Dedication

This thesis is dedicated to my parents and family.

For their endless love, support and encouragement

DECLARATION

I hereby declare that the thesis entitled "Studies on the isolation, modification, and application of starch from underutilized *Dioscorea* cultivars of Assam" submitted to the School of Engineering, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of research carried out by me under the guidance of Prof. Charu Lata Mahanta, Professor in the Department of Food Engineering and Technology, Tezpur University.

All assistance received from various sources and people have been duly acknowledged. No part of this thesis has been submitted elsewhere for the award of any other degree.

Date:01-12-2023 Place: Tezpur Jinku Bora Reg. No. TZ133530 of 2013

Dr. Charu Lata Mahanta Professor

DEPARTMENT OF FOOD ENGINEERING & TECHNOLOGY TEZPUR UNIVERSITY NAPAAM, TEZPUR- 784 028 Ph:(03712) 267007-09, Extn. 5702 Fax:(03712)-267005/06 Cell: 09435092658 E-mail: charu@tezu.ernet.in

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "Studies on the isolation, modification, and application of starch from underutilized *Dioscorea* cultivars of Assam" submitted to the School of Engineering, Tezpur University, Assam in partial fulfilment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of research work carried out by Mr. Jinku Bora (Reg. No. TZ133530 of 2013 under my supervision and guidance.

All assistance received by him from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for the award of any other degree.

Date: 01-12-2023 Place: Tezpur

Charm Cata Mahanta

(Prof. Charu Lata Mahanta) Professor Department of Food Engineering and Technology School of Engineering, Tezpur University Napaam: 784028, Tezpur, Assam, India

Acknowledgement

First and foremost, I would like to sincerely thank my supervisor **Prof. Charu Lata Mahanta** for all the help, time, and academic guidance throughout this PhD. Her support has truly been crucial, from the start of this research work up to the submission of my thesis. I am deeply grateful to have been able to conduct my PhD thesis with an incredibly knowledgeable and resourceful supervisor.

I would also like to acknowledge the technical and institutional support from Tezpur University, Assam and Jamia Hamdard, New Delhi. I would like to extend my thanks to all staff, lecturers and colleagues in the Department of Food Engineering and Technology, Tezpur Universitiy: Prof. Sankar Chandra Deka, Prof. Manuj Kumar Hazarika, Prof. Brijesh Srivastava, Prof. Nandan Sit, Prof. Laxmikant Shivnath Badwaik, Prof. Poonam Mishra, Dr. Dipankar Kalita, Dr. Arup Jyoti Das, Mr. Labadeep Kalita, and all the non-technical staff for supporting me throughout my research and making my time in the laboratories enjoyable. I would also particularly like to thank Prof. Farhan Jalees Ahmad, Dr. Gaurav Kumar Jain, Dr. Vaidehi Garg, Dr. Vasudha Sharma, Dr. Sweta Joshi and Dr. Aastha Bhardwaj from Jamia Hamdard, who were always there to help and offer valuable support during my PhD.

I would like to express my gratitude to my senior and friends: Dr. Himjyoti Dutta, Dr. Nikhil Kumar Mahnot, Dr. Hilal Ahmad Makroo, Dr. Pallab Kumar Borah, Dr. Mainao Alina Gayary, Mr. Thoithoi Tongbram, Mr. Subham Rohilla, Mr. Hemanta Chutia, and all my lab mates for their great support, best efforts and listening ears.

And of course, none of this would have been possible without my family members: Mr. Biren Borah (father), Mrs. Bulu Bora (mother), Mrs. Parishmita Medhi (wife), Mr. Tinku Borah (brother), Mrs. Rumi Kalita (sister-in-law), Mrs. Palashi Bora (sister), Mr. Babu Rongpi (brother), Ms. Kavyashree Bora (niece), Master Nihshank Bora (son), and Master Mayuresh Bora (nephew), who gave me the courage to do a PhD as well as provided countless suggestions, guidance, moral support, and patience during this critical time.

Lastly, I am extremely thankful towards God, the Almighty, who helped me become a stronger and better man throughout the years.

I dedicate this thesis to all of you.

