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CHAPTER-5 

 

STABILITY OF MAGNETIZED COMPLEX ASTROFLUIDS WITH  

ATYPICAL DUST-FUGACITY EFFECTS 

 

Abstract: In this Chapter, we investigate the dynamics of the dust acoustic wave (DAW, low-

fugacity, low-frequency) and the dust Coulomb wave (DCW, high-fugacity, lower-frequency) 

in self-gravitating magnetized viscoelastic spherical dusty astroclouds.Ϯ It applies a 

generalized hydrodynamic model framework consisting of the inertial dust grains with variable 

charge alongside the non-thermal electrons and ions. A spherical normal mode analysis yields 

a unique generalized quadratic dispersion relation. It is found that the fluctuations are free 

from the viscoelasticity effects in the weakly coupled limit (WCL) against the strongly coupled 

limit (SCL). The distinctive WCL-SCL scenarios followed by low-high fugacity effects are 

illustratively analyzed. The results correlate consistencies with real astronomic structure 

formation dynamics. 

 

5.1 INTRODUCTION 

It is well-known that the dust molecular clouds (DMCs) are the best sites of the interstellar 

medium (ISM) acting as the nurseries for stars, planets, etc. The DMCs morphologically 

consist of micron-sized dust grains made basically of graphite, silicate, and complex 

carbonaceous derivatives [1]. The massive dust grains (~0.1-10 µm) in the DMCs are 

susceptible to the non-local self-gravitational action collectively leading thereby to the 

gravitational or Jeans instability [2, 3]. It is pertinent here to note that, only the volumes of 

the DMCs exceeding that corresponding to the critical Jeans scale-length undergo 

fragmentation instability, paving the way for bounded structures to form [2, 3]. Such 

instabilities can also be triggered with the help of a compressive shock wave propagating 

naturalistically through the DMCs. It creates the initial density condensations through the 

mechanisms of self-gravitational (compressive) instability [4-6]. However, it is not fully 

clear which mechanism, gravitating dust-dust attraction or propagating shock-induced 

density compression, is more realistically efficient in triggering the formation dynamics of 

stellar structures in the DMCs. 
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In the preceding chapters, it has been highlighted that the mean dust-to-gas ratio in 

the DMCs differs from the canonical ISM value of 1% to 20%-30% [7, 8]. This is due to 

the presence of larger dust grains (~0.1-10 µm) in the clouds for which the self-gravity of 

the dust grains come into play [2, 3]. As a result, the abundance of dust grains varies locally 

due to various dust accumulative processes, such as the Jeans accretion, Bondi accretion, 

etc. [7, 8]. The dust grain packing in such dusty plasmas is defined by a dimensionless 

parameter, termed as the dust-fugacity Rnf Dd

2

04  )/(~ DD RN  ; where, 
0dn  is the 

equilibrium dust number density, D  is the plasma Debye length, 3

0)3/4( DdD nN   is the 

number of dust grains in the Debye sphere, and R  is the geometrical radius of the identical 

spherical grains [9-13]. It is the weighted measure of the ratio of the plasma space-charge 

(floating) potential to the grain surface potential contributed by the electron-ion currents 

(random). Based on the dust-fugacity fabric, the dusty plasmas are further classified as: (a) 

Tenuous (Low-fugacity, 1f ), (b) Dilute (Moderate-fugacity, 1~f ), and (c) Dense 

(High-fugacity, 1f ). The parameter f  plays as decisive factor in distinguishing the 

regimes for the existence of different types of dust modes, such as DAWs, DCWs, DLWs, 

etc. It is to be noted that the DCWs are excited purely due to the dust-charge fluctuations 

in the dense dusty plasmas in contrast to the DAWs and DLWs. The fugacity of such dusty 

plasmas interestingly varies from system to system circumstancially, such as the laboratory 

experiments )10~( 2f , Saturnian E- and G-rings )1010~( 34  f , Saturian F-ring 

)10( f , Jovian ring )1~( f , and so forth [9-13]. 

A good number of investigations have been done on the DCW mode dynamics by 

N. N Rao and his team in the past [9-13]. They have well addressed and discussed the 

physical mechanisms behind the DCW excitation and its dispersive features in the high-

fugacity regime (HFR) of the WC dusty plasmas. In this dense plasma system with 1dZ  

and Dda  , the dust-dust Coulomb interaction dominates over the thermal pressure force. 

It hereby provides the restoring force (Coulombic in origin) with the inertial force (non-

Coulombic in origin) sourced by the dust mass to drive the DCW modes [9, 10]. Such 

DCWs are excited due to the dust-charge dynamics in the ultra-low-frequency regime. In 

contrast, the DAWs are excited in the low-fugacity regime (LFR). The DCW excitation 

occurs at a frequency much lower than the DAW frequency. In the long-wavelength limit, 

the DCW phase speed )( DCC  is much smaller than that of the DAWs )( DAC , related as  

fCC DADC   [9, 10]. They have also investigated the effects of the non-local self-gravity 
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on the DCW mode excitation in the WC condition [11]. It has mainly been found that the 

Jeans instability occurs at much smaller critical Jeans length as compared to the DAW 

mode excitation [11]. The low-frequency wave damping rates, caused by the dust-charge 

fluctuations and the wave particle interactions, have been demonstrated to confront a good 

conformity between the analytical and numerical results in the LFR [12, 13]. However, the 

damping measures obtained analytically have been reported to go lower than the 

corresponding numerically obtained ones in the high-frequency HFR. Such modes are 

reported to exist in the SC laboratory dusty plasmas as well [13, 14]. But the theoretical 

studies on the DCW mode in the SC limit are yet to be made.   

