

DECLARATION

I do hereby declare that the Thesis entitled **"Design and Development of Phase Change Material Integrated Solar Air Heater for Drying Application in Agriculture"** being submitted to the Department of Energy, Tezpur University, is a record of original research work carried out by me. All sources of assistance have been assigned due acknowledgement. I also declare that neither this work as a whole nor a part of it has been submitted to any other University or Institute for any other degree, diploma, or award.

Place: Tezpur

(Barkhang Brahma)

Date:

तेजपुरविश्वविद्यालय/ TEZPUR UNIVERSITY (संसदके अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament) तेजपुर-784028 :: असम/ TEZPUR-784028 :: ASSAM

Debendra Chandra Baruah

Professor, Department of Energy Director, Centre for Multidisciplinary Research Director, Internal Quality Assurance Cell Tezpur University Email: baruahd@tezu.ernet.in Phone: +91-3712-275307

CERTIFICATE OF THE SUPERVISOR

This is to certify that the Thesis entitled **"Design and Development of Phase Change Material Integrated Solar Air Heater for Drying Application in Agriculture"**, submitted to the Department of Energy, School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Energy is a record of research work carried out by Mr. Barkhang Brahma under my supervision and guidance.

All help received by him from various sources has been duly acknowledged.

No part of this Thesis has been submitted elsewhere for award of any other degree.

Signature of Supervisor

(Debendra Chandra Baruah)

Designation: Professor School: Engineering Department: Energy Date:

ACKNOWLEDGEMENT

I am honoured to avail this opportunity to extend my sincere and heartfelt gratitude to all those individuals whose invaluable contributions have made it possible to bring this Thesis to light.

I would like to dedicate this Thesis to the loving memory of my late father, Priyanath Brahma. His unwavering support, encouragement, and belief in my abilities are instrumental in my pursuit of higher education. Though he is no longer with us, his influence and guidance continue to shape my academic and personal journey.

I would like to express my heartfelt gratitude to my family (Mother: Anjana Brahma, Brother: Jaurang Brahma and Sister: Pinki Brahma), whose unwavering support and encouragement have been influential in the completion of this Thesis. Their love, understanding, and belief in my abilities have been a constant source of motivation throughout my academic pursuit.

Professor Debendra Chandra Baruah, my esteemed advisor, has been a constant source of inspiration. I am indebted to him for imparting research knowledge to me, for shaping and cultivating my research skills, and for fostering my interest in the field. Through his instruction, I have refined my skills in critical analysis and fostered an attitude of independent thought, ultimately resulting in the successful conclusion of this research project.

I extend my gratitude to the esteemed members of my Doctoral Committee: Professor Dhanapati Deka, Dr. Biraj Kumar Kakati, Dr. Nabin Sarma, and Professor Manuj Kumar Hazarika. Their active interest and constructive feedback have played a pivotal role in the advancement of my research. Additionally, I would like to express my thanks to the Head of the Department, Professor Sadhan Mahapatra, for providing valuable suggestions and sharing expertise in the subject matter. I am also appreciative of Professor Rupam Kataki, Dr. Pradyumna Kumar Choudhury, and Dr. Vikas Verma for their valuable feedback on my research work. I also appreciate the support from Prof. Partha Pratim Sahu of Department of Electronics and Communication, Tezpur University for allowing me to avail his laboratory facilities. I take this opportunity to sincerely acknowledge Ministry of Tribal Affairs, Government of India for providing financial support in the form of National Fellowship for the ST students. I am also grateful for the support from Department of Science and Technology (DST), New Delhi, Government of India (Grant No. 100/IFD/R/GIA/2686/2013-14), for the project Rural Hybrid Energy Enterprise Systems. I also take this opportunity to thank Tezpur University for providing financial assistance under the scheme "Research and Innovation Grant". I am also grateful for the support from the project titled "Multi crop Residue Processing Technology Package for production of Fuel and Fertilizer" funded by Science and Engineering Research Board (SERB) from IMPRINT-2(PAC Energy) scheme, Sanction order no. IMP/2019/000247, Government of India.

I would also like to extend my gratitude to Prof. Panagiotis T Nastos, for hosting me as a visiting research scholar in the National and Kapodistrian University of Athens during my 3-month training under the Erasmus+ Capacity Building Project in Higher Education AdaptNET.

I acknowledge the support of Mr. Tapan Borah and Mr. Troilokya Lahon of Department of Energy for providing me with technical support for my research work. I am also grateful to Dr. Dipal Baruah for his support in the completion of my Thesis.

My sincere thanks also go to my current lab-mates Trinakshee, Bharat and Isfakur for their immense help in every possible way in my Ph.D. Thesis.