List of Tables

Table No.	Table Title	Page No
2.1	Composition of starch from diverse species of yam	21
2.2	Morphology of yam starch	24
2.3	Swelling power (Sp) and solubility (S) of various yam starch	27
2.4	Thermal properties of yam starch	31
2.5	Pasting properties of yam starch	33
2.6	Rheological properties of yam starch	39
2.7	In vitro digestibility of yam starch	42
2.8	Physical modification of yam starch	49
2.9	Chemical modification of yam starch	55
2.10	Applications of yam starch	58
4A.1	Proximate composition (on dry weight basis) and antioxidant	104
	properties of flours, almond protein isolate and their blends	
4A.2	Functional properties of flours from different Dioscorea species	106
	and their blends with almond protein isolate	
4A.3	Pasting properties of flours	107
4A.4	Proximate composition (on dry basis) and antioxidant	115
	properties of cookies	
4A.5	Physical characteristics and hardness of cookies	117
4A.6	Color attributes of cookies	118
4B.1	Proximate composition (on dry weight basis) of native starches	127
	isolated from the three yam species	
4B.2	Total amylose content, amylose leaching (AML), water	128
	absorption capacity (WAC) and oil absorption capacity (OAC)	
	of native and modified starches of Y1, Y2 and Y3.	
4B.3	Thermal properties of native and physically modified yam	135
	starches	
4B.4	Pasting properties of native and physically modified yam	137
	starches	
4B.5	Power law fitted parameters of steady flow and oscillatory	140
	testing of Y1, Y2 and Y3 starches, respectively	
4B.6	In vitro starch digestibility of the native and hydrothermally	147

treated starches

Hydroxypropyl groups (HP), molar substitution (MS),	154
phosphorus (P) content, and degree of substitution (DS) of the	
yam starches	
Paste clarity and freeze thaw stability of chemically modified	159
starches	
Power law fitted parameters of steady flow of Y1, Y2 and Y3	162
native and chemically modified starches	
Thickness, moisture content, swelling index and solubility of	169
edible films	
Transparency and color values of edible films	171
Tensile strength and water vapor permeability of edible films	176
	 phosphorus (P) content, and degree of substitution (DS) of the yam starches Paste clarity and freeze thaw stability of chemically modified starches Power law fitted parameters of steady flow of Y1, Y2 and Y3 native and chemically modified starches Thickness, moisture content, swelling index and solubility of edible films Transparency and color values of edible films

List of Figures

Figure No.	Figure Title	Page No
2.1	Schematic flowchart showing the involved steps of starch	19
	isolation from yam tubers.	
3.1	Yam samples collected. (A) Dioscorea esculenta (Lour.)	78
	Burkill; (B) Dioscorea alata (purple yam); and (C) Dioscorea	
	alata (yellow yam).	
3.2	Flowchart followed for the preparation of yam flours.	79
3.3	Flow sheet of starch modification by hydroxypropylation.	89
3.4	Flow sheet of starch modification with with sodium	91
	trimetaphosphate (STMP)	
4A.1	ATR-FTIR spectra of flours, and (B) absorbance ratio of	110
	$1047/1022 \text{ cm}^{-1}$ and $995/1022 \text{ cm}^{-1}$.	
4A.2	Dynamic rheological characteristics of cookie doughs. (A)	112
	The storage modulus; (B) the loss modulus; and (C) $tan\delta$.	
4A.3	Cookies from (A) WF: wheat flour cookie dough; (B) PY-1:	114
	D. esculenta flour-almond protein isolate cookie dough; (C)	
	PY-2: D. alata (purple yam)-almond protein isolate cookie	
	dough; and (D) PY-3: D. alata (yellow yam) flour-almond	
	protein isolate cookie dough.	
4A.4	Radar plot representing the sensory attributes of cookies.	119
4B.1	Scanning electron microscopy (SEM) of native and modified	130
	yam starches at 5000x for yam species 1, and 500x for yam	
	species 2 and 3.	
4B.2	Scanning electron microscopy (SEM) of 2HMT-20 and	131
	2HMT-30 starch granules at 15000x magnification.	
4B.3	ATR-FTIR spectra of native and physically modified yam	132
	starches.	
4B.4	Effect of temperature on the swelling power and solubility of	133
	native and modified yam starches.	
4B.5	Pasting curves of native and physically modified starches	137
4B.6	(A), (B) and (C) are the flow curves of steady shear testing of	139
	Y1, Y2 and Y3 yam starches, respectively.	