It is noteworthy that the previous analyses of the DCWs are based on the assumption 

that the electrons and ions are Maxwell-Boltzmann (MB) distributed [9-13]. But it is 

observed that the astrophysical and space plasmas are collisionless and WC. Their 

constituents have weakly coupled plasma particles contributed mostly from the velocity 

distributions having a high-energy tail in the non-thermal kappa- )(  distribution against 

the conventional thermal MB-picture [15-17]. It was first proposed by Vasyliunas in 

describing the electron energy distribution over its full range of energy [18]. Thereafter, 

 distribution has been widely utilized to explain numerous physical phenomena, namely 

the solar wind [19-22], planetary magnetospheres [23-25], outer heliosphere, and inner 

heliosheath [26-28], beyond the heliosphere including H II regions [29], and so on. 

Although such SC plasmas are naturalistically relevant in the astrophysical direct context 

of structure formation processes in hot dense astroenvirons [13], a comprehensive theoretic 

analysis about their diversified modal behaviours in the collective correlative perspective 

is yet to be  formulated. It sets the focal goal to investigate the coupled dynamics of the 

DCWs and DAWs in the SC (viscoelastic) self-gravitating magnetized non-thermal (with 

 distributed electrons and ions) dusty plasmas in the HFR in the GH model fabric [30, 

31]. 

The structural overview of the content layout illuminating the concept mapping 

illustratively offered in this proposed work is schematically depicted in a chart-flow as 

follows:  
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5.2 PHYSICAL MODEL AND FORMALISM 

We consider a self-gravitating magnetized viscoelastic multi-component spherically symmetric 

DMC evolving on the astrophysical fluid scales of space and time. It is assumed that the 

interstellar magnetic field originates from convective (circulation) dynamics of the charged 

species. The spherically symmetric geometry enables us to reduce the 3-D problem into 1-

D problem with the polar and azimuthal geometric contributions fully ignored without any 

loss of generality. At this backdrop, it is worth mentioning that the formation of prestellar 

cores via the self-gravitational instabilities are well-known to evolve usually as spherical 

structures in geometrical shape. As a consequence, the consideration of spherical geometry 

allows us to model the global cloud fragmentation and evolution into protostars in a 

simplified way self-consistently. It has already been reported that the magnetized Cartesian 

(planar) clouds [32, 33] and cylindrical (non-planar) clouds [34] are magnetically 

subcritical under the flux freezing condition, which is a local conservation law of the 

magnetic flux lines across the surface of the confined plasma fluid. Such subcritical clouds 

are not suitable for the gravitational collapse and protostar formation [35]. In contrast, the 

spherical clouds become magnetically supercritical and undergo cloud collapse even when 

the flux freezing condition holds, e.g., RCW 38 in the H II regions [36, 37]. It justifies our 

spherical geometry consideration of the magnetized DMCs. The model postulates made 

here can be well validated in the H II regions of the spherical DMCs sensibly. Further 

correlated examples are the Lagoon Nebula (M8) and Trifid Nebula (M20) in Sagittarius 

[1]; Rosette Nebula (NGC 244) in Monoceros [1]; etc. 

The model DMC considered here comprises of the WC tiny (lighter) electrons )(e  

and (less lighter) ions )(i  each having relatively high-thermal energy, and the SC micron-

sized (heavier) dust particles )(d  having relatively low-thermal energy. The lighter non-
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thermal species are thermostatistically assumed to be  distributed. The solid dust grains 

are dispersed in the gaseous ionized plasma medium treated in the GH framework in the 

asymptotically zero limit of the constitutive mean free path relative to the DMC dimension. 

The dust grains become electrically charged due to the continuous inflow (outflow) of 

electrons and ions flux onto (from) the grain surface. This repeated random inflow-outflow 

of the plasma fluxes from the dust surface causes the dust charge to fluctuate continuously. 

Here, the dusty plasma is a non-thermalized one as the dust grains are much colder than the 

electrons and the ions, i.e., eT , iT >> dT  as ie mm , << dm . Here, 
),,( diejm 
 are the masses of 

the electrons, ions and dust grains, respectively. 
),,( diejT 
 are their corresponding 

temperatures (in Kelvin) of the respective individual species. The constituent weightier dust 

grains are electrically charged via the contact electrification processes in the infinitely 

extended complex plasma background [29,30]. The grains actively participate in the 

collective dynamics and constitute a star-forming dusty plasma clouds [30]. The entire 

composite plasma system confined in a spherically symmetric geometry is freely assumed 

to form a quasi-neutral hydrostatic homogeneous equilibrium configuration at least initially 

on the self-gravitational spatiotemporal scales.        

The basic dynamical equations here consist of the  distributed number densities 

of the electrons )( en  and ions )( in  in the dimensional form with all usual symbols [19-29], 

which in the coordination space ),( tr  in the non-relativistic regime, are given respectively 

as 
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where, 0en  )( 0in  is the electron (ion) equilibrium number density.   is the electrostatic 

potential due to the charged density fields of the constituent fluids conjointly. As already 

mentioned above, our DMC model is a charge-fluctuating one at the cost of the thermal 

currents of the electrons and ions on the dust surfaces randomly. The loss-gain distribution 

dynamics of the electron-ion fluxes resulting in recombination-ionization processes on the 

dust surface are well tailored and monitored by   in equations (5.1)-(5.2). Lastly, 

)5.1(, ie  is the non-thermality or superthermality parameter for electrons and ions arising 

because of the Tsallis thermostatistics [19-29]. The dust fluid is governed by the fully 
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closed set of the hydrodynamic equations together with the charge dynamics equation given 

respectively as 
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where, all the notations used are generic in nature [10-19]. dn  is the dust population density, 

drv  is the radial velocity of the dust fluid, eZq dd   is the instantaneous dust-charge. m  

is the viscoelastic relaxation time. d  is the specific heat ratio in adiabatic process.   is the 

gravitational potential that arises due to the material density fields associated with the heavy 

dust grains. Then, the symbol, B , designates the instantaneous magnetic field (acting 

azimuthally).   and   are the shear viscosity and bulk viscosity coefficients offering 

resistance to shear flow and to volumetric bulk expansion, respectively. We assume   and 

  to be constant on the Jeans fluid scales of space and time. The  distributed electron 

and ion currents, 
eI  and 

iI , flowing on the dust grain surfaces embedded in the plasma 

are calculated with the help of a standard probe (orbit-limited motion (OLM)) theory  given 

with all the customary notations [38], respectively, as 
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where, 
21)/2( jjBj mTkv   is the thermal speed of the energetic jth species of the plasma 

constituent particles ),( iej  ;  and )!1()(  n  is the gamma function [38]. 

