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     ABSTRACT 

 
Historically, the area of chemistry mostly relies on experimental studies. However, over 

the last few decades, a number of sophisticated computational techniques have been 

developed which are being extensively used to solve various problems in chemistry. The 

modern computational technique uses different approximation schemes such as Hartree-

Fock, post-Hartree-Fock, semiempirical or forcefield methods to tackle different 

chemical problems which are otherwise difficult to study experimentally. They are found 

to be extremely useful in studying reaction mechanisms, determining molecular 

geometries of ground and excited states, different electronic and spectroscopic properties 

etc. The works presented in this thesis are divided into six chapters. The first chapter 

corresponds to the brief introduction to Density Functional Theory (DFT). In the 

remaining chapters i.e. in chapters 2-6, we have employed computational techniques 

(DFT calculations) to solve a variety of chemical problems. A brief overview of all the 

chapters is given below-  

 

Chapter 1: Brief Introduction to Computational Chemistry 

All the work that are presented in this thesis were carried out with the help of 

DFT calculations. Therefore, a brief description of DFT and all other computational 

techniques is discussed in this chapter. 

 

Chapter 2: In Search of Stable, Singlet Metalla N-Heterocyclic Carbene (MNHC) 

and Probing their Potential in Small Molecule Activation. 

 The chemistry of carbenes has evolved as an important area of research over the 

last couple of decades because of their ease of tunability and versatile catalytic 

applicability [1-3]. Even though the parent carbene (:CH2) prefers to have a triplet 

ground state, a thorough search of the literature yields a large number of carbenes which 

favor the singlet state over the triplet state [4, 5]. A signature example of this class of 

carbene is N-heterocyclic carbene (NHC), which was synthesized and isolated by 

Arduengo et al. in 1991 [6].  

This chapter is divided into parts- the first part deals with the computational 

study aimed toward designing a series of stable, singlet MNHCs and in the second part, 

we have probed the potential of the MNHCs toward activation of a variety of 

enthalpically strong E–H bonds (E = H, N, P , Si and C). 
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In Search of Stable Singlet Metalla-N-Heterocyclic Carbenes (MNHCs): A 

Contribution from Theory 

Many transition metal (TM) complexes have been synthesized bearing NHC as a 

ligand and some of these complexes are being successfully employed in homogeneous 

catalysis [7-14]. The electron donation ability of the carbene ligand plays a crucial role 

in determining the catalytic efficiency of the corresponding TM complexes. Therefore, a 

lot of emphasis has been put towards the design and synthesis of carbenes with better 

ligand properties and this was generally accomplished by changing either the heteroatom 

attached to the carbene center or by changing the substituents at the heteroatom as well 

as by modifying the ring framework itself. For example, the amino group of the carbene 

ring framework was substituted by other heteroatoms such as phosphorus (PHC) [15, 

16], oxygen (oxazol-2-ylidene) [17] and sulphur (thiazol-2-ylidene) [17-20]. Other 

strategies include the alteration of the carbene carbon position (a mesoionic or abnormal 

carbene) [21-24], considering a saturated backbone instead of an olefinic backbone [25], 

the expansion of the ring size [25-29], etc. Similarly, attempts have been made to 

incorporate transition metal (TM) fragments into the carbene ring framework by 

replacing one of the backbone carbon fragments by isolobal metal fragments [30, 31]. 

These types of NHCs containing TM fragments within the carbene ring framework are 

commonly known as metalla-N-heterocyclic carbenes (MNHCs). Interestingly, the 

computed proton affinity and the pKa values for the MNHCs are found to be 

significantly higher than those of traditional NHCs, indicating their higher degree of σ-

donation ability [32]. Even though MNHCs exhibit better electron donation ability than 

NHCs, their isolation in the free crystalline state remains an experimental challenge. 

However, they can be trapped by forming adducts with transition metal complexes such 

as [AuCl(PPh3)], [Rh(cod)Cl2] and CuCl [32]. 

In this part, we have performed density functional theory calculations to design a 

series of stable, singlet MNHCs (Scheme 2.1). We have used hybrid PBE0 exchange–

correlation functional [33, 34] in conjunction with the 6-311++G** basis set [35-37] for 

the main group elements as well as for the first-row transition metals. Furthermore, the 

relativistic all electron QZP-DKH [38] basis set was considered for heavier transition 

metal ruthenium with the relativistic second order DKH(DKH2) Hamiltonian [39]. All 



iii 

 

the MNHCs considered in this study are found to exhibit a stable singlet ground state. 

