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Carbon dioxide (CO2) is the most abundant greenhouse gas (GHG) in the atmosphere 

accounting for 76% of total GHGs [1]. Elevated atmospheric CO2 strongly influences the 

ecosystem functions such as C sequestration and nutrient cycling owing to its impact on 

soil microbial communities [2-4]. Thus, emission of CO2 from various ecosystems has 

become one of the growing concerns and the key issues in ecology and global change 

research [5-7]. Soil respiration is the amount of CO2 released from the soil due to 

decomposition of soil organic matter (SOM) and plant respiration. It is considered as one 

of the most significant sources of atmospheric carbon and ranks second to the gross 

primary production of CO2 in terms of magnitude [8-9].  Changes in soil respiration leads 

to the disruption in the equilibrium of the terrestrial C cycling and eventually affect the 

ecosystem carbon flux [10-11]. Carbon in soil may occur in both organic and inorganic 

forms. The soil organic carbon content (SOC) is approximately three times higher than 

that of atmospheric or terrestrial vegetation pools [12]. These includes decomposed plant 

biomass, soil macro and microorganisms apart from other carbon containing organic 

compounds (sugars, carbohydrates, starches, proteins, lignins, resins, waxes and organic 

acids). Based on their rate of degradability, SOC can be classified as labile or fast turn 

over and recalcitrant or slow turnover C pools [13-14]. Labile SOC fractions are easily 

utilised, whereas recalcitrant carbon compounds are arduous to decompose by soil 

microbes [15]. Thus, microbial driven preferential decomposability of SOC fractions leads 

to variability in soil respiration especially the heterotrophic respiration. 

Forest soil consists of greater than two- third of the total soil organic carbon reserve. This 

accounts 80% of the surface and 40% of the sub-surface global carbon stocks [16-19]. The 

soil carbon stock of forest is primarily derived from decaying plant tissues, and root 

exudates. The decaying process is facilitated by soil microorganisms, which are in 

dynamic equilibrium with climatic variables [20]. Microbial biomass as well as the 

composition and structure of bacteria, archaea, and fungal community contribute to the 

SOC stock through production of biomass. They also release the stored C through 

processes like decomposition and respiration [16]. Besides the microbial biota, clay 

mineralogy is important in retention and stabilization of SOC and has much relevance in 

the global C cycle [21].  

Assessment of biospheric carbon fluxes in light of rising atmospheric CO2 concentration 

is crucial to understand the carbon sequestration behaviour of an ecosystem. The average 

residence time of carbon in soils spans from a couple of hours to millions of years [22-23]. 
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Sequestration of organic carbon in forest ecosystems is frequently caused by a slight 

difference in photosynthetically fixed carbon and ecosystem respiration [24-25]. Total soil 

respiration is primarily composed of autotrophic and heterotrophic respiration, which 

respond differently to abiotic and biotic factors [26-29]. Heterotrophic respiration or 

carbon mineralisation is caused by decomposition of SOM and is primarily governed by 

the SOC content and metabolic rate of the organisms involved in the process [30-31]. One 

of the primary causes of global CO2 emissions from the terrestrial ecosystem is release of 

carbon via heterotrophic respiration [32]. The mineralisation of stable organic carbon, 

which comprises 52-98% of the total SOC pool is governed by the present environmental 

conditions and soil properties [33-37]. Thus, estimation of carbon fluxes from the 

terrestrial ecosystem necessitates an understanding about the correlation of SOC 

mineralisation with the climatic factors [38]. Furthermore, the binding strength of organo-

mineral associations influences mineralisation rate [39-41]. Clay minerals adsorbed the 

OC through mechanisms such as electrostatic, H-bonding, hydrophobic, ligand exchange, 

and π-bonding interactions, and protects the OC against microbial attack [41, 42]. Studies 

have been conducted at various scales to investigate the SOC stocks as well as potential 

drivers of SOC mineralisation [43-46]. Climate and vegetation type are extensively 

documented as the key drivers of SOC mineralisation on larger scales (e.g., globe and 

continent) and are incorporated in Earth system models [47-48]. Whereas, soil properties 

such as soil temperature and moisture content account for the majority of the seasonal 

variation [26, 49-50]. Other factors such as rain events, rewetting of the soil following a 

period of drought and litter moisture might cause short-term temporal variability [51-53]. 

Soil microorganisms are extremely sensitive to the seasonal changes in plant residues, root 

structure and growth, secretions released in root exudates, or decomposition of organic 

material inputs.  Earlier studies have documented large spatial variability in CO2 efflux 

due to biotic and abiotic factors. Vegetation characteristics, microbial biomass, root 

density, root biomass and quality and quantity of organic matter are the biotic factors 

affecting CO2 efflux [54-58]. Abiotic factors such as soil texture, and total porosity also 

play a vital role in SOC dynamics on a relatively smaller scale (e.g., a few hundred ha) by 

influencing gas diffusion and biological activity [44, 46, 59-62].  

Several studies on soil CO2 flux from different ecosystem of the world such as temperate 

forest [63-64], tropical forest [65-66] agricultural ecosystem [67], subtropical montane 

forest [68], subtropical forest [69-70], Mediterranean ecosystems [71], steppe semi-arid 
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ecosystem [72], boreal forest [73], tropical savannas [74], mixed forest [75], bamboo forest 

ecosystems [76-77], grassland ecosystem [78-79] and dipterocarpus forest [80]. are 

available.  However, these findings are unlikely to be exemplary in the context of Indian 

forest ecosystems because of their differences in physiography, vegetation pattern and 

climatic regime. Moreover, there is lack of information on soil CO2 flux rate under 

different land-use patterns of NE India. Earlier studies from a NE Indian forest namely 

Kaziranga National Park (KNP) reported lower annual Net Ecosystem Productivity (NEP) 

as compared to other similar studied ecosystems of the world.  This might be because of 

higher ecosystem respiration and lower leaf area index of the forest [25]. Whereas, 

information on soil properties substantiating the recorded lower NEP is lacking which 

might be a vital information in understanding the mechanism. Findings of this study will 

help to know the effect of soil properties (at different ecosystems of KNP) in regulating 

the seasonal CO2 flux.  This will provide an idea about the impact of changing climate on 

CO2 flux of a tropical semi-evergreen forest like KNP. 

Hypothesis of the study: 

• Soil physico-chemical, biological and mineralogical properties influence the CO2 

efflux behaviour at Kaziranga National Park. 

• Variation in soil CO2 efflux behaviour occur across the three seasons and 

ecosystems due to changes in soil properties.  

Objectives of the study: 

➢ To study the soil physico-chemical and biological characteristics of Kaziranga 

National Park (KNP) at seasonal scale. 

➢ To assess the soil mineralogy of KNP and their role on SOC stabilization and C 

sequestration. 

➢ To correlate the influence of soil properties in regulating CO2 efflux from KNP. 
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