DECLARATION

I hereby declare that the thesis entitled "*In vitro* and *in silico* study on anti-inflammatory properties of 'Norabogori' (*Prunus persica*) from Assam and its application in food model", submitted to the School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Food Engineering and Technology, is a record of a bonafide research work accomplished by me under the supervision of Professor Sankar Chandra Deka and co-supervision of Dr. Anupam Nath Jha. Any texts, figures, theories, results or designs that are not of my own devising are appropriately referenced in order to give due credit to the original author(s). All the sources of assistance have been assigned due acknowledgement. I also declare that neither this work as a whole nor a part of it has been submitted to any other universities or institute for any degree, diploma, associateship, fellowship or any other similar title or recognition.

Date:

Place:

(**Urbashi Neog**) Reg. No.**TZ121592** of 2012 Department of Food Engineering and Technology School of Engineering, Tezpur University Assam-784028, India

तेजपुरविश्वविद्यालय/ TEZPUR UNIVERSITY (संसदकेअधिनियमद्वारास्थापितकेंद्रीयविश्वविद्यालय) (A Central University established by an Act of Parliament) तेजपुर-784028 :: असम/ TEZPUR-784028 :: ASSAM

Prof. Sankar Chandra Deka, FRSC, FRSB Department of Food Engineering and Technology School of Engineering Tezpur University Email:sankar@tezu.ernet.in Phone: 03712-26-7100

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "*In vitro* and *in silico* study on anti-inflammatory properties of 'Norabogori' (*Prunus persica*) from Assam and its application in food model"submitted to the Department of Food Engineering and Technology, School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Tezpur University is a record of research carried out by Ms. Urbashi Neog under my supervision and guidance.

All the help received by her from various sources has been duly acknowledged. No part of this thesis has been submitted elsewhere for the award of any other degree.

(Prof. Sankar Chandra Deka)

Date:

Place:

Dr. Anupam Nath Jha Department of Molecular Biology and Biotechnology School of Sciences Tezpur University Email: anjha@tezu.ac.in Phone: 03712-275416

CERTIFICATE OF THE CO-SUPERVISOR

This is to certify that the thesis entitled "*In vitro* and *in silico* study on anti-inflammatory properties of 'Norabogori' (*Prunus persica*) from Assam and its application in food model" submitted to the Department of Food Engineering and Technology, School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Tezpur University is a record of research carried out by Ms. Urbashi Neog under my supervision and guidance.

All the help received by her from various sources has been duly acknowledged. No part of this thesis has been submitted elsewhere for the award of any other degree.

Date:

(Dr. Anupam Nath Jha)

Place:

Acknowledgements

My thesis entitled "In Vitro and In Silico Study on Anti-inflammatory Properties of 'Norabogori' (Prunus persica) from Assam and Its Application in Food Model" would not have been possible without the generous help and support of a good number of people.

First, I would like to express my sincere gratitude to my mentor and guide, Prof. Sankar Chandra Deka for enlightening me with the first glance of research, his guidance, patience, motivation, and continuous support towards research activities. I am equally grateful to my cosupervisor Dr.Anupam Nath Jha for giving me constant guidance and support for my whole research period.

I will be ever thankful to Prof. Shambhu Nath Singh, The Vice-Chancellor, Tezpur University for providing me permission and necessary facilities to carry out and submit the research work.

I would like to thank the members of my Doctoral Committee, Prof. Nandan sit, and Dr.Sanjeev Pran Mahanta, for their insightful comments and encouragement that incented me to widen my research from various perspectives.

I express my sincere thanks to all my DRC members, faculty and staff of the Department of Food Engineering and Technology for their constant support, valuable suggestions, and insights into my research. These suggestions and insights have helped me in many ways in articulating and developing the thesis.

I sincerely acknowledge Dr.Rupak Mukhopadhyay, Dept. of MBBT, Tezpur University for providing me the access to their laboratories and research facilities.

I am indebted to the Ministry of Food Processing Industries, Govt. of India, and Tezpur University for providing financial assistance in the form of externally funded projects and fellowships.

I would like to thank Quality Control Laboratory, Tezpur University, SAIC, Tezpur University, Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay, India for carrying out analysis of my samples.

I sincerely thank Dr. R. Mukhopadhyay for permitting me to access their laboratory facilities to conduct some of my research works and I also express my sincere acknowledge to Mr. Manoj Sharma, and Ms. Upasana Hazarika, Department of Molecular Biology & Biotechnology, Tezpur University for their immense technical contributions in some analyses.

I express my heartfelt thanks to the faculty and staff of Department of Food Engineering& Technology for their assistance and cooperation from time to time throughout the period of research. I also thank Dr. Nickhil C. for his valuable technical suggestion and assistance to complete some of my research analyses.