The introduction of π-donor groups such as OMe and NMe2 at the carbene framework 

significantly increases the ΔES–T values for the five-membered MNHCs. Furthermore, 

the calculated ΔES–T values for some of the MNHCs are found to be significantly large 

(30–50 kcal mol−1) and lie within the range of the experimentally known carbenes. 

Therefore, these computationally designed MNHCs – especially those with the ΔES–T 

values of more than 40.0 kcal mol−1 may be considered as ideal candidates for 

experimental realization. 

 

Scheme 2.1: Schematic representation of the range of MNHCs considered in this study. 

 

Probing the Potential of Metalla-N-Heterocyclic Carbenes Towards Activation of 

Enthalpically Strong Bonds 

 In this part, we have performed in-depth computational studies aimed toward 

probing the efficacy of the MNHCs in activation of small molecules (Scheme 2.2). We 

have used meta-GGA M06 exchange–correlation functional [40] in conjunction with the 

valence polarized def2-TZVP basis set [41, 42] for all the elements. All the MNHCs 

have been found to have a stable singlet ground state and exhibit superior electron 

donating and accepting ability compared to their respective parent carbenes. 

Furthermore, the calculated energy barrier for the activation of a variety of enthalpically 
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strong bonds for the MNHCs, 1 and 3 are found to be comparable to those obtained for 

the experimentally evaluated carbenes cyclic(alkyl)(amino)carbene (CAAC) and 

diamido carbene (DAC), indicating their potential in small molecule activation. 

 

Scheme 2.2: Schematic representation of the MNHCs considered in this study. 

 

Chapter 3: Activation of Small Molecules by Cyclic Alkyl Amino Silylenes 

(CAASis) and Germylenes (CAAGes): A Theoretical Study 

 The chemistry of silylenes and germylenes are fairly diverse both in structure and 

reactivity. N-heterocyclic silylene (NHSi) [43] and germylene (NHGe) [44] are neutral 

divalent species with a vacant p–orbital and a non–bonding pair of electrons. A majority 

of the silylenes and germylenes possess a singlet ground state which may be attributed to 

the increased radial extension of ns and np orbitals as we go down the group [45]. The 

ligating properties of NHEs (E = Si, Ge) are somewhat different from their lighter 

congeners as NHCs possess a higher Lewis basicity and lower Lewis acidity than 

NHSis/NHGes [46]. Recently, the research groups of Iwamoto and Kinjo independently 

reported the isolation of silicon (CAASi) [47] and germanium (CAAGe) [48] analogs of 

cyclic(alkyl)(amino)carbene (CAAC)  where the central silicon or germanium atom is 

bonded to a nitrogen and a quaternary carbon atom. These cyclic(alkyl)(amino)silylenes 

(CAASi) and cyclic(alkyl)(amino)germylenes (CAAGe) are found to have better electron 

donation ability than classical NHSis and NHGes. Very recently, Iwamoto and co-

workers found that CAASi could be used as a dehydrogenation reagent [49]. However, 

compared to the large number of studies being carried out on CAACs, to the best of our 

knowledge, there exists no systematic and comprehensive study–either experimental or 

computational, on CAASis and CAAGes. 

 In this part, we present our results of computational studies on the electronic and 

ligand properties of skeletally substituted CAASis and CAAGes, and based on their 

ligand properties, some of these molecules are probed towards activation of small 

molecules (Scheme 3.1). We have employed meta-GGA M06 exchange correlational 

functional [40] in conjunction with def2-TZVP basis set [41, 42] for all the atoms. All  
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Scheme 3.1: Schematic representation of the range of silylenes and germylenes 

considered in the present study. 

 

the skeletally substituted CAASis and germylenes (CAAGes) considered in this study 

compute significantly higher or comparable singlet-triplet separation (ΔES-T) than their 

synthetically accessible parent analogues implying that all of them may be stable enough 

for experimental realization. Furthermore, some of the computationally designed 

CAASis and CAAGes are probed towards activation of H–H, N–H, C–H and Si–H 

bonds and the energetics of these reactions are compared with those of the 

experimentally evaluated systems including Driess’s NacNac stabilized silylene and 

Kira’s five-membered silylene. Our study successfully explains many of the 

experimental observations, e.g., requirement of higher temperature for C–H and Si–H 

bond activations. 

 

Chapter 4: Ylide Decorated Monovalent Group 13 Carbenoids and Probing their 

potential towards Activation of Enthalpically Strong Bonds.  

