DECLARATION

I hereby declare that the thesis entitled "Efficiency optimization of vermitechnology for generation of sanitized end product: An in-sight on PAH (polycyclic aromatic hydrocarbons) detoxification and microbial activity" submitted to the School of Sciences Tezpur University in part fulfillment for the award of the degree of Doctor of Philosophy in Environmental Science is a record of research work carried out by me under the supervision of Dr. Satya Sundar Bhattacharya, Department of Environmental Science, Tezpur University, Assam - 784028. No part of this work has been presented for any other degree or diploma earlier.

Date: Place: (Jinnashri Devi) Department of Environmental Science School of Sciences Tezpur University, Assam India

Dr. Satya Sundar Bhattacharya Associate Professor Department of environmental science School Sciences Tezpur University Email: satya72@tezu.ernet.in Tel: +91-3712-275610-5610

Certificate of the Supervisor

This is to certify that the thesis entitled "Efficiency optimization of vermitechnology for generation of sanitized end product: An in-sight on PAH (polycyclic aromatic hydrocarbons) detoxification and microbial activity" submitted to the School of Sciences Tezpur University in part fulfillment for the award of the degree of Doctor of Philosophy in Environmental Science is a record of research work carried out by Ms. Jinnashri Devi under my supervision and guidance.

All help received by her from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for award of any other degree.

Place: Tezpur

(Dr. Satya Sundar Bhattacharya)

Date:

ACKNOWLEDGEMENT

I take the opportunity to extend my heartfelt gratitude to my Supervisor, **Dr. Satya Sundar Bhattacharya** for his constant guidance, warm encouragement, healthy criticisms, and moral support.

I earnestly thank the Honorable Vice-chancellor Tezpur University for extending necessary infrastructural facilities to carry out my research work.

I also convey my sincere regards to the head of the department **Prof. R.R. Hoque** and other faculty members Prof. A.K.Das, Prof. A.Devi, Prof. K.Marimuthu, Dr. N.Gogoi, Dr. S.Handique, Dr. A.Prakash, Dr. N.M.Gogoi, Dr. S.Kalita, Dr. P.Deka in the Department of Environmental Science, Tezpur University for their constructive comments and advice.

I also take the opportunity to thank my doctoral committee members, Dr. Ashalata Devi and Dr. Suman Dasgupta for their suggestions and keen monitoring of my work progress.

I would like to thank **Dr. Utsab Deb, Defense research laboratory, Tezpur,** offering me constant assistance and help in conducting my experiments.

I also thank the technical staffs of the Sophisticated Instrumentation and Analytical Centre, and Department of Environmental Science, Chemical Science, and Physics for rendering their active involvement in sample analysis.

I am thankful to my lab mates Linee Goswami, Subhashish Das, Soma Barman, Pallabi Das, Nazneen Hussain, Ananya Mondol, Sarmishtha Paul, Ratan Choudhury, Ratul Pegu, Himadri Mandal and Dhriti Sundar Boro for maintaining a good working environment and helping me in various ways.

I would also like to thank Mr. Mofijul Ahmed for his assistance in conducting vermicomposting experiments.

I cannot finish without thanking my family. Here I would like to make a special mention of my mother, my husband and my in laws for their constant support and motivation in all aspects of my life. My sincere regards are also extended to all my

viii

friends and well wishers who supported me in this journey till the end. A special thanks to my late father for his blessings.

My sincere gratitude is also to the Department of Science and Technology, Government of India for conferring the project fellowship that enabled me to complete my work

Last but not the least; I thank the Almighty for keeping me in good health and granting me the capability to proceed successfully.

(Jinnashri Devi)

