Dedicated to

The Teaching Fraternity...

TEZPUR UNIVERSITY (संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament)

Declaration of Academic Integrity

I declare that this written submission represents my ideas in my own words and where other's ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty, integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be caused for disciplinary action as per the rules and regulations of the Institute.

Due acknowledgement to all the related data used from different sources in order to support my research findings have been made wherever necessary. All funding agencies have been duly acknowledged for providing research grants to carry out my research work smoothly.

Date: 28-07-2023 Place: Tezpur University

Debaboat

(Debabrat Pathak) TZ156019 of 2015

TEZPUR UNIVERSITY

(संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament)

Dr. Bipul Chandra Sarma Department of Chemical Sciences Tezpur University Tezpur 784 028, Assam, INDIA डॉ. विपुल चंद्र शर्मा रसायन विज्ञान विभाग तेजपुर विश्वविद्यालय तेजपुर 784 028, असम, भारत

CERTIFICATE FROM SUPERVISOR

This is to certify that the thesis entitled "*Engineering Nitrogen-Rich Porous Organic Polymer as Heterogeneous Catalyst for Organic Transformation Reactions*" submitted to the School of Sciences, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in Chemical Sciences is a record of research work carried out by **Mr. Debabrat Pathak** under my supervision and guidance. He has been duly registered (Registration No. TZ156019 of 2015), and the thesis presented is worthy of being considered for the Degree of Doctor of Philosophy.

All help received by him from various sources have been duly acknowledged. No part of the thesis has been submitted elsewhere for award of any other degree.

Bipul Somme

(Dr. Bipul Ch. Sarma) Supervisor

Date: 28-07-2023 Place: Tezpur University

> E-mail: <u>bcsarma@tezu.ernet.in</u>, <u>sarmabipul@gmail.com</u>; Web: www.tezu.ernet.in Ph: +91 (3712) 275066 (O), +91 9435758147 (Mob); Fax: +91 (3712) 267005/6

TEZPUR UNIVERSITY (संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament)

CERTIFICATE OF THE EXTERNAL EXAMINER AND ODEC

The examiners of Oral Defense Examination Committee (ODEC) certify that the thesis entitled "*Engineering Nitrogen-Rich Porous Organic Polymer as Heterogeneous Catalyst for Organic Transformation Reactions*" submitted by **Mr. Debabrat Pathak** to the School of Science, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in the discipline of Chemical Sciences has been examined on 22nd of December, 2023 and recommended that the degree be awarded.

Bipul Sorma

Supervisor Date: 22-12-2023

Sim Sharemik

External Examiner Date: 22-12-2023

Acknowledgement

"The achievement of any great endeavour is never the result of one person's efforts alone. It is a culmination of the collective support, guidance, and inspiration provided by numerous individuals along the way"

In this pleasing moment, I would like to express my deepest gratitude to the numerous individuals who have contributed to the completion of this doctoral thesis. Their support, encouragement, and advice have been vital throughout this challenging journey.

First and foremost, I am profoundly grateful to my supervisor, Dr. Bipul Ch. Sarma, for his everlasting devotion, excellent expertise, and continuous encouragement. His kind demeanour and belief provided me freedom to think about and work on goals of my own choosing. His guidance and mentorship have been critical in shaping the direction and quality of this research.

I am also indebted to the doctoral committee members: Prof. Ashim Jyoti Thakur and Dr. Pankaj Bharali for their insightful comments, valuable suggestions, and critical evaluation of this work. Their expertise and constructive feedback have immensely contributed to the improvement of this thesis. Head of the Department: Prof. Ruli Borah (Former) and Prof. Panchanan Puzari (Current) are acknowledged for their valuable support and helping hands in various aspects.

My profound appreciation goes to Dr. Diganta Choudhury, Associate Prof., B. Borooah College, for his indelible influence, persistent encouragement, guidance, and support since my undergraduate studies. Thanks to the other faculty members of the Department of Chemistry, B. Borooah College: Dr. Subrata Baruah, Dr. Sutopa Raichaudhury, Dr. Bijoy S. Goswami, Dr. Apurba Kalita, Dr. Hrishikesh Sarma, and Mr. Pradyumna Mazumdar, for their valuable guidance and most importantly, for teaching us the fundamentals of chemistry. Their commitment to excellence in education has been a constant source of inspiration for me.