 Several remarks pertinent to our model setup are in order. It may be noted that 

equation (5.3) contains neither a source term nor a sink term on the RHS. It is because of 

the fact that, on the astronomical observational scales of space and time, the global dust 

population density remains constant in the absence of any kind of source or sink of the dust 

grains. In addition, the usual diffusion processes, such as mass diffusion, thermal energy 

diffusion, etc. are ignored in equation (5.4), as it has no significant effect on the perturbation 

dynamics of the gravitational instability in the GH fabric [39]. It may be speculated that the 

unperturbed (equilibrium) thermodynamics of the dusty cloud is governed by an equation 

of adiabatic state, d

ddd KP
 )( , where dK  is the adiabatic constant of the dust fluid. It is 

in contrast with the thermostatistical states of the non-thermal electrons and ions. The radial 

part of the differential evolution equation representing the electromagnetic inductive effects 

in the considered fluid in terms of the non-radial magnetic field (azimuthal B ) and radial 

velocity field (central drv ) is given in equation (5.5). The closure property of the complex 

multicomponent model formalism is obtained with the help of the electrostatic Poisson 

equation (equation (5.6)) and the gravitational Poisson equation (equation (5.7)). It means 

that the charge and mass density fields respectively produce the long-range electrostatic 

and gravitational potentials in a coupled form.  

The constituent heavier dust microspheres are constantly bombarded with the 

random non-thermal currents of the lighter electrons and less lighter ions. It, hereby, renders 

the grains electrically charged in a statistically fluctuating manner. This dust-charging 

process is electrodynamically depicted with the help of an appropriately closed form of the 

electric charge conservation law (equation (5.8)). The effect of the magnetic field on the 

dust-charging dynamics is neglected as and when the size of the dust grains is much smaller 

than the electron-ion Larmor radii [40, 41]. The temperature throughout the cloud is 

approximated not to vary on the astrophysical spatiotemporal fluid scales we are interested 

in. We ignore the uncertainty or fluctuation in the temperature likely to be caused by the 

Doppler broadening (due to the MB-distribution), Lorentz broadening (due to collisional 

effects), and so forth [42]. 
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The aim of the current investigation is to explore the evolutionary dynamics of the 

linear stability of the spherically symmetric DMC in the GH fabric relative to the centre of 

the entire cloud mass distribution. As a result, the relevant physical parameters )(F  

characterizing the DMC evolution undergo small-scale (linear) perturbation )( 1F  around 

their hydrostatic homogenous equilibrium values )( 0F  such that the approximation of weak 

fluctuations, 01 FF  , is well validated. It is further assumed that the perturbed variables 

grow homologously as concentric spherical waves with a common eigen frequency )(  

and wavenumber )(k  along merely the radial direction [8, 43] as 
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The above mathematical technique transforms the fluctuation dynamics from the 

coordination space ),( tr  into the wave space ),( k . As a result, the spatiotemporal linear 

operators in the spherical geometry get autotransformed as )( 1 rikr , 

)( it   and )]2()2[( 12222   krirkr . Application of equations 

(5.11)-(5.14) in equations (5.1)-(5.10) gives the respective perturbed forms of the physical 

variables cast as  
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where, ddBtd mTkv 2  is the dust thermal speed and  )3/4(  is the effective 

generalized viscosity associated with the dust fluid. 
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where, the perturbed currents 
1eI  and 

1iI  associated with the non-thermal electrons and 

ions are respectively given as 
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Using equations (5.24)-(5.25) in equation (5.23), one obtains 
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where, 
1c  and 

2c  are the dust-charging frequencies contributed by the homologous  

fluctuations in the dust charge and in the electric potential [9-13] given respectively as 
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Applying a method of decoupling over equations (5.15)-(5.28) followed by elimination and 

simplification, one gets a generalized linear dispersion relation for the collective instability 
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excitable in the considered viscoelastic magnetized dusty plasma given in a generic form 

as 
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where,  DpdDAC  , 21

00

2

0 )/( dddpd mnq    is the dust-plasma oscillation frequency and 

211

00

2

0 ])}/()/{(/[  i

i

ie

e

eBD TnTnek    is the effective plasma Debye length modified 

by the  distributed electrons and ions. The Jeans angular frequency is 

21

0 )4( ddJd nGm   and the Alfven wave phase velocity is 21

000 )/( dddA nmBv  . Besides, 

)/( 12  icc   is the ratio of the modified dust-charging frequencies in the presence of 

the non-thermality effects induced by the diversified gradient factors of self-gravitational 

origin.  

