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2.1.Soil Properties and Ecosystem Carbon Flux 

An ecosystem's net carbon (C) balance is highly dependent on input and output C fluxes. 

The major processes that regulate the C cycling of an ecosystem are CO2 uptake by 

photosynthesis, loss by soil respiration and CaCO3 dissolution [1, 2]. The intricate 

interaction of factors such as vegetation, climate and soil properties govern the alteration 

in ecosystem CO2 flux. Being a major sink of carbon, soil properties strongly regulate the 

ecosystem C fluxes. Soil parameters, particularly temperature and moisture, are shown to 

be the most important regulators of variation in soil CO2 efflux [3, 4]. Previous studies 

have documented significant effects of soil organic carbon (SOC), dissolved organic 

carbon (DOC), soil pH, total nitrogen and salinity on ecosystem C fluxes [ 5, 6, 7, 8, 9]. 

2.1.1. Soil Physico-chemical Characteristics 

Soil physicochemical parameters such as pH, SOC, soil N, soil P, and available nutrients 

are said to influence soil C mineralization [10]. An increase in C mineralization has been 

reported with the increase in these soil properties [11, 12]. 

2.1.1.1.Soil Texture 

Soil texture and soil macropore structure play a key role in regulating the amount of CO2 

efflux [13]. Soil texture is an important soil characteristic that can influence the C cycle in 

forests, including soil organic matter retention and tree growth response. Fine-textured 

soils generally store higher amounts of C than coarser soils because of higher specific 

surface area and more reactive surfaces [14]. Furthermore, the effect of texture on aeration 

and water holding capacity influences soil microbial activity, which is also related to C 

stabilisation and storage. Under similar temperature and moisture conditions, respiration 

in fine-textured soils can be higher due to higher retention of water and substrate 

availability for microbes [15]. Soil texture also influences net primary production (NPP) 

by controlling availability of water to plants based on precipitation and the final balance 

of air and water in soil [16,17]. 

Ebrahimi et al.  [18] used artificial neural network (ANN) and linear regression models to 

estimate soil respiration under different land uses in humid subtropical and semi-arid areas 

of Iran. The results of the ANN model revealed that soil texture, pH, EC, percent of 

calcium carbonate equivalent, and organic C explained 66% of the variation in basal 

respiration. According to Li et al.  [19], soil texture regulates C flux by controlling soil 

moisture, which has an indirect impact on heterotrophic activity. Augustin and Cihacek 
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[20] documented strong correlation between silt content and soil organic C. This in turn, 

affect plant productivity and influences soil C sequestration. According to Yang et al.  [21], 

soil texture was a significant contributor for formation of CO2 concentration gradients and 

gas diffusion. They documented that in loamy soil, the CO2 efflux is primarily controlled 

by CO2 production.  Whereas, in silty loam soil both CO2 production and gas diffusion 

and in silty clay loam soil the gas diffusion is influenced. 

2.1.1.2.Soil Moisture 

Soil moisture is a potential capping factor for land C uptake. It can reduce gross primary 

production via ecosystem water stress, causes vegetation mortality, and aggravate climate 

extremes [22, 23, 24, 25]. Previous research has investigated the effect of soil moisture 

availability on variability in C-flux [22, 26, 27]. The availability of soil water can have a 

direct impact on C fluxes by regulating the opening and closing of stomata [28, 29]. 

Furthermore, in semi-arid grasslands, soil water availability is critical for plant growth 

[30], which is directly related to C fluxes. The availability of soil water also influences 

enzymatic activities of plant that regulate photosynthesis and respiration rates [31]. Su et 

al.  [32] found that soil moisture had a greater influence on ecosystem C fluxes than soil 

temperature in a semi-arid grassland on the Loess Plateau, implying the dominant control 

of water availability on ecosystem C fluxes rather than air/soil temperature. Zhang et al.  

[33] reported similar findings in an alpine meadow on the Tibetan Plateau. A study by 

Kumar et al.  [34] documented that soil moisture and soil temperature explained 66% 

variation in soil CO2 efflux in moist temperate forest of Western Himalayas. Similarly, 

Weissert et al.  [35] reported that soil temperature and soil water content explained 54% 

and 71% of the temporal variation in soil CO2 efflux in urban parkland and urban forests, 

respectively.  Furthermore, Kishimoto-Mo et al.  [36] also reported that soil temperature 

and moisture elucidated 69–86 % and 10–13 % of the temporal variability of soil CO2 

efflux, respectively. They documented greater soil CO2 efflux in the top soil layer due to 

increased soil moisture following episodic rainfall events during summer and early fall. 