Sincere acknowledgment to our collaborators: Prof. Ramesh Chandra Deka, Vice-Chancellor, Cotton University; Dr. Lakshi Saikia, Principal Scientist, CSIR-NEIST and Dr. Ankur Kanti Guha, Assistant Professor, Department of Chemistry, Cotton University for their valuable contributions in my research work. I am thankful to the other faculty members and non-teaching staff of the Department of Chemical Sciences, Tezpur University for providing an intellectually stimulating and supportive academic environment.

I am grateful to the funding organizations: University Grant Commission, Govt. of Inda for institutional fellowship, Council for Scientific and Industrial Research (CSIR) for the junior/senior research fellowship (JRF & SRF) and Tezpur University (Research & Innovation Grant) which enabled me to conduct the experiments, access resources and attending conferences during the successful completion of the thesis.

My heartfelt thanks go to the past and present members of "Pharmaceutical Crystallization and Porous materials Laboratory": Dr. Rajiv Khatioda, Dr. Dhrubajyoti Talukdar, Dr. Basanta Saikia, Dr. Pranita Bora, Dr. Nazima Sultana, Dr. Kasturi Sarmah, Dr. Manali Dutta, Shrabani Das, Himanshu Sharma, Tamrat Yimenu Zeleke, Bikash Kumar Kalita, Archita Goswami, Priya Gurung and Mridusmita Baruah for their shared knowledge and humours making the laboratory a more enjoyable place.

Other research scholar of the Department of Chemical Sciences, Tezpur University: Dr. Raktim Abha Saikia, Dr. Rituraj Das, Dr. Rakhee Saikia and Dr. Anurag Dutta are acknowledged for their support and suggestions at various stages of this voyage.

Special mention goes to Prantika Bhattacharjee for her unwavering and unconditional supports and encouragements during all the ups and downs since my postgraduation making the journey smooth and easy. Deep appreciation goes to Suranjana Patowary for her enduring supports and encouragements throughout the journey. Dr. Kaushik Talukdar, Sudakhina and Rashmi are acknowledged for their company during tea-time-discussion. Bidisha, Arindom, Nishant, Sukanya, Debanga, Bijoy, Sudhangshu, Niharika, Hiya, Gorishmita, Dikshita, Dipankar, Madhurima, Mrinal, Dhrijyoti, and to all those whose name may not be mentioned here but have played a part, no matter how small, in shaping this thesis, I offer my heartfelt thanks.

Last but not the least my deep gratitude goes to my family for their unconditional love, and understanding throughout my academic pursuit. Their encouragement, faith in my abilities, and sacrifices have been the bedrock of my perseverance.

-Debabrat Pathak

List of Tables

Table No.	Table Title	Page No.
Chapter 1		
1.1	Tabulated POPs in catalysis	30
Chapter 2		
2.1	Reaction optimization for deamination or transamidation of benzamide to benzhydrazide	54
2.2	Substrate scope study for deamination of benzamide derivatives to their corresponding hydrazides	55
Chapter 3		
3.1	Reaction condition optimization for the catalytic oxidation of benzyl alcohol taking 4-methylbenzyl alcohol as the initial substrate	74
3.2	Substrate scope study for benzyl alcohol oxidation employing MOP-Am2 as catalyst mediated by KOH	75
3.3	Control experiment for the selective oxidation of benzyl alcohol to corresponding aldehyde	76
3.4	Carbon balance or total organic carbon (OC) for the anaerobic oxidation of benzyl alcohol derivatives	84
Chapter 4		
4.1	Reaction condition optimization for the oxidative annulation of alcohols to quinoline	98
4.2	Substrate scope of various substituted alcohols towards annulation	101
4.3	Catalytic conversion comparison of both MOP-Am2 and MOP-Am2-m under same reaction condition	103
4.4	Carbon efficiency or total organic carbon (OC) in Scheme 4.3	109
Chapter 5		

5.1 Reaction optimization for *N*-alkylation with 4- 137 methylbenzyl alcohol

5.2	Substrate scope of amines for <i>N</i> -alkylation reaction and their corresponding crude yield (isolated yield)	139
5.3	Substrate scope of alcohols for <i>N</i> -alkylation reaction and their corresponding crude yield (isolated yield)	141

Appendix

A.1	Single Crystal X-ray Parameters	A1
-----	---------------------------------	----