We apply the realistic approximation, 
 1c , which is specially needed for the 

DCWs to evolve in a complex plasma system [9-13]. In such circumstances, the dust grains 

get sufficient time to attain the equilibrium charge. It enables us to neglect the wave 

damping caused due to the dust-charge fluctuations [9-13]. It may be noted parallelly that 

in the counter regime of the perturbation frequency, 
 1c , the grain charge remains 

practically constant over one wave period [9-13]. It allows thereby only the DAWs to 

evolve. As a consequence, when 
 1c , we see that  

 12 / cc  (i.e., 1, ie TT

), which reduces equation (5.29) for our focal aim to see the DCW excitation in an analytic 

simple form as 
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Clearly, equation (5.30) is the generalized linear dispersion relation depicting the 

considered fluctuations excitable in the magnetized viscoelastic spherically symmetric 

DMC in the low-frequency regime (
 1c ) for a wide f range. We are interested in 

the full dispersive and propagatory features of the fluctuation dynamics (governed by 

equation (5.30)) in the extreme f regimes. Therefore, equation (5.30) is subject to two 
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distinct limiting instability categories, hydrodynamic regime (WC) and kinetic regime 

(SC), both in the LFR and HFR as follows. 

a) Hydrodynamic limit: 

In the WCL, 1m  [30, 31], equation (5.30) reduces to 
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In the LFR, 1f  [9-13], the dust-charge fluctuations )( 1dq  can be neglected as 

mentioned before. The restoring force needed for the wave propagation is provided by the 

electrostatic plasma potential fluctuations caused by the electron-ion charge density field 

perturbations (via 1en  and 1in ). It leads to the DAW excitation given by the reduced form 

of equation (5.31) as 
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In the cold unmagnetized plasma in the plane geometry approximation, equation (5.32) can 

be simplified to yield the phase velocity and group velocity of the DAW in the LFR as 

    21221
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 DDApDA kCv  and        12222 131


   DDpDAgDA kkvv , respectively. In the long-

wavelength limit, the corresponding quantities are   DApDA Cv   and    
pDAgDA vv  . In 

addition, in the short-wavelength limit, the quantities get respectively transformed as 

    DADpDA Ckv
1

   and    
pDAgDA vv 3 . Thus, it may be herewith inferred that the LFR 

mode (DAW) is dispersive in the short-wavelength regime and non-dispersive in the long-

wavelength regime with the minimum existential scale-length, D
. 

In the HFR, 1f  [9-13], with 1dZ , the cumulative 1dq  results in the grain-

surface potential fluctuations via Rqdd /~ 11 . At low-frequency, the charge quasi-

neutrality condition renders the plasma potential to go on the same order as the grain surface 

potential (i.e., 11 ~ d ). Since in the HFR, Dda  , the Coulomb interaction among the 

grains due to the surface potential is dominated. It provides the restoring force needed for 

the DCW propagation in this HFR describable with the reduced form of equation (5.31) as 
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where, 
21

00 )4/( RmqC ddDC  . In this limit, the plasma Debye length becomes redundant. 

It needs a new spatial regime for the DCWs to exist. Let 
21)3/(  Raa ddR   be the new 

scale length known as the modified Wigner-Seitz radius. It signifies the modified dust 

intergrain separation due to its number density, charge fluctuations and size. It plays a 

similar role in dense dusty plasmas as 
D

 in the tenuous plasmas. Now, equation (5.33) 

can be given as 
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Thus, equation (5.34) describes the evolution of the instability dynamics excitable in the 

considered dusty plasma system in the hydrodynamic regime. Clearly, the dust-fugacity 

has no direct impact on this fluctuation dynamics significantly except via  fDR  . 

Besides, the dynamics in the WC regime is fully free from any kind of viscoelastic effects.  

As an immediate corollary of equation (5.34), we apply the previous approximation 

of cold unmagnetized plasma confined in planar geometry. Accordingly, the phase velocity 

and group velocity of the DCW can be derived from equation (5.34) in the HFR as 
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 RRpDCgDC kkvv  , respectively. In the long-

wavelength limit, the respective modal parameters become     21
 DApDC Cv  and 

   
pDCgDC vv  . Besides, in the short-wavelength limit, the quantities get respectively 

modified as     1

 RDCpDC kCv   and    
pDCgDC vv 3 . So, the DCW mode, similar to the 

previous DAW mode in the LFR, is also dispersive in nature in the short-wavelength regime 

and non-dispersive in the long-wavelength regime with the critical existential spatial scale-

length, 
R . 

In a special planar case with the asymptotic limits of ,r ,, ie   ,DD      

and ,00 B  equations (5.32)-(5.34) retrieve back the linear quadratic dispersion relations, 

as already reported by Rao and his group [9-13], which are validated only for the WC MB-

distributed dusty plasma systems in the tenuous and dense cases presented respectively as 
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A close inspection herewith shows that the mathematical constructs of our quadratic 

dispersion relations (equations (5.35)-(5.36) herein) derived in the hydrodynamic (low-

frequency) limit match quite well with those reported in the literature (equations (5.14)-

(5.15) in [11]). It hereby fully confirms the reliability testing of our proposed model 

formalisms and analyses categorically; thereby, making us go ahead in the right direction 

of the instability dynamics.  

b) Kinetic limit: 

In the SCL, 1m  [30, 31], equation (5.30) transforms as 
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It is to be clearly noted from equation (5.37) that the instability dynamics in our plasma 

model in the SCL exhibits viscoelastic features relevant in diverse compact astrocosmic 

environs [44, 45], such as the neutron stars, dwarf stars, planetary disks, planetary interiors, 

etc. Similarly, in the LFR 1f , and in the HFR 1f  [9-13], equation (5.37), 

respectively, reduces to 
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Moreover, in the asymptotic limits as mentioned above ( ,r ,, ie   

,DD      and 00 B ), equations (5.38)-(5.39) yield the linear dispersion relations for 

SC MB-distributed dusty plasma system both in the LFR and HFR cases given respectively 

as 
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The normalized forms of equations (5.32), (5.34)-(5.36), (5.38)-(5.41) previously 

evolving in the old Fourier space  ,k  after a standard astronomical (Jeans) normalization 

scheme [8, 39, 46] evolved in the new Fourier space  ,K  [8, 39, 46], respectively, cast 

as 
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Here, ,/ Jr    ,/ Jd  and JkkK /  are the Jeans-normalized radial distance, 

angular frequency, and angular wavenumber, respectively. The various normalizing 

parameters here are Jd , the Jeans scale-length, JdDAJ C  /  m, and Jeans critical angular 

wavenumber, DAJdJ Ck / . Clearly, equations (5.42)-(5.49) can be employed to see the 

dispersive features of the DAW and DCW in both the WCL and SCL.  