I express my gratitude to my friends Rewrewa Narzary and Arun Kumar Shukla for their academic support and encouragement extended to me throughout the duration of my Ph.D. work, culminating in the successful completion of my Thesis.

I am also grateful for the mental support provided by my friends Manas, Sanjib, Kumar, Rishang, Meen, Arunava and several others. I would also like to thank the hostel menials for providing all the homely facilities during my PhD tenure.

Beyond the academic realm, Rangjali Brahma has been my source of solace and comfort, creating a nurturing environment that allowed me to focus on my research. Her unwavering support in balancing my personal and professional responsibilities has been invaluable, allowing me to navigate the challenges with determination and resilience.

(Barkhang Brahma)

LIST OF TABLES

Table	Description	Page No.
Number		
Table 2.1	Overview of some PCMs reported in literature	17-18
Table 2.2	PCM selection methodology for some applications	19-20
Table 2.3	A brief review of integration of PCMs in SAH	23-24
Table 2.4	Performance of PCMs based solar dryers	25-26
Table 3.1	The scoring criteria applied to each decision parameter	45
Table 3.2	Reference values of the weights	46
Table 3.3	Thermophysical properties of the pre-selected PCM for heating	51
Table 3.4	application. Value of the decision parameters	52
Table 3.4	Pre-selected PCM candidates overall average score and ranking	52 53
Table 3.6	Thermal stability of solid-liquid phase transition of paraffin wax	61
Table 3.7	Thermal stability of solid-liquid phase transition of stearic acid	62
Table 3.8	Thermal stability of solid-liquid phase transition of acetamide	62 62
Table 3.9	Corrosion rate of PCM metal containers	63
Table 3.10	Reference for corrosion rate analysis used in industry	64
Table 3.11	Surface profile measurement of the metal specimens before and after	70
14010 0111	treatment with stearic acid paraffin wax, and acetamide.	10
Table 4.1	Parameters used in numerical computations	88
Table 4.2	Thermo-physical properties of different PCMs	89
Table 4.3	Different locations of thermocouples during performance test	92
Table 4.4	Parameters considered for PCM melting depth estimation with	98
	different operation conditions for three different PCMs.	
Table 4.5	Amount of PCM required for PCM cavity	99
Table 4.6	Specifications of PCMSAH	99
Table 4.7	Uncertainty of parameters in the measurement	107
Table 5.1	Components and materials used in PCMSD	115
Table 5.2	Specifications of PCMSD	116
Table 5.3	Thermocouple locations in PCMSD	118
Table 5.4	Mass shrinkage ratio of PCMSD and open sun dry	129
Table 5.5	Average SEC and SM during tomato drying in PCMSD	132

Table	Description	Page No.
Number		
Table 5.6	Capital cost of components used in PCMSD	139
Table 5.7	Annualised cost of PCMSD with different PCMs	140
Table 5.8	Economic payback period of PCMSD with different PCMs	140
Table 5.9	Embodied energy of components of PCMSD	141-142

LIST OF FIGURES

Figure	Description	Page No.
Number		
Fig.1.1	Physical map of solar radiation of India	3
Fig. 3.1	Corrosion test of meatal strips (a) aluminium (b) stainless steel (c) mild	49
	steel (d) copper with Stearic acid up to 1000 thermal cycling test	
Fig. 3.2	Corrosion test of meatal strips (a) aluminium (b) stainless steel (c) mild	49
	steel (d) copper with Paraffin wax up to 1000 thermal cycling test	
Fig. 3.3	Corrosion test of metal strips (a) aluminium (b) stainless steel (c) mild	49
	steel (d) copper with acetamide up to 1000 thermal cycling test.	
Fig. 3.4	Microscopic imaging of meatal specimens with ZEISS, Stemi 305	50
	Stereomicroscope	
Fig. 3.5	Surface profiling of metal specimens with Surtronic S -128	50
Fig. 3.6	TGA curve of (a) paraffin wax, (b) stearic acid, and (c) acetamide	54-55
Fig. 3.7	DSC curve of paraffin wax at (a) 0th, (b) 500th and (c) 1000th thermal	56-57
	cycle	
Fig. 3.8	DSC curve of stearic acid at (a) 0th, (b) 500th and (c) 1000th thermal cycle	57-58
Fig. 3.9	DSC curves of acetamide at (a) 0th, (b) 500th and (c) 1000th thermal cycle	59-60
Fig. 3.10	Optical micrograph of (a) aluminium, (b) copper, (c) mild Steel, and (d)	65
	stainless steel before treatment with stearic acid and (e) aluminium, (f)	
	copper, (g) mild Steel, and (h) stainless steel after treatment with stearic	
	acid	
Fig. 3.11	Optical micrograph of (a) aluminium, (b) copper, (c) mild Steel, and (d)	65
	stainless steel before treatment with paraffin wax and (e) aluminium, (f)	
	copper, (g) mild Steel, and (h) stainless steel after treatment with paraffin	
	wax	
Fig. 3.12	Optical micrograph of (a) aluminum, (b) copper (c) mild steel (d) stainless	66
	steel (SS304) before treatment and (e) aluminum, (f) copper (g) mild steel	
	(h) stainless steel (SS304) after treatment with acetamide	
Fig. 3.13	Surface roughness profile of (a) aluminium, (b) mild steel, (c) stainless	67
	steel and (d) copper before treatment with stearic acid and (e) aluminium,	
	(f) mild steel, (g) stainless steel and (h) copper after treatment with stearic	
	acid.	