2.1.1.3.Soil pH 

Soil pH regulates CO2 emissions to a larger extent by changing the rates of microbial C 

turnover [37]. Reth et al.  [38] observed a significant correlation of spatial variation of soil 

CO2 emission in the field with the soil pH and fine root mass, explaining up to 24% and 

31% of the variability. Several studies also revealed significant effects of soil pH on soil 
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respiration [39, 40, 41] due to increased microbial activity with the rising pH values. Bååth 

and Högberg et al.  [42, 43] demonstrated the direct positive effect of soil respiration with 

pH tolerance ability of the bacterial community. Optimum biological activity of soil 

microorganisms with nearly a linear increase of soil CO2 emission was observed between 

the soil pH of 3 to 7 and 7 to 8 [44]. Similar findings reported by Courtois et al.  [45] 

documented soil water content and soil pH as the main drivers of soil CO2 effluxes across 

topographical positions in tropical forests of the Guiana Shield. Wanyama et al.  [46] also 

found that soil pH, along with the C: N ratio and bulk density explained the majority of 

the variation in CO2 fluxes in an African tropical montane region. Similarly, Singh et al.  

[47] also reported that soil pH, soil organic C, microbial biomass and soil moisture as the 

key regulators of soil CO2 efflux in a tropical dry riparian ecosystem. 

2.1.1.4.Soil Organic Carbon (SOC) 

Soil organic carbon contains three times the amount of C found in the atmosphere, and its 

decomposition is likely a key source of climate change feedback and uncertainty in climate 

projections [48]. Soil carbon is the largest organic carbon stock in terrestrial ecosystems 

[49], accounting approximately two-thirds of terrestrial C [50] and about 75 Pg C year-1 is 

being respired back to the atmosphere [51]. The SOC pool accounts for roughly half of the 

total forest C pool. However, in boreal and temperate forests, the SOC pool exceeds the C 

content of forest biomass [52]. SOC plays a critical role in regulating soil biological 

productivity [53]. It is critical to comprehend the temporal and spatial variation of SOC 

and its feedback to the atmosphere in different ecosystems [54]. A small change in the rate 

of SOC decomposition could have a significant impact on the atmospheric CO2 

concentration [55]. Efflux of soil CO2 is an intricate process encompassing plant root 

respiration, microbial respiration as well as decomposition of soil organic matter [56, 57]. 

Soil CO2 efflux is primarily governed by heterotrophic microorganisms responsible for 

oxidising soil organic matter during litter decomposition and plant roots respiration [58, 

59, 60]. Thus, the population dynamics of soil microorganisms (e.g., bacteria, fungi, 

actinomycetes etc.) and soil abiotic factors (moisture, temperature, organic matter content) 

are the major determinates influencing soil CO2 emissions [61, 62, 63]. Several researchers 

have also reported that composition of soil organic matter plays an important role in soil 

CO2 efflux [64, 65, 66]. Thangavel et al.  [67] reported a positive correlation of labile SOC 

fractions (POC, ROC, and MBC) with TOC and CO2 efflux in Indian subtropical soil 

(Meghalaya). Similarly, influence of soil organic carbon on CO2 efflux was also reported 
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for a desert steppe in Northern China and the semi-arid Loess Plateau [68, 69, 70]. Sanjita 

et al.  [71] documented a strong positive correlation of seasonal SOC content with soil 

CO2 efflux in a subtropical sacred grove of Manipur, North-East India. High clay content 

and soil organic carbon content were the key factors resulting in high CO2 efflux from the 

mangrove floor in Pichavaram as reported by Gnanamoorthy et al.  [72]. Furthermore, a 

positive correlation of TOC with soil CO2 efflux rate was reported by Mishra et al.  [73] 

in a representative tropical deciduous forest at Katerniaghat Wildlife Sanctuary (KWLS) 

of Uttar Pradesh, India. 

2.1.1.5.Soil nutrients 

Nutrient availability has a significant impact on ecosystem processes. In forest ecosystem, 

the productivity, soil microbial biomass and activities are influenced by available nutrients 

and in turn effect soil respiration. The availability of nutrients such as nitrogen (N) and 

phosphorus (P) influences SOC mineralization [74-75]. Total nitrogen and labile carbon 

were identified as the major determinate to regulate soil CO2 efflux variation in Brazilian 

coffee agroforestry systems [76]. Liu et al.  [77] reported that total nitrogen (0.63) exerted 

a positive effect on CO2 emission rate in paddy soil as indicated by structural equation 

modelling. According to Mori et al.  [78], the availability of P influences both autotrophic 

and heterotrophic components of soil respiration. Phosphorus not only promotes fine root 

growth [79] but also regulates decomposition of organic matter [80]. Fisk et al.  [81] 

reported P induced enhanced mineralization of C in the surface organic soil horizon of 

northern hardwood forests in United States. This is further corroborated by results from 

Wang et al.  [82] who reported a spatial variation of soil respiration at 10 m × 10 m scale 

as primarily determined by total soil phosphorus, ammoniacal nitrogen, pH and soil water 

content (p < 0.05). Kadulin et al.  [83] reported an increase in soil respiration with increase 

in available soil carbon, nitrogen, phosphorus, and potassium contents. 