 

 

5.3 RESULTS AND DISCUSSIONS 
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A theoretic model is developed to see the stability of a magnetized viscoelastic three-

component spherical charge-fluctuating DMC with non-thermal (  distributed) electrons 

and ions in the GH model fabric on the astronomic scales of space and time. It considers 

the relevant effects of both the non-local gravitational and non-gravitational force fields in 

a spherically symmetric geometry. Application of spherical wave analysis gives a 

generalized linear dispersion relation (quadratic equation (5.32)) in the extreme regimes of 

the dust-fugacity and the electro-thermal coupling (signifying the measure of 

viscoelasticity). The reduced forms of the dispersion relation are numerically analysed in 

the WCL (equations (5.42)-(5.43)) and SCL (equations (5.46)-(5.47)). Both the limits are 

further investigated in the LFR and HFR with an interesting special corollaries to the MB-

distributed plasma particles as two distinct realistic sub-cases (equations (5.44)-(5.45) and 

equations (5.48)-(5.49)). The investigated profile pattern outputs in the wave space are 

being finally compared and interpreted lucidly. 

 

Figure 5.1: Profile of the Jeans-normalized (a) real frequency )( r  and (b) growth rate 

)( i  of the composite instability excited in our cloud model with variation in its Jeans-

normalized angular wavenumber )(K  comparing the DCW and DAW modal features 

illustratively for both the  distributed and MB-distributed plasma cases in the weakly 

coupled regime.  

 

In figure 5.1, the profile of the Jeans-normalized (a) real frequency  r  and (b) 

growth rate  i  with variation in K  depicting the DAW and DCW modal features of both 

the non-thermal (  case) and thermal (MB-case) plasma particles in the WCL are 

presented. The corresponding zoomed-in portion is displayed in figure 5.2. Both the non-

thermal and thermal cases are further portrayed in the HFR and LFR each therein. The 

different reliable inputs borrowed from the literature [8, 38, 47-49] are employed in our 
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analysis. Here, 10 , 50dZ , 
5

0 102en  m-3, 
5

0 104in  m-3, 
31101.9 em  kg, 

271067.1 im  kg, 
161086.1 dm  kg [47, 48];  1510  kg m-1 s-1, 1610  kg m-1 s-

1, 
210m  s [8, 49]; 5.5e , 7.4e [38]; 

4101eT  K, 
4101iT  K, 20dT  K [47, 

48], and 
10

0 10B  T [47]. In this WCL, one estimates 
2103.5 Cou . In the  case 

for the HFR, we take 510R  m to obtain 41.46f , 15.1R  m, and 85.7D
 m, so 

that the condition for the excitation of the DCWs ( 22

 DR  ) is well fulfilled [10]. 

Conversely, for the LFR, we adopt 810R  m to get 2106.4 f , 4.36R  m, and 

85.7D
 m, so that the condition for the excitation of the DAWs ( 22

 DR  ) is well 

satisfied [10]. Conversely, in the MB-case for the HFR, we estimate 59f , 15.1R  m, 

92.8D
 m, and 22

 DR  . Again, for the LFR, we get 2109.5 f , 41.36R  m, 

92.8D
 m, and 22

 DR  .  It is to be noted here that the critical wavenumber ( cK ) is 

a transition point in the wave space separating the stable and unstable nature of the 

fluctuations (growing for cKK   and propagatory for cKK  ). Clearly, for the  case 

in the HFR ( 1f ), one finds 94.0~cK  (figure 5.2); and, for the LFR case ( 1f ), 

it reads 69.0~cK  (figure 5.2). Similar stability features are found to exist in the MB-case 

as well.  Now, in the former ( 1f ), we see 8.7~cK  (figure 5.1); and, 1~cK  (figure 

5.1) for the latter ( 1f ). This interestingly means that the long-wavelength 

(gravitational, 0K ) fluctuations become more unstable in both the LFR and HFR of the 

 case and LFR of the MB-case. In contrast, the short-wavelength (acoustic, K ) 

fluctuations become unstable only in the HFR of the MB-case. It is to be noted that, cK  for 

both the modes with the MB-case supersedes those in the  case. In the MB-case, 

however, cK  for the dense system (HFR) gets shifted sharply against its tenuous 

counterpart (LFR). The cK -shift in the  case is very less in comparison with the MB-

case. It is seen here that, in both the plasma special cases, cK  increases with the system 

compactness (fugacity effects). But, in the  case, the presence of the superthermal 

electrons and ions increase the randomizing non-thermal pressure force. The lighter species 

get stuck to the dust surface more rapidly, resulting in an enhanced mutual dust-dust 

Coulombic force. As a consequence, the net outward pressure force in a  case is more 

than that in the MB-case. The magnitudes of r  and i  are higher in the  case than the 
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MB-counterparts. So, the  case of the DMC gets destabilized more powerfully and more 

rapidly than the MB-moderated conjectures.  

  

Figure 5.2: Same as figure 5.1, but in the zoomed form to depict the K -criticalities clearly.  

 

  

Figure 5.3: Same as figure 5.1, but in the strongly coupled regime. 