4B.7	(A), (C) and (E) are the storage modulus vs. angular frequency	144
	curves for oscillatory testing of Y1, Y2 and Y3 starches,	
	respectively. (B), (D) and (F) are the loss modulus vs. angular	
	frequency curves for oscillatory testing of Y1, Y2 and Y3	
	starches, respectively.	
4B.7	(G), (H) and (I) are the tan δ vs. angular frequency curves for	145
(contd.)	oscillatory testing of Y1, Y2 and Y3 starches, respectively.	
4C.1	Scanning electron microscopy (SEM) of native and	155
	chemically modified yam starches at 15000x for yam species	
	1, and 2000x for yam species 2 and 3.	
4C.2	ATR-FTIR spectra of native and chemically modified yam	156
	starches.	
4C.3	Effect of temperature on the swelling power and solubility of	158
	native and chemically modified yam starches.	
4C.4	(A), (B) and (C) are the flow curves of steady shear testing of	161
	Y1, Y2 and Y3 yam starches, respectively.	
4C.5	(A), (C) and (E) are the storage modulus vs. angular frequency	163
	curves for oscillatory testing of Y1, Y2 and Y3 starches,	
	respectively.	
4C.5	(G), (H) and (I) are the tan δ vs. angular frequency curves for	164
(contd.)	oscillatory testing of Y1, Y2 and Y3 starches, respectively.	
4D.1	Edible films prepared from native and hydrothermally	168
	modified starches.	
4D.2	SEM images of edible films.	172
4D.3	FTIR spectra of edible films.	173
4D.4	XRD spectra of edible films.	174
4D.5	Grapes coated with different film-forming solutions of NS0F	178
	& NSWF: native starch without and with walnut oil,	
	respectively; H1WF and H2WF: HMT starch with 20% and	
	30% moisture level, respectively, and walnut oil; A1WF and	
	A2WF: annealed starch with 1:2 and 1:4 starch to moisture	
	ratio, respectively, and walnut oil.	
4D.6	Weight loss of grapes with different coatings of film-forming	179
	-	

solutions during storage.

pH of grapes with different coatings of film-forming solutions	179
during storage.	
Total soluble solids (TSS) of grapes with different coatings of	180
film-forming solutions during storage.	
Titratable acidity of grapes with different coatings of film-	181
forming solutions during storage.	
Total phenolic content (TPC) of grapes with different coatings	182
of film-forming solutions during storage.	
DPPH scavenging activity (% inhibition) of grapes with	182
different coatings of film-forming solutions during storage.	
Total monomeric anthocyanin content (TAC) of grapes with	183
different coatings of film-forming solutions during storage.	
	 during storage. Total soluble solids (TSS) of grapes with different coatings of film-forming solutions during storage. Titratable acidity of grapes with different coatings of film-forming solutions during storage. Total phenolic content (TPC) of grapes with different coatings of film-forming solutions during storage. DPPH scavenging activity (% inhibition) of grapes with different coatings of film-forming solutions during solutions during storage. Total monomeric anthocyanin content (TAC) of grapes with

List of Abbreviations

1ANN-12	D. esculenta starch after ANN (1:2, starch: mositure)
1ANN-14	D. esculenta starch after ANN (1:4, starch: mositure)
1HMT-20	D. esculenta starch after HMT with 20 % moisture
1HMT-30	D. esculenta starch after HMT with 30 % moisture
1YCL-02	Cross-linked D. esculenta starch (STMP, 2 g)
1YHP-05	Hydroxypropylated D. esculenta starch (propylene oxide, 5 ml)
1YHP-10	Hydroxypropylated D. esculenta starch (propylene oxide, 10 ml)
1YNS	Dioscorea esculenta native starch
2ANN-12	D. alata (purple yam) starch after ANN (1:2, starch: mositure)
2ANN-14	D. alata (purple yam) starch after ANN (1:4, starch: mositure)
2HMT-20	D. alata (purple yam) starch after HMT with 20 % moisture
2HMT-30	D. alata (purple yam) starch after HMT with 30 % moisture
2YCL-02	Cross-linked D. alata (purple yam) starch (STMP, 2 g)
2YHP-05	Hydroxypropylated D. alata (purple yam) starch (propylene oxide,
	5 ml)
2YHP-10	Hydroxypropylated D. alata (purple yam) starch (propylene oxide,
	10 ml)
2YNS	Dioscorea alata (purple yam) native starch
3ANN-12	D. alata (yellow yam) starch after ANN (1:2, starch: mositure)
3ANN-14	D. alata (yellow yam) starch after ANN (1:4, starch: mositure)
3HMT-20	D. alata (yellow yam) starch after HMT with 20 % moisture
3HMT-30	D. alata (yellow yam) starch after HMT with 30 % moisture
3YCL-02	Cross-linked D. alata (yellow yam) starch (STMP, 2 g)
3YHP-05	Hydroxypropylated D. alata (yellow yam) starch (propylene oxide,
	5 ml)
3YHP-10	Hydroxypropylated D. alata (yellow yam) starch (propylene oxide,
	10 ml)
3YNS	Dioscorea alata (yellow yam) native starch
A1WF	Films prepared from annealed starch with 1:2 starch to moisture
	ratio
A2WF	Films prepared from annealed starch with 1:4 starch to moisture