Figure	Description	Page No.
Number		
Fig. 3.14	Surface roughness profile of (a) aluminium, (b) mild steel, (c) stainless	68
	steel and (d) copper before treatment with paraffin wax and (e)	
	aluminium, (f) mild steel, (g) stainless steel and (h) copper after treatment	
	with paraffin wax	
Fig. 3.15	Surface roughness profile of (a) aluminium, (b) copper (c) mild steel (d)	69
	Stainless steel (SS304) before treatment and (e) aluminium, (f) copper (g)	
	mild steel (h) Stainless steel (SS304) after treatment with acetamide	
Fig. 4.1	Location of the experimental site	79
Fig. 4.2	Thermo-schematic diagram of the PCMSHAG	80
Fig. 4.3	Solar radiation, ambient temperature, and wind speed in the experimental	87
	site	
Fig. 4.4	DSC curve of (a) paraffin wax (b) acetamide and (c) stearic acid for	89-90
	melting point and latent heat of fusion value	
Fig. 4.5	Solar air heater with and without PCM	92
Fig. 4.6	Theoretical outlet temperature with varying length of absorber and mass	94
	flow rates (a) 0.018 kg/s (b) 0.028 kg/s (c) 0.038 kg/s and (d) 0.048 kg/s	
	with acetamide as PCM	
Fig. 4.7	Theoretical outlet temperature with varying length of absorber and mass	95
	flow rates (a) 0.018 kg/s (b) 0.028 kg/s (c) 0.038 kg/s and (d) 0.048 kg/s $$	
	with stearic acid as PCM	
Fig. 4.8	Theoretical outlet temperature with varying length of absorber and mass	96
	flow rates (a) 0.018 kg/s (b) 0.028 kg/s (c) 0.038 kg/s and (d) 0.048 kg/s	
	with paraffin wax as PCM	
Fig. 4.9	Theoretical useful energy with varying air mass flow rate and length of	97
	the absorber plate	
Fig. 4.10	Depth of the PCM melt for varying air mass flow rate and absorber plate	98
	area	
Fig. 4.11	(a) Front view of SHAG breadth wise. (b) side view of SHAG length wise.	100
	(c) schematic of SHAG with support and stand	
Fig. 4.12	Experimental outlet temperature of SHAG with (a) acetamide (b) stearic	101-102
	acid (c) paraffin wax PCMs and without PCM	

Figure	Description	Page No.
Number		
Fig. 4.13	Solar Radiation and Plate temperature for SHAG with three different	102
	PCMs	
Fig. 4.14	Theoretical and experimental outlet temperatures of PCMSHAG with (a)	103
	acetamide, (b) stearic acid and (c) paraffin wax	
Fig. 4.15	Absorbed, useful, lost and stored heat of the SHAG with (a) acetamide (b)	104-105
	stearic acid and (c) paraffin wax as PCM.	
Fig. 4.16	Absorbed, useful, lost and stored heat of the SHAG with (a) acetamide	106
	(b) stearic acid and (c) paraffin wax.	
Fig. 5.1	PCMSD schematic diagram	114
Fig. 5.2	Thermocouple locations in PCMSD	118
Fig. 5.3	Tomato drying in PCMSD and open sun drying	119
Fig. 5.4	Input parameters of the PCMSD from the experiment	126-127
Fig. 5.5	Moisture removal rate of tomato by PCMSD and open sun dry	128-129
Fig. 5.6	Collector actual heat received, and usable heat gained	130
Fig. 5.7	Energy efficiency of collector	131
Fig. 5.8	Energy efficiency of dryer	132
Fig. 5.9	Exergy inflow and outflow of collector	133-134
Fig. 5.10	Collector exergy efficiency	135
Fig. 5.11	Exergy inflow and outflow of dryer chamber	136-137
Fig. 5.12	Dryer exergy efficiency	138