 

In figure 5.3, we display the same as figure 5.1, but in the SCL. The new input 

values, apart from figure 5.1, are 
310dZ , 

8

0 104in  m-3, 
8

0 102en  m-3, and 

61.78Cou . In the  case, for the HFR, we take 410R  m, so that 21.23f , 

21015.5 R  m, 
11048.2 D  m, and 22

 DR   [10]. For the LFR, we adopt 

710R  m to obtain 21032.2 f , 
1108.4 R  m, 1105.2 D  m, and 22

 DR   

[10]. In the MB-case, for the HFR, we estimate 98.29f ,  21015.5 R  m, 

11082.2 D  m, and 22

 DR  . Again, for the LFR, we get 2100.3 f , 63.1R  m, 

11082.2 D  m, and 22

 DR  .  In the  case of the SCL, it is found that cK  

increases for both the HFR ( 6.3~cK ) and the LFR   ( 98.0~cK ) against the WCL (figure 

5.4). But in the MB-case, cK  decreases for both the HFR ( 1.4~cK ) and the LFR (
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99.0~cK ) (figure 5.4). This is due to the role of the viscoelastic force arising from the 

collective cooperative dynamics of the dust grains in the  case against the MB-case. In 

the  case (MB-case), the viscoelastic force is directed inward (outward). It results in 

enhancing (reducing) the resultant inward gravitational action. As a consequence, the DMC 

is destabilized (stabilized) in the  case (MB-case) against the non-local gravitational 

cloud collapse dynamics. It can be hereby inferred that the DAW (DCW) mode is excited 

at the low (high) K-value in both the  MB cases of the SCL. It is furthermore seen that 

the long-(short-)wavelength fluctuations evolve in the LFR (HFR) in both the  MB 

cases. The basic physical insight behind this atypical DMC thermostatistical dynamics with 

conjugational viscoelastic effects could be attributable to the operative transition from a 

non-uniform non-gravitational pressure (inhomogeneous non-equilibrium,  case) to a 

uniform non-gravitational one (homogeneous equilibrium, MB-case) in a collective 

cooperative manner. 

  

Figure 5.4: Same as figure 5.3, but in the zoomed form to depict the 

K

-criticalities clearly. 

 

 

 
 

Figure 5.5: Same as figure 5.1, but in the WCL and SCL of the  distributed plasma case.  

K
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As in figure 5.5, we depict the same as figure 5.1, but in the WCL and SCL of the 

 case only. It is found that the DAW mode propagates at a high K-value ( 6.3~cK ) of 

the SCL and at a low K-value ( 94.0~cK ) of the WCL. The DCW mode get excited at a 

low K-value ( 98.0~cK ) of the SCL and at an ultralow K-value )69.0~( cK  of the WCL. 

Thus, the long-wavelength fluctuations occur in the LFR of the SCL; but, in both the LFR 

and HFR of the WCL. The short-wavelength fluctuations interestingly occur at the HFR of 

the SCL only (figure 5.5). It is seen further that the DAW and DCW modes in the WCL are 

excited at a lower K-value than its SCL counterpart (figure 5.6). In both the limits, cK  

increases with the compactness. So, the strength of the inward gravitational force increases 

with the compactness, and vice-versa. It is noted that the cK -shift in the SCL is more than 

that in the WCL. This difference is because of the higher dust population (viscoelastic and 

strongly gravitating) in the SCL than the opposite rarer counterpart WCL (non-viscoelastic 

and weakly gravitating). The viscoelastic force in the  case is inward. The conjoint 

action of the viscoelastic and gravitational forces dominates over the dust-dust Coulomb 

repulsion in the SCL against the WCL. So, the SC fluids get more destabilized than the WC 

fluids against the non-local inward gravity in the  case. 

  

Figure 5.6: Same as figure 5.4, but in the zoomed form to depict the K -criticalities clearly.  
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Same as figure 5.5, but in the MB-distributed plasma case. 
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Figure 5.8: Same as figure 5.7, but in the zoomed form to depict the K -criticalities clearly.  

 

In figure 5.7, we display the same as figure 5.5, but now in the MB-case, alongside 

the zoomed-in portion displayed in figure 5.8. It is found that the DAW mode occurs at a 

high K-value ( 1.4~cK ) of the SCL and at an ultrahigh K-value ( 8.7~cK ) of the WCL. 

Moreover, the DCW mode excitation occurs at a low K-value in both the SCL ( 99.0~cK

) and WCL ( 1~cK ).  Hence, the long-(short-) wavelength fluctuations occur in the LFR 

(HFR) in both the limits of the MB-case. Moreover, the DAW and DCW modes in the 

WCL evolve at a higher K-value than its SCL counterpart. In both the coupling limits, cK  

increases with the system compactness, and vice-versa. Here too, the inward organising 

gravitational force increases with the compactness, and vice-versa. Again, the cK -shift in 

the SCL is less than that in the WCL (figure 5.8). The viscoelastic force in the MB-case is 

outward against that acting inward in the  case. The self-gravitational action (inward) 

is weaker than the conjoint action (outward) of the viscoelastic and dust-dust Coulombic 

repulsion forces in the SCL against the WCL. It, hereby, displays a mutualistically opposite 

picture. So, the WC fluids are more destabilized than the SC fluids in the MB-case against 

the canonical self-gravitational collapse dynamics. 

In figure 5.9, we display the same as figure 5.1, but for the different dZ - values. It 

is seen that, with an increase in dZ , the magnitude of r  increases; but the magnitude of 

i  decreases; and vice-versa. It means that with an increase in dZ  in the HFR, the 

Coulombic interaction among the dust grains increases, thereby opposing the inward 

gravitational pull. Thus, dZ  acts as a stabilizing and accelerating agency of the DMC 

against the inward collapse. 
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Figure 5.9: Same as figure 5.1, but for the different dZ - values.   

Figure 5.10: Same as figure 5.1, but for the different 0en - values. 

 

In figure 5.10, we portray the same as figure 5.1, but for the different 0en - values. 

It is seen that, with an increase in 0en , the modal patterns exhibit the similar behaviours as 

figure 5.9. An enhancement in 0en  makes the electron flux current increase. It causes the 

negative charge of the dust grains to go higher. It, in turn, increases the mutualistic 

Coulombic repulsion among the grains. As a result, the outward repulsive force overcomes 

inward gravitational force. Thus, 0en  acts as a stabilizing and accelerating agency to the 

considered DMC. 