LIST OF TABLE

Table	Caption	Page No.
No.		
2.1	Difference between Composting and Vermicomposting	18
2.2	An account of vital physico-chemical attributes for assessing the	21
	composting and vermicomposting status	
2.3	List of some end product quality assessment of previous works	23
2.4	Waste-based feedstock composition and verified earthworm species for	30
	successful vermicomposting	
2.5	Vermicomposting of different biogenic and lignocellulosic feedstocks using	32
	differentearthworm species	
2.6	Different treatments used for PAH removal from different sources	35
4.1	Physico-chemical characteristics of the spent mushroom substrate(SMS) and	69
	cow dung (CD) used for the study. Values represent mean \pm standard	
	deviation	
4.2	Transmittance values (T%) and the main absorbancebands in FTIR spectra	72
	of the composted and vermicomposted samples along with their assignments	
4.3	Count of total bacteria (TBC), total fungi (TFC), P solubilizing bacteria	77
	(PSB),and N fixing bacteria (NFB) in the composted and vermicomposted	
	SMS at 60 days of incubation. Values represent mean \pm standard deviation	
4.4	Comparison between the composted andvermicomposted SMS extracts on	81
	relative root (RRG), shoot growth (RShG), relative seed germination (RSG),	
	andgermination index (GI) ofgreen gram (Vigna radiata)	
5.1	Pearson Correlation coefficients (r) and level of significance depicting the	110
	relationships among microbial attributesin vermibeds	
6.20	Basic chemical details, abbreviated names, and QA-QC information of the	123
	studied PAHs	
6.1	Temporal variation in the concentration (mg kg ⁻¹) of 3-ring Acenaphthylene	126
	(AceN) under various treatments. Values are presented as mean \pm standard	
	deviation	
6.2	Temporal variation in the concentration (mg kg ⁻¹) of 3-ring Fluorene (Fl)	127
	under various treatments. Values are presented as mean ± standard deviation	

Temporal variation in the concentration (mg kg ⁻¹) of 3-ring Phenanthrene (Phn) under various treatments. Values are presented as mean \pm standarddeviation	127
Temporal variation in the concentration (mg kg ⁻¹) of 3-ring Anthracene (Anth) under various treatments. Values are presented as mean \pm	128
standarddeviation Temporal variation in the concentration (mg kg ⁻¹) of 4-ring Pyrene (Pyr) under various treatments. Values are presented as mean ± standard	128
deviation Temporal variation in the concentration (mg kg ⁻¹) of 4-ring Chrysene (Chrys) under various treatments. Values are presented as mean \pm	129
standarddeviation	129
Temporal variation in the concentration (mg kg ⁻¹) of 4-ring Benz(alpha)anthracene (BaA) under various treatments. Values	
are presented as mean \pm standard deviation Temporal variation in the concentration (mg kg ⁻¹) of 5-ring	130
Benzo(alpha)pyrene (BaP) under various treatments. Values are presented as mean \pm standard deviation	131
Temporal variation in the concentration (mg kg ⁻¹) of 5-ring Benzo(k)fluoranthene (BKF) under various treatments. Values are	
presented as mean \pm standard deviation Temporal variation in the concentration (mg kg ⁻¹) of 5-ring	131
Benzo(beta)fluoranthene (BbF) under various treatments. Values are presented as mean \pm standard deviation	132
Temporal variation in the concentration (mg kg ⁻¹) of 6-ring Benzo(g,h,i) perylene (Bpl) under various treatments. Values are presented as mean	132
\pm standard deviation Temporal variation in the concentration (mg kg ⁻¹) of 6-ringIndeno (1,2,3-cd	132
) pyrene (Ip) under various treatments. Values are presented as mean \pm	
standard deviation $\frac{1}{1000}$ the concentration (ma $\frac{1}{1000}$ of (ring	133
Temporal variation in the concentration (mg kg ⁻¹) of 6-ring Dibenzo(a,h)anthracene (DbA) under various treatments. Values	
are presented as mean \pm standard deviation	
Removal efficiency (%) of the 13 PAHs as observed under the different	134

feedstocks of both composting and vermicomposting pathways			
Accumulation pattern of the 13 PAHs by E. fetida and E. eugeniae in the			
spiked feedstocks			
Budget and detailed apportionment of the 6-ring and 5-ring PAHs under			
composting and vermicomposting systems. Values are represented as			
mean			
± standard deviation	149		
Budget and detailed apportionment of the 4-ring PAHs under composting			
and vermicomposting systems. Values are represented as mean \pm			
standarddeviation	151		
Budget and detailed apportionment of the 3-ring PAHs under composting			
and vermicomposting systems. Values are represented as mean \pm			
standarddeviation	156		
Pearson's correlation matrix among the PAHs and biochemical attributes of			
the vermicomposted and composted feedstock samples	188		
Comparison between the composted and vermicomposted feedstock extracts			
on relative root (RRG), shoot growth (RShG), relative seed germination			
(RSG), andgermination index (GI) ofgreen gram (Vigna radiata)			