2.1.2. Soil Biological Characteristics 

2.1.2.1.Soil enzymes 

Microbial processes as reflected by soil enzymatic activities and microbial biomass have 

been shown to improve global predictions of soil C fluxes [84, 85]. Extracellular soil 

enzymes catalyse the initial step of microbial decomposition of both labile and recalcitrant 

C (C) compounds [86, 87]. Labile C decomposes quickly and provides a high energy yield 

to microbes, whereas recalcitrant C decomposes slowly over years and requires multiple 
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enzymatic steps [88, 89, 90]. This increase in enzyme-driven decomposition could boost 

soil respiration, releasing more CO2 from soil C stocks and providing positive feedback to 

accelerate global surface temperatures [91, 92, 93, 94, 95, 96, 97, 98]. Thus, extracellular 

soil enzyme driven decomposition of native organic matter (depolymerization, e.g., 

peroxidase) produces simple soluble compounds for microbial assimilation [99, 100, 101] 

that get mineralized to CO2 with the production of ATP [102]. Sinsabaugh et al.  [103] 

observed a positive correlation of β-1,4-glucosidase, cellubiohydrolase, β-1,4-N-

acetylglucosaminidase, and phosphatase activities with soil organic carbon content. These 

enzymes catalyse the breakdown of organic matter and the mineralization of nutrients. β-

1,4- glucosidase hydrolyzes the cellobiose residue in the final stage of the cellulose 

degradation process [104]. The final product of these reactions is glucose, an important C 

energy source for growth and activity of soil microorganism [105], which ultimately 

regulates C mineralisation. Auwal et al.  [106] reported a positive correlation of α-

glucosidase, β-glucosidase, β-xylosidase and cellobiohydrolase enzyme activities with 

cumulative CO2 emissions at 25°C implying that SOM decomposition is regulated by 

microbes. Zhang et al.  [107] also reported a positive correlation (p < 0.05) of β-

glucosidase and dehydrogenase activities with cumulative soil CO2 emission in a bamboo 

forest soil amended with pyrogenic and fresh organic matter. Similar findings were 

reported by Mohamed et al.  [108]; Halmi and Simarani, [109] where the rate of SOC 

mineralization was closely related to the activities of soil -glucosidase/dehydrogenase. β-

D glucosidase activity also showed the highest contribution in regulating the soil CO2 

emissions of Sundarban mangrove forest, India as reported by DE et al.  [110]. Li et al.  

[111] reported that cellobiohydrolase (P < 0.001) and β-glucosidase activities (P = 0.007) 

accounted for 50% and 31% of the variation in soil respiration, respectively, in a 

subtropical plantation of China. A significant positive correlation of β-glucosidase and 

cellobiohydrolase with soil CO2 flux was reported by Gao et al.  [112] during both the 

snow cover and the snow melt periods in Larch and Chinese pine plantation forests. Zhao 

et al.  [113] also documented a significant correlation of cumulative soil respiration with 

β-D-glucosidase (p < 0.05) and soil MBC (p < 0.01). Hugh et al.  [114] hypothesized that 

the activity of β-D glucosidase, which is involved in the breakdown of polysaccharides 

would increase in response to elevated CO2 in a California annual grassland.  

Furthermore, under elevated CO2, the activities of the enzymes N-acetylglucosaminidase 

and acid phosphatase increased significantly in a temperate forest at Changbai Mountains 

in North-eastern China, as documented by Zheng et al.  [115].  
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2.1.2.2.MBC 

Soil microbial biomass is the most active component of SOC, regulating biogeochemical 

processes in terrestrial ecosystems [116]. It is the labile fraction of soil organic matter 

(SOM) that is highly sensitive to changes in biotic and abiotic factors. Despite accounting 

for a small portion of total soil organic carbon (TOC), microbial biomass has been found 

to be a more sensitive indicator of changes in SOM levels than SOC content [117]. Several 

studies have also found a significant relationship between labile fractions of SOC and soil 

respiration, particularly the microbial biomass carbon pool [118, 119, 120]. Microbial 

biomass carbon (MBC) was found to be significantly related to variation in soil respiration 

(P = 0.043) across China's subtropical forests during the warm season [121]. Similar 

findings were reported by Wang and Gu [122], where a strong correlation between soil 

heterotrophic respiration with microbial biomass carbon (r =0.761, 0.801, 0.923) was 

noted in subtropical forests in China. Iqbal et al.  [119] reported that microbial biomass 

carbon (R2 = 0.39–0.86) and dissolved organic substances (R2 = 0.50–0.95) have 

significant effect on temporal variation of soil CO2 fluxes in the Three Gorges Reservoir 

Area of South China. Han and Zhu [123] reported a positive correlation of soil CO2 efflux 

with soil microbial biomass carbon and root biomass, within or across all types of primary 

forest conversions of China. According to Wei et al.  [124], MBC and fine root biomass 

were positively correlated with soil respiration. Furthermore, the MBC and fine root 

biomass co-explained 70% of the variation in soil respiration, suggesting that the MBC 

and fine root biomass co-controlled soil respiration. According to Feng and Zhu [125], 

autotrophic and heterotrophic soil respiration increased in lockstep with MBC, SOC, and 

belowground biomass. Similar findings were reported by Zhao et al.  [30]; Ding et al.  