In figure 5.11, we show the same as figure 5.1, but for the different 0in - values. It 

is seen that with increase in 0in , the profile patterns show an opposite behaviour in contrast 

to figure 5.9. This means that with an increase in 0in , the ion current flux onto the dust 

surface increases, and vice-versa. It reduces the negative charge of the constituent dust 

grains. As a result, the strength of the Coulombic repulsion among the grains decreases. It 
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allows the gravitational force to dominate over the net outward repulsive force of the 

electrostatic origin. We can, therefore, infer that 0in  acts as a destabilizing and decelerating 

agency of the perturbed DMC against the inward self-gravitational collapse. 

 

Figure 5.11: Same as figure 5.1, but for the different 0in - values.  

 

As in figure 5.12, we show the same as figure 5.1, but for the different 
0B - values. 

Clearly, it shows a similar type of patterns as in figure 5.1. It means that the 
0B  acts as a 

stabilizing and accelerating agent to the dynamics of the fluctuating DMC against the 

canonical Jeans collapse. It is attributable to the well-known fact that with an increase in 

0B , the constituent charged particles get frozen along the magnetic field lines, thereby 

halting the cloud collapse to grow. 

Figure 5.12: Same as figure 5.1, but for the different 0B - values. 

 

In figures 5.13-5.14, we display the same as figure 5.1, but for the different e - and 

i - values, respectively. It, on an average, follows a similar type of patterns as already 
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depicted in figure 5.11. We see herewith that, with an increase in e  ( i ), the cloud 

thermostatistics moves from the superthermality limit (high-energy regime) towards the 

MB-distribution limit (low-energy regime), and vice-versa. In other words, it means that, 

with an increase in e  ( i ), the number density of the superthermal plasma particles 

significantly decreases [38]. As a result, the Coulombic force among the dust grains arising 

due to the sticking effects of the constitutive plasma particles decreases. This, in turn, 

makes the inward gravitational force (organizing) to supersede the outward pressure force 

(randomizing). Thus, it is conclusively inferred that the non-thermality (or superthermality) 

parameters act as destabilizing and decelerating agent to the DMC fluctuations dynamics 

against the canonical self-gravity in the non-planar framework of spherical geometry. It 

may be pertinent to mention here that this destabilizing nature of e  ( i ) in our non-planar 

complex cloud model is against the previous findings reporting the stabilizing nature of e  

( i ) for the hybrid gravito-acoustic (pulsational) mode in the planar geometry 

approximation [38, 50]. It hereby confirms that the polarity of the instability dynamics of 

the non-thermal DMCs is drastically influenced with the uncommon geometric curvature 

effects alongside minor moderations contributed from the common collective correlative 

factors associated with the adopted fluid model configurations.  

Figure 5.13: Same as figure 5.1, but for the different e - values. 

 

In figure 5.15, we portray the same as figure 5.1, but for the different  - values. It 

herewith shows a unique pattern feature in comparison with the other relevant parameters 

of the system. Any simultaneous existence of both the propagatory and growth features of 

the fluctuations are not supported in the DMC system. At 6.3~cK , it makes a transition 

forming a purely growing mode into a propagatory one (i.e. towards the high-frequency 
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(acoustic) regime).  It does not affect r -evolution at all (figure 5.15(a)). Moreover, the 

i -variation occurs only at the ultra-low K-limit (figure 5.15(b)). In other words, only the 

long wavelength (gravitational) fluctuations get perturbatively unstable. It is seen that, with 

an increase in  , 
i  decreases, and vice-versa. Thus,   acts as a stabilizer against the 

inward self-gravity. It is due to the universal inverse square Newtonian law of the long-

range self-gravity (cloud-centric), which decreases with the interparticle separation in a 

given thermodynamic environ. It means that the self-gravitational pressure force in the 

cloud decreases with increase in the cloud size, and vice-versa. Such stabilizing effects 

caused by the geometric curvature radius (i.e., deviation from the plane-parallel geometry) 

are quite bolstered with the previous predictions in similar isothermal gaseous spherical 

shells [8, 51]. A compact summary of the results investigated here are shown in Table 5.1 

and Table 5.2 (in Appendix-5.A) portray the distinctive features of the DAW-DCW and 

WCL-SCL aspects in DMCs, respectively.  

Figure 5.14: Same as figure 5.1, but for the different i - values. 

 

Figure 5.15: Same as figure 5.1, but for the different  - values.  
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The above analyses on the spherical magnetized DMC can be helpful in 

understanding the star formation dynamical processes in the RCW 38 region of the dark 

DMCs. The RCW 38 is a bright H II region having a young, massive star cluster located at 

a distance of 1.7 kpc away from the Earth in the direction of the constellation Vela [52]. It 

is observed through the Very Large Telescope in the near-infrared spectral zone [52]. A 

good number of astronomic observations on the Zeeman effect in such RCW 38-like 

regions has been previously reported in the literature to correlate the stability of the self-

gravitating cloud with its geometry [37]. It has been found that the azimuthal magnetic 

flux-to-mass ratio in such clouds is 
DMCB M/ = 0.9 for spherical shape (non-planar, super-

critical) and DMCB M/ =1.6 for sheet-like (planar, sub-critical) geometries [37]. It, thereby, 

implies that the RCW 38 region is magnetically supercritical and geometrically spherical 

[37]. As the density of the RCW 38 is twice of Orion nebula cluster, and an order of 

magnitude denser than other nearby star-forming regions, it may provide a supportive 

environs for the DCW excitation in the RCW 38 and like regions. 