List of Figures

Figure No.	Figure Caption	Page No.
Chapter 1		
1.1	Evolution of various linkages over the time since 2005	2
1.2	Pictorial representation of 1D, 2D and 3D POPs based on the symmetry of the chosen building units and the linkers	3
1.3	Classifications of POPs based on their crystalline behaviour	3
1.4	Formation of kinetically controlled amorphous POPs	4
1.5	Preparation of hyper cross-linked carbazole-based porous organic polymers via Friedel-Craft alkylation	5
1.6	Synthetic rout for CMPs via Buchwald-Hartwig coupling	6
1.7	Representation of anion template PAF with tuned pore sizes for gas mixture separation	8
1.8	Synthesis of first two COFs by (A) self-condensation of 1,4-diboronic acid (COF-1), and (B) with hexahydroxytriphenylene (COF-5)	9
1.9	Crystalline structures of COF-102, COF-103, COF- 105 and COF-108 based on molecular modelling. C (or Si), B and O atoms are represented as grey, orange, and red spheres, respectively. Hydrogen atoms are omitted for clarity	10
1.10	SEM, microscopic images, and crystal structures of COF-300, COF-303, LZU-79 and LZU-111. Hydrogen atoms are omitted in the crystal structure for clarity. Size of the crystallites are represented in blue	11
1.11	Strategy of synthesizing single-crystalline 1D metallo-COF	12
1.12	Schematic representation of CTF synthesis under ionothermal synthesis with molten ZnCl2 having crystalline columnar array	12
1.13	Schematic diagram of traditional solvothermal method for POPs synthesis	14

1.14	Hydrothermal synthesis of six different keto- enamine-based POPs from 1,3,5- triformylphloroglucinol (TFP)	15
1.15	(a) Schematic representation for the liquid-liquid interfacial preparation of TpBpy thin film. (b) Chemical structure of TpBpy and SEM image on TEM grid (inset). (c) Thin film SEM image of TpBpy. (d) AFM image of the thin film and height profile	16
1.16	Aqueous phase condensation of TDOEB with different amines to give microporous JUC-520, JUC-521, JUC-522 or mesoporous JUC-523	17
1.17	Sonochemical synthesis of crystalline POPs	18
1.18	Mechanochemical/co-agent assisted grinding for the room temperature synthesis of imine based POP	19
1.19	Rapid synthesis of COFs by electron beam irradiation	21
1.20	Schematic representation of the practical importance of POPs	21
1.21	Schematic representation of benzobisoxazole (BBO) linked COFs synthesis that has been used for CO2 uptake	22
1.22	(a) Schematic representation of TPE-Ph COF having dual pore frame. Fluorescence microscopy images of TPE-Ph COF samples prepared at different reaction times of (b) 3 days, and (c) 10 days. (d) Fluorescence spectral change of the TPE-Ph COF upon addition of ammonia. (e) Stern-Volmer plot of the fluorescence quenching by ammonia	25
1.23	(a) Schematic synthesis of Py-Py COF and Py-TT COF. (b) Diffuse reflectance spectra of the dry (orange) and wet (brown) Py-TT COF showing a strong solvatochromic red-shift. (c) UV-Vis absorption spectra of the Py-TT COF at different concentration of H_2O and (d) saturated atmospheres of various solvents with their corresponding polarity	26
1.24	Schematic representation of different catalytic	27

1.24 Schematic representation of different catalytic 27 systems by POPs

- 1.25 (a) Synthesis of metalloporphyrin-derived 2D COFs. 28 (b) Cyclic voltammograms of COF-366-Co and COF-367-Co in carbon dioxide-saturated medium (blue and red solid lines, respectively) or nitrogensaturated medium (blue and red dotted lines, black solid line shows respectively). The background (bare carbon electrode) CV responses in carbon dioxide-saturated medium. (c) Volume of carbon monoxide produced
- 1.26 (a) Schematic representation of the synthesis of (S)-29 and (R)-DTP-COFs via Catalytic Asymmetric Polymerization. (b) Asymmetric chiral catalytic Michael addition reaction and (c) CD spectra indicating the products are mirror images of each other; Single-crystal structures of the Michael addition products (insets)

2.1	Examples of biologically active hydrazide derivatives	47
2.2	(a) Overlay FT-IR spectra analysis of MOP-Am2 with the corresponding reactants, TAPT and BTCl. (b) Solid state ¹³ C CP/MAS NMR spectrum of MOP-Am2	50
2.3	(a) powder X-ray diffraction pattern, and (d) BET sorption isotherm plot of N_2 at 77 K along with the pore size distribution plot (inset) of MOP-Am2	51
2.4	(a) FESEM image, (b) TEM image and (c) TEM-EDX elemental mapping of MOP-Am2. The uniform distribution the elements are designated with C (red), N (green) and O (blue)	51
2.5	TEM-EDX spectrum with the atomic percentage content in MOP-Am2	52
2.6	(a) TGA thermogram of MOP-Am2. (b) FT-IR spectra of MOP-Am2 at different chemical and physical environment	53
2.7	(a) Possible binding site for amide substrate on MOP-Am2-m. (b) Optimized geometry of N–H…O interaction from MOP-Am2-m to the benzamide. Bond length is in Å	57

