEANFLUIDIC MOMENTUM EQUATION 

An astronomical star-forming situation of magnetized polytropic spherical viscoelastic 

cloud fluid is considered in the framework of multicomponent fluid formalism (electrons, 

ions, and dust grains) to be reduced into a mean hydrodynamic form. As a first step, it is 

intended to arrive strategically at a mean construct of the fluid momentum equations on an 

averaging process. The momentum equations describing the dynamics of the constitutive 

electrons, ions and dust grains forming the magnetized complex plasma fluid can 

respectively be given as  

     


eeeeee
e

ee TnmPBvEne
td

vd
nm 1 ,                                                       (4.A1) 

     
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iiiiii
i

ii TnmPBvEne
td

vd
nm 1 ,                                                            (4.A2) 

     dddddddd
d

dd vTnmPBvEnZe
td

vd
nm


21    

 dv


.
3












 ,                                                                                                           (4.A3) 

where )./(/ 


vtdtd  is the Lagrangian time derivative (or the convective material 

derivative). diem ,,  denotes the mass of the electrons, ions and dust particles, respectively. 

dien ,,    and diev ,,  be their corresponding number densities and velocities. E


 and B


 represent 

the electric field and the magnetic field due to the charged particles, respectively. 

eqZ dd /  is the electric charge number of the identical dust grains. It may be noted that 

21 1010 dZ  in the HI region, 
41 1010 dZ  in the HII region, and 

61 1010 dZ  in 

the planetary rings [3].  

Now, the equations (4.A1)-(4.A3) are compiled together to remodel the multi-

component fluid into a single component fluid to give mean momentum equation as 

      BvneZvnevneEnZnnevnmvnmvnm
td

d
dddiieeddiedddiiieee


  

       


ddiieediedie TTTPPP  
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 dd vv


.
3

2 










 ,                                                                                                    (4.A4) 

which, in terms of the new meanfluidic parameters, can now be simplified as 

    vTPBJEnZnne
td

vd
ddie


21     

 v


.
3












 .                                                                                                                                       (4.A5) 

As die mmm ,  asymptotically, we can write the meanfluid material density 

approximately as )( ddiiee nmnmnm  ddd nm  , as already defined in the analytic 

formalism. The meanfluidic constitutive particle mass, which is indeed the mass density-

weighted average fluid particle mass, is mathematically defined as 

dddiiee mmmm  /)(  dm . The meanfluidic (bulk) flow velocity is given as 

dddiiee vvvv  /)(


 dv


 . The meanfluidic pressure can be additively given as 

die PPPP  . The meanfluidic temperature for the asymptotic mass scaling law 

die mmm , ; which yields the corresponding material density scaling law as 

die  , , can be explicitly expressed in a well averaging form as 

ddddiiee TTTTT   /)( . Likewise, the meanfluidic electric current density on 

the basis of the free ionic gas model is derived as dddiiee veZnvenvenJ


)()()(  . 

Applying the electrical quasi-neutrality condition, idde ennZne  )(  (electric charge 

conservation law in a local form), and the Ampere circuital law, JB


0  (magnetic 

field non-conservation law in a local form), we reduce meanfluidic equation (4.A5) as 
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In a viscoelastic medium, as in the present meanfluidic case, equation (4.A6) is directly 

modified due to the strong collective Coulombic correlative effects of the long-range origin 

among the constituent heavier charged dust particles into a g-MHD form [53] cast as 
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In our spherically symmetric geometry, the meanfluid flows along the radial direction in 

the presence of an azimuthal magnetic field. As a result, equation (4.A7) in the radial degree 

of freedom (1-D) is finally reduced to the following simplified form 
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In addition, as the toroidal magnetic field )( B  circulates about the chosen axis of 

our coordination reference (z-axis), the magnetic force density, which is defined as the net 

Lorentz force )( LF


 acting per unit volume )(V  of the fluid ( Lf


), can now be expressed as  
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where, all the symbols used herein carry the customary significances (as pre-defined). The 

first term on the right hand side of equation (4.A9) represents the “hoop stress”, which 

arises due to the geometric curvature of the magnetic field lines [42, 48], acting radially 

inward (cloud-centric). The second term in the above represents the magnetic pressure 

gradient, acting radially outward in the anti-cloud-centric direction. This magnetic pressure 

gradient actually arises due to the spatial inhomogeneities of the magnetic field lines in the 

considered vast astrofluid [42, 48]. 

In this proposed theoretical study, we have adopted an astronomical viscoelastic 

self-gravitating cloud fluid configuration in the fabric of meanfluidic formalism in a 

spherically symmetric geometry on the Jeans spatiotemporal scales. It, hereby, enables us 

to stick only to a radial degree of freedom by ignoring any contribution in the basic 

mathematical formulation arising from the polar and azimuthal degrees of freedom 

judiciously; which might be, otherwise, accountable for the non-radial force field effects 

and subsequent non-radial fluctuations. So, the radial component of the magnetic force 

density sourced by the net magnetic field ),0,0( BB 


 from equation (4.A9) in the 

spherically symmetric geometry can be procedurally derived and written in the form as 
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In a normal spherically symmetric distribution of an ionized fluid matter on the 

astronomical spatiotemporal scales, the azimuthal (toroidal) magnetic field component is 
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well-known to decrease radially outward as 
1 rB ; whereas, the radial  field component 

decreases as 
2 rBr  [54, 55]. The net magnetic field ),0,0( BB 


 in our case gets 

naturalistically auto-transformed purely into an azimuthal form as we move radially 

outward. In that case, the resultant Lorentz force contribution with the adopted field 

rbB /  in the corresponding effective magnetic force density in equation (4.A10) is seen 

to vanish subsequently as 
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where, b  is a proportionality constant signifying the strength of B . This is the equilibrium 

defined in the magnetized force-free meanfluidic configuration, and subsequently, the 

hydrostatic homogeneous equilibrium configuration well applies herein [48]. Such an 

equilibrium is termed as the “magnetohydrostatic homogeneous equilibrium” in the 

presented investigation, without any loss of generality. It, hereby, paves the way for a 

normal local mode analysis around the defined homogeneous equilibrium. 

If we decompose the Lorentz force in equation (4.A8), in the special cases other 

than 
1 rB ; then, clearly, the finite non-zero contribution of this magnetic force enters 

the fluid equilibrium dynamics via the magnetic pressure gradient effects (by the last term 

in equation (4.A9)). So, the equilibrium gets transformed into a non-uniform 

inhomogeneous one (non-static type). It enables us to treat the meanfluidic equilibrium as 

the “magnetohydrodynamic inhomogeneous equilibrium”. It necessitates a judicious 

application of a normal non-local mode analysis, also termed as the eigen-value treatment 

[25, 41, 56], amid the real analytic complications of spatial inhomogeneties induced by the 

diversified equilibrium gradient forces.  
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