 

5. CONCLUSIONS 

This Chapter reports a GH model of gravito-magnetically bounded spherical DMCs to 

study the excitation of the DAW and DCW in diversified extreme cloud conditions on the 

Jeans scales of space and time. It includes mainly the effects of non-local self-gravity, non-

thermal pressure, and local dust-charge fluctuations in spherical geometry. The dust-charge 

evolves as a dynamic variable because of the dynamicity of the dependent plasma 

parameters. Application of a standard spherical wave analysis with no quasi-classic eikonal 

approximation yields a generalized linear quadratic dispersion relation. It involves an 

atypical set of multi-parametric coefficients in the wave space sensitively reducible in the 

extreme regimes of the dust-fugacity and viscoelasticity. The reduced forms of the 

dispersion relation are numerically analysed in both the WCL and SCL. Both the limits are 

further investigated in the LFR and HFR. The analysis depicts that both the LFR mode 

(DAW) and HFR mode (DCW) are dispersive in the short-wavelength (acoustic) regime 

and non-dispersive in the long-wavelength (gravitational) regime propagating with their 

respective distinct critical existential scales. An interesting pair of special corollaries 

relating to the MB-distributed plasma particles as two distinct realistic sub-cases are drawn. 

The DMC in the WCL is fully free from any kind of viscoelastic effects due to the absence 

of collective cooperative degrees of freedom. In contrast, the SC fluid exhibits 
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viscoelasticity due to the presence of collective cooperative degrees of freedom. Such SC 

fluids are mostly relevant in diverse compact astrostructures and their circumvent 

atmospheres including planetary magnetospheres, H II regions in DMCs, Saturian rings, etc.  

A comparative analysis between the  case and MB-case, and between the SCL 

and WCL is graphically presented to reveal the physical insights in such hybrid wave-

dynamical aspects. In the  case, the long-wavelength (gravitational) fluctuations 

(Jeansian) are more unstable. It destabilizes the DMCs more strongly and rapidly than its 

MB-counterparts. The outward Coulombic force among the dust grains dominates more in 

the  case than in the MB due to superthermality effects. Again, the viscoelastic force is 

directed inward (outward) in the  case (MB-case). It is conjectured that in the  case 

(MB-case), in the SCL (WCL) fluids are more destabilized than the corresponding regimes 

of the WCL (SCL).  

In addition to the above mention points, a judicious numerical analysis is performed 

to explore various stabilizing and destabilizing agents of the fluctuation in the HFR of the 

SC fluid having  distribution. This investigation enables us to show that the equilibrium 

dust charge number ( 0dZ ), equilibrium electronic population density ( 0en ), and equilibrium 

azimuthal magnetic field (
0B ) act as stabilizing and accelerating agencies to the fluctuation 

dynamics. Conversely, the equilibrium ionic population density ( 0in ), non-thermality 

parameter ( e  and i  ) act as destabilizing and decelerating agents against self-gravity 

effects.  

An interesting outcome here is that the polarity of the instability dynamics of the 

non-thermal DMCs is drastically influenced with the uncommon geometric curvature 

effects alongside minor moderations contributed from the common collective correlative 

factors associated with the adopted fluid model. In a broader sense, the non-thermality 

parameters plays as a destabilizer (stabilizer) in the non-planar (planar) geometry. It is to 

be further noted that the cloud dimension ( ) adds a unique feature to the fluctuation 

dynamics. It acts as a stabilizer in the ultra-low K only; but, plays no role in 

accelerating/decelerating the DMC fluid.  

The scale-invariant (normalized) bimodal instability evolutionary features, 

particularly on the DCW dynamics as explored here, are found to be consistent with the 

experimental observations reported on the laboratory scales of space and time [14]. On the 

astrophysical scales too, the proposed semi-analytic model formalism can have potential 

applications to understand diversified structure formation mechanisms as discussed above. 
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APPENDIX-5.A 

Table 5.1: DCW versus DAW 

 

 

 

S. 

No. 

Item DAW DCW Reference 

1  Critical spatial 

scale 

Debye screening 

length )( D  

Modified Wigner-

Seitz radius )( R  

[9-13] 

2  Condition 1RD  
 1RD  

 [10] 

3  Coupling 

parameter 

1Cou  1,1 Cou  [10, 13, 

14] 

4  Charge 

fluctuations 

May be zero Must be non-zero [9-13] 

5  Fugacity Tenuous  ( 1f ) Dense ( 1f ) [9-13] 

6  Dust-charge Low High [9, 10] 

7  Dust radius Small Large [10] 

8  Perturbations 

(generic notations) 

 1110 iedd nnenq   

1010 dddd qnnq   

 1110 iedd nnenq   

1010 dddd qnnq   

[10] 

9  Frequency regime Low  Ultra-low [9-13] 

10  LFR dispersion in 

the low-K limit 

Non-dispersive NA Herein 

11  LFR dispersion in 

the high-K limit 

Dispersive NA Herein 

12  HFR dispersion in 

the low-K limit 

NA Non-dispersive Herein 

13  HFR dispersion in 

the high-K limit 

NA Dispersive Herein 

14  Factors affecting 

phase speed  

Plasma parameters 

in a mixed form 

Dust parameters in a 

pure form 

[9-13] 

15  Astro-relevancy Interstellar media Compact astroobjects [9-13] 
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Table 5.2:  WCL versus SCL 

S. No. Item WCL SCL 

1  Existencial condition  

(Coulomb coupling) 

1m   

( 1Cou ) 

1m   

( 1Cou ) 

2  Viscoelasticity Irrelevent  Relevent 

3  Dust number density Low High 

4  Dust charge Low High 

5  Electron number density Low High 

6  Ion number density Low High 

7  Dust size Large Larger 

8  DAW frequency in  -case Low High 

9  DAW frequency in MB-case Ultra-high High 

10  DCW frequency in  -case Ultra-low Low 

11  DCW frequency in MB-case Low Low 

12  
cK -shift with f  in  -case Less More 

13  
cK -shift with f  in MB-case More Less 

14  Acoustic fluctuations in  -case NA HFR 

15  Acoustic fluctuations in MB-case HFR HFR 

16  Gravitational fluctuations in  -case Both LFR & HFR LFR 

17  Gravitational fluctuations in MB-case LFR LFR 

18  Instability growth in  -case Less More 

19  Instability growth in MB-case More Less 

 


	09_chapter 5