Special thanks to my seniors, friends, batchmates, labmates Dr. A. J. Das, Mr. Bhaskar Jyoti Das, Dr. Lopamudra Sarma, Dr. Sangita Muchahary, Ms. Maibam Baby, Dr. Manas Jyoti Das, Mrs. Payel Dhar, Ms. Honey Gupta, Minhaz, Rimpi, Muktashree, Devalina, Shyamali, Swapnasikha, Upasana for supporting me technically and emotionally.

I convey my acknowledgement to all FET PhD alma mater, friends, and juniors, Tezpur University whose name is not included here for directly and indirectly help and moral support during my entire PhD work.

I would like to thank my mother Mrs. Tiluttama Konwar Neog, father Lt. Bipin Ch. Neog and my entire family for their strong love, support and motivation throughout my PhD journey.

Date:

(Urbashi Neog)

Place: Tezpur

List of Tables

Table No.	Title	Page No.
2.1	Range of independent variables with their corresponding levels	26
2.2	BBD for extraction of phytochemicals using microwave-assisted extraction (MAE)	27
2.3	The chemical composition of fruit determined by proximate analysis according to AOAC method	30
2.4	ANOVA (Analysis of variance) result of the fitted model for the response variable	33
2.5	Optimized solution obtained using the response optimizer	36
2.6	Identification of phytochemical compounds by HR-LCMS	37
2.7	Retention time of phytochemical standards in RP-HPLC	38
2.8	Phytochemical contents detected by RP-HPLC in norabogori extracts by microwave-assisted extraction and conventional extraction method	39
4.1	Lipinski rule of five evaluation of phytochemicals from norabogori extract	72
4.2	Veber's Rule evaluation	73
4.3	ADME Evaluation of phytochemicals	75-78
4.4	Toxicity Evaluation of phytochemicals	78-79
4.5	Structure evaluation of proteins A) TNF- α , B) IL1 β and C) COX-2	80-83
4.6	Grid conformations for Molecular Docking Simulation	84
4.7	Docking scores of ligands with target protein	85-86
4.8	Bonding energy during Docking by swissdock	86
4.9	Bond lengths during Docking by swissdock	87
4.10	Bond lengths during Docking by Autodock	87

4.11	The distributed non-bonded interactions numbers between the TNF α and the ligand rutin were counted throughout the entire simulation period	94
4.12	The distributed non-bonded interactions numbers between the $IL1\beta$ and the ligand rutin were counted throughout the entire simulation period	95
4.13	The distributed non-bonded interactions numbers between the COX2 and the ligand rutin were counted throughout the entire simulation period	96
5.1	Colour profile analysis of norabogori leather with different hydrocolloids	110
5.2	Texture profile analysis of norabogori leather with various hydrocolloids	111
5.3	Encapsulating efficiency of norabogori extract by NaAlg and CaCl2	112
5.4	In vitro release study of microencapsulates	113
5.5	Texture profile analysis of microencapsulate incorporated norabogori leather	114
5.6	Physico-chemical characteristics of norabogori fruit leather	115

List of Figures

Fig. No.	Title	Page No.
2.1	Various parts of norabogori (Prunus persica L. Batsch) fruit: a) Whole fruit b) Inner view of fruit cut	24
2.2	Herbarium for norabogori sample authentication	29
2.3	Effect of various solvents on total phenolic content of the norabogori fruit	31
2.4	The effects of microwave power (Watt), ethanol concentration (%), liquid-solid ratio (ml/g) and time (min) on the extraction of total phenolic content; (a) Liquid-solid ratio-ethanol concentration (BC) for TPC, (b) Microwave power-ethanol concentration (AB) for TPC, (c) Ethanol concentration-time (BD) for TPC, (d) Microwave power-time (AD) for TPC	34-35
2.5	Compounds showing peaks in HR-LCMS Chromatogram	38
2.6	HPLC chromatogram of phytochemical compounds detected from norabogori fruit extract by microwave-assisted extract (MAE) and conventional system extract at 254nm (1-kaempferol, 2-gallic acid, 4-rutin, 5-coumarin, 6-syringic acid)	40
3.1	DPPH free radical scavenging activity assay of a) BHT standard, b) Norabogori fruit extract	51-52
3.2	ABTS radical cation decolorization assay of a) BHT standard, b) Norabogori fruit extract	53
3.3	Cytotoxicity study of norabogori extract by MTT analysis	54
3.4	Effect of norabogori extract on pro-inflammatory genes	55-56
3.5	Anti-cancer activity of norabogori fruit extract	57
4.1	Anti-inflammatory mechanism of the COX-2 inhibitor through cytokines	63
4.2	RMSD of a) TNF α and complex TNF α -rutin, (b) IL1 β and complex IL1 β -rutin, (c) COX-2 and complex COX-2-rutin	90
4.3	RMSF of a) TNF α and complex TNF α -rutin, (b) IL1 β and complex IL1 β -rutin, (c) COX2 and complex COX2-rutin	91