[126]; Yang et al.  [127] where SOC, MBC, and DOC found to contribute towards rising 

CO2 level. Mirzaei et al.  [128] observed a positive correlation of CO2 efflux with higher 

soil temperature (0.43–0.79) and MBC (0.66–0.89) in a semi-arid region of Iran under 

corn-wheat rotation. 

2.1.2.3.Soil metagenomics 

Soil microorganisms play a pivotal role in regulating C dynamics of soil through control 

on decomposition of soil organic matter (SOM) and nutrient-cycling rates [129]. Microbial 

diversity has been linked to a variety of soil functions, including soil respiration [130, 

131]. Furthermore, because of the strong positive relationships that exist between 

microbial composition and the functional genes that regulate soil respiration [132], 
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community composition (relative abundance of phylotypes) may improve our prediction 

of soil respiration in addition to diversity [133]. Several microbial taxa regulate changes 

in SOC fractions by participating in the decomposition of soil organic matter, thereby 

influence soil CO2 efflux [134-135]. Many molecular techniques such as polymerase chain 

reaction-denaturing gradient gel electrophoresis (PCR-DGGE), terminal restriction 

fragment length polymorphism (T-RFLP), and high-throughput sequencing are now 

widely used to study the soil microbial community [136, 137, 138]. Although common 

high-throughput sequencing can provide information on microbial communities, it does 

not provide detailed information on microbial metabolic function. However, metagenomic 

sequencing, which sequences the extracted DNA directly, can furnish elaborate 

information on both microbial classification and their metabolisms [139]. Padhy et al.  

[140] reported that metagenomic analysis of soil bacteria and archaea could give valuable 

insight of the structural feature and microbial functionality of the ecosystem related to 

GHGs emissions and C-dynamics. 

Several researchers believe that linking C mineralization to taxonomic and functional 

characteristics of microbial communities could improve predictions on soil respiration 

dynamics [141, 142, 143, 144]. Furthermore, various experiments demonstrated that 

copiotrophs (such as Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes) and 

oligotrophs (such as Deltaproteobacteria, Acidobacteria and Actinobacteria) played 

distinct ecological functional roles in utilisation of C for respiration [145, 146, 147, 148]. 

Liu et al.  [144] identified the major bacterial phyla such as Alphaproteobacteria, 

Deltaproteobacteria and WPS.2 for predicting soil respiration (P<0.05) using random 

forest modelling.  Significant relationships were found between respiration and MBC, 

relative abundance of bacteria, bacterial community and richness. Similarly, 

Acidobacteria and Alphaproteobacteria were identified as the major microbial taxa 

governing changes in soil respiration along elevational gradients of alpine forests in China 

[149]. Colombo et al.  [150] reported that relative abundance of bacteria is most crucial 

predictor of basal respiration (ΔAICc = 11.090). Ren et al.  [151] observed a significant 

correlation of bacterial abundance (Proteobacteria, Bacteroidetes, Actinobacteria, 

Chloroflexi, and Nitrospirae) and bacterial alpha diversity with SOC, DOC, MBC, and 

soil respiration components (p<0 .001). Tardy et al.  [134] reported microbial richness as 

the principal predictor of the C cycling activities, with bacterial and fungal richness 

accounting for 32.2 and 17% of the SOM mineralization, respectively. Liu et al.  [152] 

observed a significant (P<0.05) relationship between bacterial community composition 
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and rate of soil respiration in both paddy and upland soils. Furthermore, random forest 

modelling suggested that the phylotypes within the phyla/classes Alphaproteobacteria, 

Bacteroidetes, Betaproteobacteria, Actinobacteria, Gammaproteobacteria and Firmicutes 

were among the numerous bacterial predictors regulating soil respiration. 

2.2.Soil Mineralogy and Carbon Sequestration  

Physical and chemical associations of soil C with minerals play an important role in 

storage of C [153]. Available minerals have been found to have a strong correlation with 

soil C and its long-term stability [154]. Interactions between soil organic carbon (OC) and 

mineral soil particles reduce OC accessibility to degraders, thereby controlling its 

susceptibility to mineralization and subsequent release into the atmosphere [155, 156, 157, 

158]. Phyllosilicates (layer-lattice aluminosilicates), metal oxides, hydroxides, and 

oxyhydroxides (e.g., hematite, gibbsite, goethite), and short-range ordered 

aluminosilicates (e.g., imogolite, allophane) are the most common minerals in soil 

environments that contribute to stabilisation of organic matter. Several factors such as size, 

shape, polarity, surface topography etc. govern the surface interaction of organic 

molecules with these minerals. A substantial number of studies infers that soil OM storage 

capacity is largely determined by the mass proportion of fine mineral particles with high 

surface area, such as phyllosilicates and Fe/Al oxides and hydroxides [159, 160, 161, 162, 

163, 164]. 