This chapter is divided into two parts-(i) the first part deals with the stabilization 

of the hitherto unknown five-membered cyclic boron(I) carbenoids and studying their 

potential in small molecule activation. (ii) In the second part, we have proposed a couple 

of ylide decorated monovalent five-membered aluminium(I) and gallium(I) carbenoids 

with enhanced ligand properties and studied their reactivity towards activation of a 

variety of entalpically strong bonds.  
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Stable N-Heterocyclic Borylenes with Promising Ligand Properties: A Contribution 

from Theory 

The monovalent group 13 carbenoids which are isoelectronic to the divalent 

group 14 compounds (e.g. NHC), are known for the heavier Al–Tl(III) derivatives [50-

53] and are found to be capable of exhibiting metallomimetic behaviour such as small 

molecule activation [54]. The first addition to this class of compounds came from 

Roesky and coworkers with the isolation of a neutral six membered Al(I) carbenoid 

supported by a bulky -diketiminate (NacNac) ligand framework [50]. This was 

followed by the synthesis of its gallium analogue by Power and coworkers [51]. 

However, the synthesis and isolation of a neutral monomeric cyclic boron(I) carbenoid 

has remained elusive to date; this may be attributed to smaller energetic separation 

between the valence s and p orbitals as well as low singlet–triplet (ΔES–T) separation. 

Phosphorous ylides are found to be useful in stabilizing group 14 bases [55-61]. Based 

on these reports, we envisage that phosphorous ylides could be promising systems for 

the stabilization and isolation of the hitherto unknown cyclic boron(I) carbenoids. 

In this part, we present the results of our computational studies on the 

stabilization of neutral, monomeric five-membered boron(I) carbenoids by employing 

two different ylide functionalities, viz., a conventional carbon-based phosphorous ylide 

and a zwitterionic four-membered cyclic ylide [62] and their potential in small molecule 

activation. We have used meta-GGA M06 exchange–correlation functional [40] in 

combination with the valence polarized def2-TZVP basis set [41, 42] for all the 

elements. Calculations suggest that strongly -electron donating groups such as amino or 

ylides may be used for the stabilization of neutral monomeric five-membered boron(I) 

carbenoids (1–9, Scheme 4.1). It is encouraging to note that the molecules 4–7 and 9 

compute the highest singlet-triplet separation values (ES-T = 25.5–42.3 kcal mol-1) 

known to date, and to the best of our knowledge, no other cyclic borylenes are known 

with such large values thus highlighting the remarkable power of ylides in stabilizing 

unusual species. In addition, the calculated ES-T values are found to be either 

comparable or higher than that of the synthetically amenable Roesky’s Al(I) carbenoid 

(34.1 kcal mol-1) or cAAC (42.7 kcal mol-1) further providing a hint towards their 

possible isolation. In addition, 4–7 and 9 are remarkably nucleophilic and compute 

considerably lower barrier heights for the activation of E–H (E = H, C and N) and C–F 
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bonds compared to that of the experimentally evaluated systems indicating their potential 

in small molecule activation. 

 

Scheme 4.1: Schematic representation of the cyclic five-membered boron(I) carbenoids 

considered in this study. 

 

Unravelling the Potential of Ylides in Stabilizing Low-Valent Group 13 

Compounds: Theoretical Predictions of Stable, Five-membered Group 13 (Al and 

Ga) Carbenoids Capable of Small Molecule Activation 

 Motivated by the lack of isolable neutral monomeric five-membered aluminium 

carbenoids as well as to contribute to the field of group 13 carbenoids with enhanced 

ligand properties, density functional theory calculations were carried out on a number of 

ylide decorated monovalent aluminium and gallium carbenoids (1–4, Scheme 4.2). We 

have employed meta-GGA M06 exchange–correlation functional [40] in combination 

with the valence polarized def2-TZVP basis set [41, 42] for all the elements. All the 

computationally proposed molecules (1-4) are found to be substantially nucleophilic and 

exhibit singlet- triplet energy separation values that are either comparable or higher than 

those obtained for I, II and XIa indicating that all of them could be considered as 

potential synthetic targets. In addition, the calculated activation energy barriers obtained 

for 1–4 in different bond activation processes are found to be comparable to those of I 

and II which are known to activate a range of small molecules under mild reaction 

conditions. Therefore, akin to I and II, all the newly designed ylide anchored group 13 
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carbenoids may be considered as suitable candidates for small molecule activation and 

calls for sustained experimental efforts toward their synthesis and isolation. 