2.8	Plausible mechanism of trasamidation of benzamide over MOP-Am2	57
2.9	(a) Catalyst reusability test upto 5^{th} cycle. (b) FT-IR spectra of MOP-Am2 before and after 5^{th} cycle of the reaction	58
2.10	$^1\mathrm{H}$ NMR (DMSO-d_6, 400 MHz, 298 K) of MOP-Am2-m	67
2.11	$^{13}\text{C}\{^{1}\text{H}\}$ NMR (DMSO-d_6, 101 MHz, 298 K) of MOP-Am2-m	67
2.12	LRMS (ESI+) <i>m/z</i> of 8b	68
2.13	LRMS (ESI ⁺) <i>m/z</i> of 8c	68
2.14	LRMS (ESI ⁺) m/z of 8h	69
2.15	LRMS (ESI+) <i>m/z</i> of 8i	69

3.1	Schematic representation of the structural architecture of MOP-Am2	72
3.2	Comparative bar diagrams defining the percentage conversion of benzyl alcohol derivatives in presence of MOP-Am2 and MOP-Am2-m	77
3.3	(a) NICSzz(1) plot (values in ppm) of monomeric unit, MOP-Am2-m. (b) Optimized geometry of MOP- Am2-m and incoming benzyl alcohol via weak non- covalent interaction. (c) NCI plot of benzyl alcohol on MOP-Am2-m. (d) Optimized geometry of PhCH ₂ O ⁻ on MOP-Am2-m via benzylic carbon. Bond length is in Å (black) and natural charge at the H atoms in blue	78
3.4	Plausible hydride eliminated mechanistic pathway during the formation of benzaldehyde from benzyl alcohol driven by KOH	79
3.5	¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of <i>cis</i> -Stilbene	81
3.6	¹³ C{ ¹ H} NMR (CDCl ₃ , 101 MHz, 298 K) of <i>cis</i> -Stilbene	81
3.7	Tauc plot for MOP-Am2-m and MOP-Am2	82
3.8	(a) Catalytic conversion and recyclability up to 4 th cycle. (b) FT-IR spectra of MOP-Am2 before (red) and after (black) 4 th cycle of reactions	83

3.9	Percentage carbon balance in anaerobic oxidation of benzyl alcohol derivatives after 4 h of reaction time	84
3.10	Pictorial demonstration of the carbon balance determination using modified Walkley-Black method of redox titration	86
3.11	Mass spectrum (EI+) <i>m/z</i> of 20c	91
3.12	Mass spectrum (EI+) <i>m/z</i> of 20e	91
3.13	Mass spectrum (EI ⁺) <i>m/z</i> of 20f	92
3.14	Mass spectrum (EI+) <i>m/z</i> of 20h	92

4.1	Examples of bioactive molecules containing quinoline scaffold	93
4.2	(a) FESEM analysis suggested the globular rough surface and (b) TEM analysis suggested a hollow- spherical morphology of the material	96
4.3	BET sorption plot of N_2 at 77 K demonstrates the type IV isotherm. The pore size distribution plot (inset) determined MOP-Am2 to be microporous in nature	97
4.4	Overlay ¹ H NMR (600 MHz, CDCl ₃ , 298 K) spectra for the annulation of 2-aminobenzyl alcohol and 1- phenylethanol at various interval of time	104
4.5	Plausible mechanistic pathway involved in the catalytic conversion to quinoline driven by morphologically modified MOP-Am2	105
4.6	Catalytic reusability of MOP-Am2 for up to seven consecutive cycles with four representative substrates and their corresponding % yields in abscissa	106
4.7	Overlay PXRD patterns of reused catalyst and the pristine MOP-Am2	106
4.8	¹ H NMR (CDCl ₃ , 600 MHz, 298 K) of 37g	119
4.9	¹³ C{ ¹ H} NMR (CDCl ₃ , 151 MHz, 298 K) of 37g	119
4.10	HRMS (ESI ⁺) m/z of 37g	120
4.11	¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of 37j	120