2.2.1. Clay minerals 

In soils, organic matter (OM) can be stabilized via three mechanisms: (1) by biochemical 

recalcitrance, (2) formation of organomineral complexes through chemical interactions 

with minerals and metal ions, and/or (3) physical protection owing to occlusion within soil 

aggregates [165]. It is also worth noting that not only the clay content, but also the type of 

clay, has a significant impact on SOC stabilisation. Soil clay minerals (metal oxides, 

oxyhydroxides, and hydroxides) are the most reactive soil fractions and form associations 

with organic matter [166, 167, 168]. In addition to phyllosilicate clay minerals, the Fe and 

Al sesquioxide also play an important role in soil OM (SOM) protection. Numerous studies 

have found a positive correlation of SOM content with the amount of Fe and Al 

sesquioxides in soils [169, 170, 171]. It has been reported that soils rich in sesquioxide 

clays stabilise more C than those without them [169, 172]. The Fe oxide coating on soil 

clay particles may affect the surface charge of clay minerals [157, 167]. As a result, a 
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strong complexation between positively charged clay and negatively charged OM may 

occur. This complex formation reduces the accessibility of microorganisms to OM as a 

food source and regulate soil respiration [167]. 

Nguyen and Marschner [173] reported that addition of smectite clay soil decreased 

cumulative respiration per g organic C in the sand-clay mixes compared to sandy soil alone 

at 22.5 and 30% clay addition rates. Addition of kaolinite clay soil had no effect at any 

clay addition rate. The low cumulative respiration of the mixes with smectite clay soil can 

be explained by its high surface area and CEC which reduces the accessibility of OC to 

microbes [174]. Singh et al.  [172] reported that the smectitic soil recorded the highest 

basal respiration followed by the kaolinitic-illitic and allophanic soils. A strong inverse 

correlation (R2 = 0.90 at p < 0.05) was observed between CO2 emission rate and total 

sesquioxides (Fe and Al oxides) content. Saidy et al.  [175] reported that clay mineralogy 

and the presence or absence of goethite significantly influence the cumulative C 

mineralisation (P < 0.05). Saggar et al.  [176] recorded that the amount of C remaining 

after a 35-days of incubation period was highest in soils dominated by smectite. The same 

was found to be lowest in soils dominated by vermiculite and kaolinite. The differences in 

the specific surface area (SSA) of the clays reflects the observed variation in the rate of C 

mineralisation. The higher SSA of the illitic and smectitic clays compared to the kaolinitic 

clay have been suggested to enable more and stronger SOC-clay interactions and thereby 

facilitate SOC stabilisation [177, 178]. Kirsten et al.  [179] documented that clay minerals, 

metal oxides and hydroxides are the most reactive soil mineral constituents controlling the 

long-term stability of organic carbon (OC) in terrestrial ecosystems. Churchman et al.  

[180] reported that adding clay to soils increased OC, potentially increasing net C 

sequestration. Rakhsh et al.  [181] observed that the interaction of OC and microbial 

biomass with clay minerals leads to their stabilisation in soils. They also reported that 

addition of a small amount of clay (5%) significantly delays the decomposition of OC 

thereby reducing soil carbon dioxide emission. Yu et al.  [182] showed that in a coniferous 

forest, stabilisation of SOC was due to sorptive protection or microaggregate formation of 

soil clay fraction with SOC (r2 = 0.89, p < 0.05). Whereas, in a mixed or broadleaved 

forest, SOC stabilisation was due to chemical protection through formation of organo‐

mineral complexes. 

2.3.Weather Variables and Ecosystem Carbon Flux 
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Global climate change is expected to aggravate and cause regional drought events, 

particularly in mid-latitude and subtropical dry regions due to rising global temperatures 

and changing precipitation regimes [183]. This changing climatic scenario may have a 

pronounced effect on terrestrial C cycling due to alteration in the structure and function of 

forest ecosystems [184, 185, 186, 187]. Majority of field studies propound that global 

warming generally stimulates plant growth and ecosystems C flux (e.g., NPP, ecosystem 

respiration and ecosystem photosynthesis). Soil temperature and water availability have a 

strong influence on soil respiration, and these two environmental factors are closely related 

to climate change and changing precipitation patterns [188, 189, 190]. 