7.1

LIST OF FIGURES

Figures No.	Caption	Page No.
110.	Schematic representation of the overall research plan	8
	Schematic representation of the thesis organization	9
	Graphical representation of the experiment	19
	Bacterial diversity identified within the intestinal wall of earthworms	32
	The sources of organic pollutants in the environment	34
	Schematic representation of the work done under phase I	48
	Schematic representation of the work done under phase II	49
	Structural deformation in the spent mushroom substrate (SMS) under the vermicomposting and composting treatments as verified from the crystallinity index.	70
	Temporal variation in pH, total organic C, total Kjeldahl N, and available P of spent mushroom straw based feedstocks under the composting and vermicomposting system	74
	Changes in microbial biomass C, compost respiration, microbial quotient, and microbial metabolic quotient under various bio-composting treatments	76
	Phospholipid fatty acid (PLFA) identified microbial groups in the composted and vermicomposted SMS-based feedstocksat 60 days of incubation	79
	Percentage composition of different types of fatty acids in the vermicomposted and composted feedstocks detected through Phospholipid fatty acid (PLFA) analysis.	80

Temporal variations in earthworm count (1a) and body weight
97
(1b) in the lignocellulosic waste-based feedstock under
different treatments (initial stocking densities of earthworms)
during vermicomposting.

Changes in Crystallinity index (2a), pH (2b), Total organic 101 carbon (2c), Humification factor (2d), Total Kjeldahl nitrogen (2e), Available Phosphorous (2f), and Potassium (2g) under different treatments

105 Variation in microbial community structure Microbial biomass carbon (3a), Compost respiration (3b), Microbial quotient (3c), Biomass (total PLFA) (3d), Gram-positive (3e), Gramnegative (3f), Eukaryotes (3g), Anaerobes (3h), and Actinomycetes (3i)in lignocellulosic waste-based feedstocks under different treatments (initial stocking densities of earthworms) during vermicomposting.

6.4 HPLC Chromatogram of 13 PAH mixture(Polycyclic aromatic 122 hydrocarbons)

Changes in the concentration of PAHs during composting and 137 vermicomposting and their corresponding removal efficiency at 30 days after incubation

Health, proliferation, and PAH-bioaccumulation potential of 139 Eisenia fetida and Eudrilus eugeniae: (a) earthworm count; (b) body weight; (c)bioaccumulation pattern of 3 & 4 ring PAHs; and (d)bioaccumulation pattern of 5 & 6 ring PAHs

Temporal variations in the physicochemical and microbial 157 attributes of the PAH spiked feedstocks under composting and vermicomposting. (a) pH; (b)total organic C; (c)total N; (d)available P; (e)available K; (f)microbial biomass C; (g)compost respiration; and (h)bacterial count

7.3.1	Only earthen no perforated walled vermireactor (EVR)	171
7.3.2	The solid model of prototype MSVR	168
7.3.3	The solid model of the shredder mechanism MSVR	168
7.3.4	The solid model of the inner structure of the prototype MSVR	169
7.3.6	Dimensions of the prototype MSVR	169
7.3.7	Clay and paper paste made perforated-walled truncated cone shaped vermireactor (CPVR)	170
7.3.8	Mechanized with shredder and watering device incorporated vermireactors (MSVR)	172
7.3.9	vermireactor experiment	173
7.3.10	Temporal variation in (a) earthworm counts and (b) earthworm cocoon counts in the feedstocks under the composting and vermicomposting system	176
7.3.11	Temporal variation in pH, total organic C, and total Kjeldahl N in the feedstocks under the composting and vermicomposting system	178
7.3.12	Temporal variation in (a)Avl P,(b) Avl K, and (c)MBC (Microbial biomass C) in the feedstocks under the composting and vermicomposting system	176
7.3.13	Relative abundance distribution of detected OTU by Taxon classification Genus	182
7.3.14	Abundance of genes in the vermireactors derived from sequenced data	183
7.3.15	Relative abundance distribution of detected OTU by Taxon classification Phylum	184
7.3.16	Alpha (Shannon and Simpson) diversity of bacterial	185

communities in the vermireactors

Rarefaction curves estimating the species richness in the 185 vermireactors

Temporal variation in (a) Cd(mg/Kg),(b) Zn(mg/Kg), and (c) 187 Mn(mg/Kg) in the feedstocks under the composting and vermicomposting system