 

 

Scheme 4.2: Schematic representation of the group 13 carbenoids considered in this 

study. 

 

Chapter 5: Understanding, Modulating and Leveraging Transannular MZ 

Interactions 

Transition metal complexes containing a group 13 element as a -acceptor group 

are commonly known as group 13 metallatranes and feature a transannular MZ 

interaction. It is believed that this interaction plays a key role in governing the stability 

and reactivity of these molecules. Group 13 metallatranes are found to be useful in 

various catalytic processes, such as dinitrogen activation [63-65], hydrogenation and 

hydrosilylation of CO2 [66, 67], heterolytic E–H bond activation (E = O, S, C, N) [68-

72] and catalytic olefin hydrogenation [73] among others. The flexibility of the MZ 

interaction is believed to play a key role in dictating the catalytic activities of group 13 

metallatranes. 

In this work, we performed a comprehensive, in-depth analysis of the nature and 

strength of the intramolecular transannular interaction present in these molecules aiming 

at providing valuable information for their use in catalysis and small molecule activation 

reactions. The transannular MZ interaction is analyzed as a function of different 

equatorial (E), apical (L), and Lewis acidic (Z) groups (Scheme 5.1). We have used meta 

hybrid exchange-correlation energy functional M06 [40] in conjunction with the split 

valence polarized def2-SVP basis set  for H, C, N, O, S, and P, and the triple-zeta 

valence polarized def2-TZVP basis set  for Fe, Co, Ni, Al, Ga, and In [41, 42]. The core  

https://en.wikipedia.org/wiki/Exchange_interaction
https://en.wikipedia.org/wiki/Electron_correlation
https://en.wikipedia.org/wiki/Functional_(mathematics)
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Scheme 5.1: Schematic representation of the metallatranes considered in this study. 

 

electrons of In were replaced by an effective core potential (ECP). The extent of these 

transannular MZ interactions depends to a large extent on the size and polarizability of 

the group 13 element (Z group). Furthermore, it should be noted that the strength of the 

transannular interaction plays a decisive role in governing the reactivity of the TM center 

in metallatranes. For example, the calculated reaction free energies (G) for binding of 

different Lewis bases are found to be more exergonic for the larger, more polarizable 

Lewis acidic In(III) ion than those for Al(III) or Ga(III) ions. Therefore, such 

transannular interactions could be leveraged towards the binding of -donor or  acidic 

ligands to a given transition metal center. The quantum theory of atoms in molecules 

study also suggests the presence of considerable electron density () at the BCP of the 

MZ bonds, which gradually increases as Z is varied down group 13 from Al to Ga to 

In. In addition, the calculated local electronic energy density (H(r)) values are found to 

be negative, indicating the covalent nature of the MZ bonds. Furthermore, EDA-

NOCV analysis indicates the strong binding ability of these metallatranes not only to 

different -donor and π acceptor ligands but also to relatively inert species, such as N2. 

 

Chapter 6: Unravelling the Potential of Tripodal Vanadium Catalysts for 

Dinitrogen Reduction 

In this work, we have performed in depth comprehensive study aimed towards designing 

of a series of tetradenate tripodal vanadium complexes (Scheme 6.1) and studied their 

efficacy in some of the key steps involved in the dinitrogen reduction process. We have 



x 

 

used M06-L functional [74] in conjunction with 6-311+G* [35-37] basis set for all the 

elements. The proposed complexes were probed towards understanding their efficiency 

in some of the key steps involved in the dinitrogen fixation process. All the complexes 

were found to be successful in preventing the release of hydrazine during the nitrogen 

reduction reaction. We have performed a comprehensive mechanistic study by 

considering all the possible pathways (distal, alternate and hybrid) (Scheme 6.2) to 

understand the efficiency of some of the proposed catalysts towards dinitrogen reduction  

 

 

Scheme 6.1: Schematic representation of the model vanadium complexes considered in 

this study. 

 

 

Scheme 6.2: Alternating and distal pathways for dinitrogen reduction to NH3 

 

process. In addition, interconversion of the isomeric nitrogenous species involved in the 

alternating ([5]alt, [6]alt and [7]alt) and distal ([5]dis, [6]dis and [7c]dis) pathways is unlikely 

to occur. The exergonic reaction free energies obtained for some of the key steps as well 
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as the presence of thermally surmountable barrier heights involved in the catalytic cycle 

indicate that the proposed vanadium complexes may be considered as suitable platforms 

for the functionalization of dinitrogen. 
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