2.3.1. Temperature 

Temperature is a major driver of soil respiration -a key process of C efflux to the 

atmosphere [191, 192, 193]. In general, increase in soil temperature below 35 °C increases 

soil respiration, as long as soil moisture is not a limiting factor (in the range from 0.20 to 

0.30 cm3 cm−3) [194, 195]. The correlation between soil temperature, soil CO2 efflux and 

rate of CO2 production have been depicted by various researchers using the Q10 model 

[195, 196]. Liu et al.  [197] found a parabolic relationship between soil respiration and soil 

temperature during the growing season in a desert steppe of Northern China, accounting 

for about 19% of the total variation in soil respiration (p < 0.01). Dacal et al.  [198] 

observed a consistent and significant positive effect of assay temperature (5 °C, 15 °C and 

25 °C) on soil respiration across the eight chrono sequences studied (p < 0.001). Bao et al.  

[199] observed that rising temperature resulted in increased soil respiration on the Tibetan 

Plateau. A meta-analysis reported that experimental warming significantly increased soil 

respiration in forest ecosystems, owing to rapid decomposition of SOC [184, 185]. Soil 

warming considerably increased soil respiration by 32.0% in 2011 and 46.3% in 2012 

under ambient precipitation as reported by Liu et al.  [200]. Yu et al.  [201] observed a 

significant correlation of soil temperature with soil CO2 efflux and rate of CO2 production 

in an oasis cotton field in arid North-western China. Yang et al.  [202] documented a 

positive correlation of air temperature with CO2 fluxes (r = 0.444, P < 0.01) in two 

subtropical estuaries of China. Wang et al.  [203] indicated that the interactive effects of 

soil organisms on microbial biomass, respiration, and carbon use efficiency are regulated 

by temperature, providing a foundation for understanding the soil C cycle in forest 

ecosystems. Zhou et al.  [204] reported a significant positive correlation between 

accumulated effective soil temperature and accumulative soil CO2 efflux on a monthly 
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scale in temperate forests of Northern China. Soong et al.  [205] observed a sustained 30 

± 4% increase in soil CO2 efflux due to warming over a period of five years through the 

whole-soil profile in an experimental forest of California. Similarly, Lin et al.  [206] 

documented warming induced hike in surface soil CO2 efflux by 40% in a young Chinese 

fir plantation. Zou et al.  [207] reported an increase in average soil CO2 efflux by 23% due 

to rise in soil temperature in a forest from central Ireland. 

2.3.2. Precipitation 

Intensification of precipitation rates may affect soil CO2 emissions from forests to 

grasslands having a direct impact on the C balance of the ecosystem [208]. One of the key 

factors influencing soil CO2 efflux in terrestrial ecosystems is the changing precipitation. 

Increased precipitation has been shown to promote soil respiration in water-stressed 

ecosystems. This is primarily due to stimulation of many ecological processes such as 

plant growth, soil microbial growth and activity, and the temperature sensitivity of soil 

respiration [209, 210, 211, 212, 213, 214]. Moreover, recent findings have revealed that 

increased precipitation has a substantial impact on soil respiration in dry condition than 

that in the wet condition resulting in a saturated relationship between soil respiration and 

precipitation [209, 215]. Ahlström et al.  [216] have reported that the high variability in 

precipitation regulates the interannual variability of the global C sink. A myriad of studies 

has reported that intensification of precipitation usually results in higher soil moisture 

contents, as well as increased soil respiration thereby accentuating soil CO2 efflux in 

various ecosystems [217, 218, 219]. Zhang et al.  [220] observed that total soil respiration 

and its components increased nonlinearly with increase in precipitation (all P<0.01). They 

reported a 70%, 74% and 40% (marginal R2) variations in total soil respiration, 

heterotrophic soil respiration and autotrophic soil respiration due to change in precipitation 

while considering year as a random effect. The findings of Huang et al.  [221] illustrated 

a linear increase in soil respiration with increased precipitation in a temperate desert 

ecosystem. Legesse et al.  [222] found that wet spring and wet summer precipitation 

treatments increased soil respiration by 24.9% and 24.1%, respectively, compared to dry 

spring and dry summer precipitation treatments in mowed grassland of Inner Mongolia. 

Soil respiration was strongly affected by precipitation changes in a switchgrass field of the 

United States [223]. The findings of Ngaba et al.  [224] showed that changing precipitation 

significantly increased soil respiration by 51 % and 17 % (P<0.05), in forests and 

croplands, respectively, across diverse biomes. According to Liu et al.  [68], increased 



Chapter 2: Review of Literature 
 

2-12 

precipitation had a significant effect on soil respiration during the growth seasons (p<0.05) 

in a desert steppe of northern China, accounting for approximately 16.3% of the variation 

in soil respiration (p<0.01). Yue et al.  [225] showed that precipitation and nitrogen 

deposition significantly elevated soil respiration in a temperate desert of China. Zhang et 

al.  [226] reported a positive correlation of soil respiration with precipitation-induced 

change in above-ground plant biomass in the desert-grasslands of Inner Mongolia, China. 