4.12	¹³ C{ ¹ H} NMR (CDCl ₃ , 101 MHz, 298 K) of 37j	121
4.13	HRMS (ESI+) <i>m/z</i> of 37j	121
4.14	¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of 37m	122
4.15	¹³ C{ ¹ H} NMR (CDCl ₃ , 101 MHz, 298 K) of 37m	122
4.16	HRMS (ESI+) <i>m/z</i> of 37m	123
4.17	¹ H NMR (CDCl ₃ , 400 MHz, 298 K) of 37v	123
4.18	¹³ C{ ¹ H} NMR (CDCl ₃ , 101 MHz, 298 K) of 37v	124
4.19	HRMS (ESI+) <i>m/z</i> of 37v	124

5.1	Schematic representation of three steps amine formation via borrowing hydrogen strategy	125
5.2	Overlay FT-IR spectra (a) and PXRD pattern (b) of MOP-Am2 and Ni@MOP-Am2	129
5.3	N ₂ sorption isotherm (a) and pore size distribution (PSD) plot (b) of MOP-Am2 and Ni@MOP-Am2	130
5.4	(a) FESEM analysis of Ni@MOP-Am2 suggested the intact globular rough surface with metal particle (red circle) on it. (b) TEM analysis of Ni@MOP-Am2 suggested expanded polymeric hollow-spherical morphology of the material. The presence of metal particles (yellow circle) was also prominent. HR- TEM analysis interpreted the presence of lattice fringe responsible for nickel particles	131
5.5	SEM-EDX elemental mapping and spectra of Ni@MOP-Am2	132
5.6	XPS spectra of overall survey, C 1s, N 1s, O 1s, Ni 2p and Cl 2p of Ni@MOP-Am2	133
5.7	Optimized geometry of MOP-Am2-m unit along with its different binding sites for the interaction with Ni(II) as NiCl ₂	134
5.8	Optimized geometries of all intermediates and transition state associated with <i>N</i> -alkylation reaction over MOP-Am2-m at B3LYP/6-31G(d) level of theory	142

5.9	Potential energy surface (PES) diagram of <i>N</i> -alkylation reaction	144
5.10	(a) Five catalytic reusability cycle and (b) overlay PXRD spectra of reused Ni@MOP-Am2	145
5.11	¹ H NMR (400 MHz, CDCl ₃ , 298 K) of 66a	156
5.12	¹³ C{ ¹ H} NMR (101 MHz, CDCl ₃ , 298 K) of 66a	156
5.13	¹ H NMR (400 MHz, CDCl ₃ , 298 K) of 66e	157
5.14	¹³ C{ ¹ H} NMR (101 MHz, CDCl ₃ , 298 K) of 66e	157
5.15	¹ H NMR (400 MHz, CDCl ₃ , 298 K) of 69d	158
5.16	¹³ C{ ¹ H} NMR (101 MHz, CDCl ₃ , 298 K) of 69d	158
5.17	¹ H NMR (400 MHz, CDCl ₃ , 298 K) of 69f	159
5.18	¹³ C{ ¹ H} NMR (101 MHz, CDCl ₃ , 298 K) of 69f	159

6.1	Transamidation of benzamide to benzhydrazide over MOP-Am2	161
6.2	Base mediated anaerobic oxidation of benzyl alcohols to benzaldehydes over MOP-Am2	162
6.3	Base mediated oxidative annulation of alcohols to quinolines facilitated by MOP-Am2	162
6.4	Base mediated <i>N</i> -alkylation of amines over Ni@MOP-Am2 via " <i>Borrowing Hydrogen</i> " or " <i>Hydrogen Auto-transfer</i> " strategy	163
6.5	Pictorial representation of the possible future aspects of MOP-Am2	164

Appendix

A.1	ORTEP of 8m	A2
A.2	ORTEP of 37k	A2
A.3	ORTEP of 37u	A2
A.4	ORTEP of 37v	A3
A.5	ORTEP of 660	A3
A.6	ORTEP of 66f	A3