4.4	Rg of a) TNF α and complex TNF α -rutin, (b) IL1 β and complex IL1 β -rutin, (c) COX2 and complex COX2-rutin	92-93
4.5	2D-Interaction plot of TNF α -rutin at three time steps (a) 0, (b) 50 and (c) 100 ns respectively	94
4.6	complex TNF α -rutin at three time steps 0, 50 and 100 ns represented by colour light blue-red, green- yellow, raspberry – deep blue	94
4.7	2D-Interaction plot of IL1 β -rutin at three time steps (a) 0, (b) 50 and (c) 100 ns respectively	95
4.8	Complex IL1 β -rutin at three time steps 0, 50 and 100 ns represented by colour light blue-red, green- yellow, raspberry – deep blue	95
4.9	2D-Interaction plot of COX2-rutin at three timesteps (a) 0, (b) 50 and (c) 100 ns respectively	96
4.10	Complex COX2-rutin at three timesteps 0, 50 and 100 ns represented by colour light blue-red, green- yellow, raspberry – deep blue	96
5.1	Microspheres prepared using ionic gelation method	106
5.2	Developed product with different hydrocolloids	109
5.3	SEM images of microparticles formed in different extract-NaAl ratios showing their sizes. a) 1:2, b) 1:4 and c) 1:8	113
5.4	Sensory evaluation of microencapsulate incorporated norabogori leather	115

List of abbreviation

3D	Three dimensional
a*	Redness
ABTS	2,2'-azino-bis 3-ethylbenzothiazoline-6-sulphonic acid
Al	Aluminum
ALP	Alkaline Phosphatase
ALPT	Alanine Aminotransferase
ANOVA	Analysis of variance
AOAC	Association of Official Analytical Chemists
AST	Aspartate Aminotransferase
ATCC	American type culture
Av	Average
b*	Yellowness
BDL	Below Detectable Limit
BHA	Butylated Hydroxyanisole
BLAST	Basic Local Alignment Search Tool
Ca+	Cationic calcium
CCD	Central composite design
cm	Centimeter
CV	Coefficient of variation
Df	Degrees of freedom
DMSO	Dimethyl sulfoxide
DPPH	2,2-diphenyl-1-picrylhydrazyl
EDTA	Ethylenediamine tetraacetic acid
EE	Encapsulation efficiency
FBS	Foetal Bovine Serum
FCR	Folin-ciocalteu Reagent
g	Gram
GA	Genetic algorithm
GAE	Gallic acid equivalent
GC-MS	Gas Chromatography-Mass Spectrometry
GI	Gastrointestinal
h	Hour
Н	Hydrogen atom
H_2SO_4	Sulfuric acid
Hb	Haemoglobin
HCl	Hydrochloric acid
HPLC	High Performance Liquid Chromatography

IC50	Half maximal inhibitory
IR	Infrared
L^*	Lightness
LPS	Lipopolysaccharide
М	Molarity
m/z	Mass by charge
MAE	Microwave assisted extraction
mg	Milligram
mm	Millimeter
MRS	De Man, Rogosa and Sharpe
MTCC	Microbial Type Culture Collection
MTT	3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium
MW-US	Microwave and Ultrasound
Ν	Normality
ND	Not detected
nm	Nanometer
NMR	Nuclear magnetic resonance
NO	Nitric Oxide
р	p-value
PCA	Product component analysis
PCR	Polymerase Chain Reaction
ppm	Parts per million
R_2	Correlation coefficient
RBC	Red Blood Cells
RMSD	Root Mean Square Deviation
RMSE	Root mean square liquid
ROS	Responsive Oxygen Species
RP	Reducing Power
RP-HPLC	Reverse Phase High Performance Liquid
	Chromatography
rpm	Rotations per minute
RSM	Response surface methodology
RT	Retention time
S	Second
SD	Standard deviation
SEM	Scanning electron microscopy
SGF	Simulated gastric fluid
SIF	Simulated intestinal fluid
t	Time
TFC	Total flavonoid content

TPC	Total phenolic content
UAE	Ultrasound assisted extraction
UHPLC	Ultra-High-Performance Liquid Chromatography
USA	United State of America
UV	Ultra-Violate
UV-VIS	Ultraviolet-visible
W	Watt
W/V	Weight by volume
w/w	Weight by weight
XRD	X-ray diffraction value
α	Alpha
μg	Microgram
μm	Micrometer