They found an increase in C efflux from the soil with an increase in precipitation. Wang 

et al.  [227] documented a stronger and faster precipitation pulse effects on soil microbial 

respiration in Beijing secondary forest soils. Pan et al.  [228] used the Community Land 

Model Version to simulate soil heterotrophic respiration over a 33-year period (1980-

2012) in the central Tibetan Plateau. The model output revealed a significant linear 

regression between seasonal fluctuations in heterotrophic respiration and precipitation. 

Furthermore, a meta-analysis of all field experiments revealed that a 31.81% increase in 

precipitation significantly increased soil CO2 efflux by 12.74% [229]. 

2.4.Ecosystem Characteristics and Carbon Flux 

2.4.1. Grass land ecosystem 

Grassland ecosystems, which cover up to 40% of the global land surface, are critical 

modulators of the C cycle and climate. The eddy covariance technique and model efforts 

revealed that most of the grasslands have gross primary production (GPP) that exceeds 

ecosystem respiration and thus act as C sinks [230, 231, 232, 233, 234]. However, various 

factors such as vegetation, growing season, environmental factors and soil factors play a 

key role in regulating the C flux. Niu et al.  [235] indicated that the sandy grassland 

behaved as a net CO2 source on an annual scale with a mean annual net ecosystem 

exchange (NEE) of 49±8 g C m-2 yr-1. On a seasonal scale, the sandy grassland absorbed 

net CO2 during the summer but released net CO2 during the other seasons. During the dry 

study periods, a grassland in New Mexico, USA, was a net source of 31 g C m-2 yr-1 [236]. 

Arredondo et al.  [237] documented that mixed grassland treatment exhibited higher soil 

respiration rates than the monospecific Bouteloua gracilis grassland during the dry months 

(November to April). This could be attributed to greater plant interspace extensions in 

mixed grassland, which leads to increased radiation exposure and accelerated cycles of 

desiccation, elevated soil temperature, sensible heat flux, and re-wetting. Song et al.  [238] 

reported that the grassland ecosystem of central Qinghai-Tibet Plateau shifted from a C 

sink during growing season (68.8 ± 8.7 g C m−2) to a C source in nongrowing season 
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(−41.1 ± 2.4 g C m−2). Whereas, the net ecosystem carbon budget (27.7 ± 6 g C m−2 yr−1) 

demonstrated a net C sink at an annual basis. The findings of Zhu et al.  [239] indicated 

that northern China's temperate grasslands can significantly alter vegetation biomass, soil 

temperature, and soil water content, resulting in temporal and spatial variation in CO2 

fluxes. De Long et al.  [240] demonstrated that shoot biomass is an important factor in 

grassland ecosystem respiration in both monocultures and mixed communities. This could 

be because of total plant biomass as plants are the primary source of C fixation via 

photosynthesis. A meta-analysis study found that warming generally stimulated ecosystem 

C and N cycles, but warming had little effect on soil C and N stocks in alpine grassland 

ecosystems on the Tibetan Plateau [241]. Wagle et al.  [242] demonstrated that temporal 

and spatial variation of water use efficiency, evapotranspiration and C uptake in grassland 

ecosystem were strongly related to canopy coverage and greenness, as indicated by the 

enhanced vegetation index (EVI) in 12 grasslands across the United States.  A grassland 

in Brazil's semi-arid region served as an atmospheric C source during drier periods with 

lower normalised difference vegetation index (NDVI) and as a C sink during wetter 

periods with higher NDVI as reported by da Silva et al.  [243]. Chen et al.  [244] reported 

that warming increased above-ground plant respiration and total autotrophic plant 

respiration by 28.7% and 19.9%, respectively, while decreased heterotrophic respiration 

by 10.4% in a Tibetan Plateau meadow grassland. 

Furthermore, several other studies [245, 246] found grassland as a C sink during the 

growing season. Thus, diverse grassland ecosystems will respond differently to changing 

climatic scenario in near future. 

2.4.2. Forest Ecosystem 

Forests, extending from tropical to temperate to boreal cover approximately 30% of the 

total land surface. They play a vital role as soil C sinks by storing significant amount of 

stable organic matter [247]. Tropical and subtropical forests have made a significant 

contribution to gross forest C fluxes, accounting for 78% of total emissions (6.32.4 Gt 

CO2e yr-1) and 55% of total removals (8.67.6 Gt CO2e yr-1). Thus, only 30% of the global 

net C sink came from tropical and subtropical forests. Whereas, temperate (47%) and 

boreal (21%) forests accounts for roughly two-thirds of the global net C sink, owing to 

significantly lower gross emissions in these regions [248]. Modelling and experimental 

studies have been carried out to gain a better understanding of the possible impacts of 

elevated atmospheric CO2, changing precipitation patterns and global warming on 



Chapter 2: Review of Literature 
 

2-14 

ecosystem processes of these forests’ types [249]. Climate change has been found to have 

both positive effects (e.g., increased forest growth and water use efficiency under elevated 

CO2) and negative effects (e.g., reduced growth due to the combined effects of climate 

change and O3) on forests, and these effects may vary depending on biotic and abiotic 

factors [250, 251]. 