List of Schemes

	List of Schemes	
Scheme No.	Scheme Caption	Page No.
Chapter 2		
2.1	Transamidation or deamination of benzamide to benzhydrazide	48
2.2	Synthesis of monomeric unit (MOP-Am2-m) of the amide functionalized porous organic polymer	49
2.3	Synthesis of amide functionalized porous organic polymer, MOP-Am2	49
Chapter 3		
3.1	MOP-Am2 catalysed anaerobic oxidation of benzyl alcohols	72
3.2	<i>In-situ</i> reduction of Diphenyl acetylene accelerated by oxidation of 4-Methylbenzyl alcohol	80
Chapter 4		
4.1	Oxidative annulations of 1° and 2° alcohols to corresponding quinolone derivatives	95
4.2	Synthesis of morphologically modified MOP-Am2	96
4.3	Gram scale synthesis of 2-(<i>p</i> -anisyl)quinoline	102
Chapter 5		
5.1	<i>N</i> -alkylation of amine over Ni@MOP-am2 via borrowing hydrogen strategy	128
5.2	<i>N</i> -alkylation of aniline with 4-methylbenzyl alcohol	129

Abbreviations and Symbols

%	Percentage
δ	Chemical shift
J	Coupling constant
°C	Degree celsius
λ	Wavelength
Å	Angstrom
0	Degree
θ	Diffraction angle
AAS	Atomic absorption spectroscopy
atm	Atmospheric pressure
a. u.	Arbitrary unit
BET	Brunner-Emmett-Teller
ВЈН	Barrett-Joyner-Halenda
Bn	Benzyl
COF	Covalent organic framework
CCDC	Cambridge crystallographic data center
calcd	Calculated
CDCl ₃	Deuterated chloroform
СМР	Conjugated microporous polymer
Cs ₂ CO ₃	Cesium carbonate
CTF	Covalent triazine framework
dd	Doublet of doublet
ddd	Doublet of doublet of doublet
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DMAP	4-Dimethylaminopyridine
DMSO	Dimethylsulfoxide
DMF	<i>N,N</i> –dimethylformamide
DCM	Dichloromethane
DMSO-d ₆	Deuterated dimethylsulfoxide
EDX	Energy dispersive X-ray
Equiv	Equivalent
EI-MS	Electron ionization mass spectrometry

ESI-MS	Electron spray ionization mass spectrometry
ESI-QTOF	Electron spray ionization quadrupole time-of-flight
eV	Electronvolt
Fg ⁻¹	Faraday per gram
FESEM	Field emission scanning electron microscope
FT-IR	Fourier transformed infra-red spectroscopy
g	gram
НСР	Hyper cross-linked polymer
HRMS	High resolution mass spectrometry
HR-TEM	High resolution – transmission electron microscope
h	hour(s)
IM	Intermediate(s)
ICP-OES	Inductively coupled plasma optical emission spectrometry
К	Kelvin (temperature unit)
kV	Kilovolt
KO ^t Bu	Potassium <i>tert</i> -butoxide
LUMO	Lowest unoccupied molecular orbital
m ²	Square meter
МеОН	Methanol
mmol	Milli mole(s)
MHz	Mega-Hertz
MOF	Metal organic framework
МОР	Microporous organic polymer
m	Multiplet
min	Minute
mg	Milli gram(s)
mL	Milli litre(s)
mol%	Mole percentage
m/z	Atomic mass units per unit charge
mp	Melting point
Me	Methyl
MeCN	Acetonitrile
NMR	Nuclear magnetic resonance
nr	No reaction

<i>n</i> -Bu	<i>n</i> -butyl
OC	Organic carbon
ORTEP	Oak ridge thermal ellipsoid plot
Po	Saturated pressure of adsorbate gas (in Pascals)
Ph	Phenyl
PAF	Porous aromatic framework
PIM	Polymers with intrinsic microporosity
РОР	Porous organic polymer
ppm	Parts per million
PTSA	<i>p</i> -Toluene sulfonic acid
PXRD	Powder X-ray diffraction
q	Quartet
r.t.	Room temperature
S	Singlet
SEM	Scanning electron microscope
SEM-EDX	Scanning electron microscope energy dispersive X-ray
SCXRD	Single crystal X-ray diffraction
t	Triplet
Т	Temperature
ТВНР	<i>tert</i> -Butyl hydroperoxide
<i>t</i> -BuOH	<i>tert</i> -Butanol
TGA	Thermogravimetric analysis
TEM	Transmission electron microscope
THF	Tetrahydrofuran
TLC	Thin layer chromatography
TMS	Tetramethylsilane
ТЕМРО	(2,2,6,6-tetramethylpiperidin-1-yl)oxyl
TNT	2,4,6-Trinitrotoluene
UV-Vis	Ultra violet-visible
UV-Vis DRS	Ultra violet-visible diffuse reflectance spectroscopy
v/v	Volume/volume
wt%	Weight percentage
w.r.t	with respect to
XPS	X-ray photoelectron spectroscopy