LIST OF ABBREVIATION

A	Area of absorber plate
A_d	Drying bed area
AC	Annual cost of PCMSD
AMC	Annual maintenance cost
ASV	Annual salvage value
AUE	Annual useful energy
A_m	Surface area of metal specimens
b	Breadth of the absorber plate
C_d	Cost of drying per kg of dried tomato
Cp	Specific heat of fluid (air)
C_{st}	Specific heat of PCM
CR	Corrosion rate
CRF	Capital recovery factor
CT	Capital cost of PCMSD
d_{f}	Spacing between glass to absorber plate
d_{PCM}	Depth of the PCM
DSC	Differential scanning calorimetry
D_y	Total number of active sunshine days per annum for PCMSD operation
EAO	Annual thermal energy output of the dryer
E_{DO}	Daily thermal energy output of the PCMSD
EcPBP	Economic payback period
EnPBP	Energy payback period
E_{emb}	Embodied energy
Ex_{in_c}	Exergy inflow to the collector
Ex_{in_d}	Exergy inflow to the drying chamber
Ex_{loss_c}	Exergy loss of exergy of solar collector
Ex_{loss_d}	Exergy loss of exergy from drying chamber
Ex_{out_c}	Exergy outflow from the collector
Ex_{out_d}	Exergy outflow from the drying chamber
FAC	First annual cost
g	Acceleration due to gravity and gram

Gr	Grashof number	
h	Heat transfer coefficient	
Ι	Solar radiation	
i	Rate of interest	
k	thermal conductivity	
L	Length of absorber plate	
LHS	Latent heat storage	
LHTESS	Latent heat thermal energy storage system	
L_{l}	Length of collector	
L_2	Width of collector	
L_3	Depth of collector	
L_i	Internal losses	
L _{st}	Latent heat of PCM	
L_t	Transmission losses	
L_w	Latent heat of vaporization of water	
Μ	Mass of PCM	
ṁ	Mass flow rate of air	
Δm	Mass loss	
m_i	Initial mass of tomato	
m_f	Final mass of tomato	
m_t	Mass of the product (tomato)	
$m(t_o)$	Initial mass of the metal specimens	
m(t)	Final mass of the metal specimens	
m_w	Annual moisture removed from tomato	
n	Lifetime of PCMSD	
Nu	Nusselt number	
P_c	Annual power cost	
P_{dry}	Price of the dried tomato per kg	
$P_{e/kWh}$	Price of the electricity per kWh	
Pfresh	Price of the fresh tomato per kg	
P_r	Prandlt number	
PCM	Phase change material	
PCMSAH	Phase change material integrated solar sir heater	

PCMSD	Phase change material based solar dryer	
Q_A	Absorbed heat	
Q_{dry}	Quantity of dry tomato produced annually	
$Q_{\it fresh}$	Quantity of fresh tomato to be dried annually	
Q_{loss}	Heat loss	
Q_{st}	Heat stored	
Q_u	Useful heat	
R_a	Roughness average of metal specimens	
Ra'	Rayleigh number	
R_t	Maximum peak-to-valley height of metal specimens	
RPD	Relative percentage difference	
S	Savings from PCMSD annually	
SAH	Solar air heater	
SEC	Specific energy consumption	
SFF	Sinking fund factor	
SM	Specific moisture extraction	
SR	Mass shrinkage ratio	
SV	Salvage value	
Т	Temperature	
t	Time of operation per day	
T_{ci}	Fluid inlet Temperature	
T_m	Mean of inlet and outlet temperature	
T_{co}	Fluid outlet temperature	
T_r	Sun temperature	
TES	Thermal energy storage	
TESS	Thermal energy storage system	
TGA	Thermogravimetry analysis	
U_{loss}	Overall loss-coefficient	
V	Velocity	
V_o	Outside wind velocity	
W	Power consumed by the electric blower	
X	Drying bed thickness	
Z_p	Absorber plate thickness	

α	Absorptivity
α,	Thermal diffusivity
ε	Emissivity
ρ	Density
$ ho_t$	Bulk density of tomato
τ	Transmissivity
μ	Kinematic viscosity
η	Efficiency
η_{Ex_c}	Exergy efficiency for the solar collector
η_{Ex_d}	Exergy efficiency for the drying chamber
σ	Stefan Boltzmann's constant
θ	Tilt angle
δ_b	Bottom insulation thickness
δ_e	Edge insulation thickness
ζ	Porosity of the drying tray

Subscripts

_	
a	Ambient
av	Average
b	Bottom
с	Channel
con	Convective
d	Drying chamber
e	Edge
f	Fluid (air)
fin_ch	Final charging process
fin_dis	Final discharging process
g	Glass
i	Insulation, inlet
in_ch	Initial charging process
in_dis	Initial discharging process
l	Liquid
p	Absorber plate
rad	Radiative

S	Solid
st	Stored (PCM)
t	Тор
W	Wind