	ratio
ACE	Anti-angiotensin i-converting enzyme
AChE	Anti-acetylcholinesterase
AHMT	Autoclave heat-moisture treatment
AM	Amylose
AML	Amylose leaching
AMP	Amylopectin
ANN	Annealing
AOAC	Association of official analytical chemists
API	Almond protein isolate
ATR-FTIR	Attenuated total reflectance - Fourier transform infrared
	spectroscopy
BD	Break-down viscosity
CA	Citric acid treatment
CMCS	Carboxy methy cellulose starch
D	Diameter
DPPH	2,2-diphenylpicrylhydrazyl
DS	Degree of substitution
DSC	Differential scanning calorimeter
FC	Folin–Ciocalteu
FC	Foaming capacity
FS	Foaming stability
FTC	Freeze-thaw cycles
FV	Final viscosity
G′	Storage modulus
$G^{\prime\prime}$	Loss modulus
GCWS	Granular cold water soluble
H1WF	Films prepared from HMT starch with 20% moisture level
H2WF	Films prepared from HMT starch with 30% moisture level
HMT	Heat moisture treatment
HP	Hydroxypropyl groups
LLD	Laser light diffraction
LM	Light microscopy

MS	Molar substitution
NS	Native starch
NS0F	Native starch film without walnut oil
NSWF	Native starch film with walnut oil
OAC	Oil absorption capacity
OHMT	Oven heat-moisture treatment
OSA	Octenyl succinic anhydride
Р	Phosphorus
РТ	Peak temperature
PV	Peak viscosity
PY1	Blend of YF1 and API
PY2	Blend of YF2 and API
PY3	Blend of YF3 and API
RDS	Rapidly digestible starch
RS	Resistent starch
RVA	Rapid Visco Analyzer
S	Solubility
SB	Set back viscosity
SDS	Slowly digestible starch
SEM	Scanning electron microscopy
SP	Swelling power
STMP	Sodium trimetaphosphate
STPP	Sodium tripolyphosphate
Т	Thickness
ТА	Titratable acidity
TAC	Total monomeric anthocyanin content
tan δ	Loss tangent
TPC	Total phenolic content
TPC	Total phenolic content
TS	Tensile strength
TSS	Total soluble solids
UATR	Universal Attenuator Total Reflectance
UC	Uncoated grapes

UHP	Ultra-high pressure treatment
US	Ultrasonication
WAC	Water absorption capacity
WL	Weight loss
WO	Walnut oil
WVP	Water vapor permeability
XRD	X-ray diffraction
YF1	Dioscorea esculenta flour
YF2	Dioscorea alata (purple yam) flour
YF3	Dioscorea alata (yellow yam) flour

List of Symbol and Units

-	
%	percentage
°C	degree Celsius
μl	micro litres
μm	micrometer
cm	centimetres
cm ⁻¹	per centimetre
cP	centipoises
db	dry basis
g	gram
g/g	gram per gram
g/ml	grams per millilitres
g/mol	gram per mol
h	hour
J/g	Joule per gram
kg	kilogram
kV	kilo volts
L/mol cm	litres per mole per centimetres
Μ	molar
mg/g	milligram per gram
mg/ml	milligram per millilitres
min	minutes
ml	millilitres
mm	millilitres
mm^{-1}	per millimetres
mol/l	moles per litre
n	flow behaviour index (dimensionless)
N/mm ²	Newton per millimetres square
nm	nanometre
rad/s	radian per second
rpm	rotation per minute
S	seconds

s ⁻¹	per seconds
U/ml	units per millilitre
w/v	weight per volume
w/w	weight per weight
Δm	mass difference
Δp	pressure difference
Δt	time difference
E	molar absorptivity
θ	theta
ω	angular frequency
k	consistency coefficient (Pa.s ⁿ)
γ	shear rate (1/s)
σ	shear stress