The Amazon rainforest was identified as a C sink by Rödig et al.  [252], with a net removal 

of 0.56 Gt C yr-1. This C sink is driven by an estimated mean gross primary productivity 

(GPP) of 25.1 t C ha-1 yr-1 and 4.2 t C ha-1 yr-1 of woody aboveground net primary 

productivity (WANPP). The findings emphasised the importance of taking forest structure 

into account when simulating C dynamics. According to the findings of Phillips et al.  

[253], the average annual C sink into mature forests of the Amazon nations (Suriname, 

Peru, Guyana, French Guiana, Ecuador, Columbia and Bolivia) has been at least twice the 

magnitude of C emissions from fossil fuel burning of the same nations since 1980. Yang 

et al.  [254] reported that mean annual precipitation, mean annual temperature and LAI 

accounted for 74% of variation in stem CO2 efflux of forest ecosystems at global scales. 

Verduzco et al.  [255] discovered that a monsoon precipitation threshold of 350 to 400 mm 

caused a shift in the annual C balance in tropical dry forest ecosystem of Mexico from a 

net source (+102 g C m-2 yr-1) to a net sink (-249 g C m-2 yr-1). Martins et al.  [256] 

documented that functional microbial groups, along with water and substrate availability 

are the most important predictors of GHG emissions in an Australian dryland forest 

ecosystem. Sarma et al.  [257] reported that the estimated annual net ecosystem 

productivity of 92.93 ± 1.7 g C m–2 year–1 for a semi-evergreen forest of Northeast India 

indicating the forest as a moderate sink of CO2. 

2.4.3. Wetland Ecosystem  

Wetlands, which account for only 6% of the Earth's land surface [258], have been 

identified as a significant source and sink of GHG [259]. GHG emissions from wetland 

ecosystems vary greatly in space and time, depending on wetland type, soil properties, and 

climatic conditions [258, 260, 261, 262]. Wetlands play a key role in the C cycle, storing 

upto 15% of the total C in terrestrial ecosystems globally [263, 264, 265]. C sequestration 

in wetlands as determined by the net balance of their C fluxes has gained prominence in 

recent years. Accumulation of organic matter is more in wetlands than other ecosystems 

due to their higher net primary productivity (NPP) and slower rate of organic matter 

decomposition [266, 267, 268, 269, 270]. Mitsch et al.  [271] and Mitsch [272] 
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demonstrated that despite accounting for only about 5-8% of the terrestrial landscape, the 

world's wetlands may be the net C sinks accounting about 0.83 Pg yr-1 of C, with an 

average net C retention of 118 g C m-2 yr-1. Warmer temperatures and drier conditions 

associated with climate change are expected to shift the balance between ecosystem 

photosynthesis and respiration, potentially reversing a peatland's function from sink to 

source [273, 274]. Barbera et al.  [275] reported increased microbial activity and plant 

respiration with rising air temperature in constructed wetlands. Salimi et al.  [276] 

documented that drought might shift the role of wetlands from C sinks to C sources. 

However, higher temperature and rainfall can help to keep wetlands functioning as C sinks. 

According to Cao et al.  [277], an alpine wetland ecosystem in Qinghai Lake area of China 

acts as a C sink throughout the year with an average net ecosystem CO2 exchange (NEE) 

of -904.42 g CO2/m
2. Pugh et al.  [278] demonstrated that over multiyear timescales, 

annual temperature is the better predictor for interannual variation of wetland net C fluxes 

in northern Wisconsin rather than water table fluctuations. Cui et al.  [279] found that 

mangrove wetlands of subtropical China could sequester more CO2 from the atmosphere 

than nearby terrestrial forests due to higher gross ecosystem production (GEP) and lower 

ecosystem respiration (Re) values. Lu et al.  [280] used 143 site-years of eddy covariance 

data from 22 inland wetland and 21 coastal wetland sites around the world to conduct a 

meta-analysis comparing ecosystem CO2 fluxes among different types of wetlands. They 

found that coastal wetlands were large CO2 sinks compared to inland wetlands or the later 

was nearly CO2 neutral. Furthermore, they observed that annual CO2 fluxes were mainly 

regulated by mean annual precipitation (MAP) and mean annual temperature (MAT) 

which explained 71%, 57% and 54% of the variations in gross primary productivity (GPP), 

net ecosystem productivity (NEP) and ecosystem respiration (Re), respectively. 

 Thus, ecosystems behave differently in regulating the CO2 efflux based on the 

ecosystem characteristics and changing climatic conditions. 
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