Chapter 6

On r-noncommuting graphs of

finite rings

In this chapter, we introduce and study r-noncommuting graph of a finite ring R for
any given element » € R analogous to g-noncommuting graph of a finite group. The r-
noncommuting graph of R, denoted by I'; , is a simple undirected graph whose vertex set
is R and two vertices x and y are adjacent if [x,y] # r and [z, y] # —r. Clearly, I', = I';".
If 7 = 0 then the induced subgraph of I'}, with vertex set R \ Z(R), denoted by A}, is
nothing but the non-commuting graph of R. Note that I'; is O-regular graph if » = 0 and
R is commutative. Also, I'}; is complete if r ¢ K(R). Thus for r ¢ K(R), I'}; is n-regular if
and only if R is of order n + 1. Therefore throughout the chapter we consider r € K(R).
In Section we first compute degree of any vertex of I'}; in terms of its centraliz-
ers. Then we characterize R if ['}; is a tree, in particular a star graph. We further show
that I'}; is not a regular graph (if » € K(R)) or a lollipop graph for any non-commutative
ring R. We conclude this section by showing that I';; is isomorphic to Fﬁ(;) if (¢,)
is an isoclinism between two finite rings R; and Rp such that |Z(R1)| = |Z(R2)|. In
Section we consider the induced subgraph A, of I'y,, induced by R\ Z(R), and ob-
tain results on clique number and diameter of A%, along with certain characterizations
of finite non-commutative rings such that A% is n-regular for some positive integer n.

More precisely, we characterize certain finite non-commutative rings such that their non-
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Chapter 6. On r-noncommuting graphs of finite rings

commuting graphs are n-regular for n < 6. This chapter is based on our paper [74] pub-
lished in Axioms.
It has been shown in [42] that there are only two non-commutative rings (up to iso-

morphism) having order p?, where p is a prime, and the rings are given by
E(p?) = (a,b:pa=pb=0,a> = a,b> = b,ab = a,ba = b)

and F(p®) = (v,y :pr = py = 0,2% = 2,y* = y, 2y = y,yz = 7).

Following figures show the graphs I'y, . for p = 2,3.

b b
a—+ b A a a+ b a
[
0 0
Figure 6.1: F%(4) Figure 6.2: F%J(r:)
a+b 2b
b
2a + 2b
2a
a4+ 2b
a
2a+b 0
Figure 6.3: FOE(Q) Figure 6.4: 1"}:3(9),

where r = a + 2b or 2a + b

It is worth noting here that the graphs I‘%( 2 I‘f;(“f), I‘%(g) and F‘?{;)y are isomorphic to

atb a+2b .
11(1)5(4)’FEJ(F4)’ F?E(g) and I E+(9) respectively.

6.1 Some properties of I,

In this section, we characterize R when I'; is a tree or a star graph. We also show the non-

existence of finite non-commutative rings R whose r-noncommuting graph is a regular
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Chapter 6. On r-noncommuting graphs of finite rings

graph (if r € K(R)), a lollipop graph or a complete bipartite graph. However, we first
compute degree of any vertex in the graph I';,. For any two given elements = and r
of R, we write Cj(z) to denote the generalized centralizer {y € R : [z,y] = 7} of x.
The following theorem gives the degree of any vertex of I'}; in terms of its generalized

centralizers.

Theorem 6.1.1. Let x be any vertex in I'. Then
(a) deg(z) = [R| — |Cr(z)| if r = 0.

R| —|C} -1 f 2r =0
(b) if r # 0 then deg(x) = Bl = |Crle)l =1, ifar

|R| —2|CR(x)| — 1, if2r #0.

Proof. (a) If r = 0 then deg(z) is the number of y € R such that zy # yx. Note that
|Cr(z)| gives the number of elements that commute with . Hence, deg(z) = |R|—|Cr(x)|.

(b) Consider the case when r # 0. If 2r = 0 then » = —r. Note that y € R is not
adjacent to z if and only if y = x or y € Cz(x). Therefore, deg(z) = |R| — |Ck(z)| — 1. If
2r # 0 then r # —r. It is easy to see that C(x) NCR"(x) = 0 and y € Cy(x) if and only if
—y € Cg"(z). Therefore, |C(z)| = |Cg"(x)|. Note that y € R is not adjacent to x if and
only ify =z ory € Ci(x) ory € Cx"(x). Therefore, deg(x) = |R|—|Cx(x)|—|Cg"(x)|—1.

Hence the result follows. ]
The following corollary gives degree of any vertex of I'}; in terms of its centralizers.

Corollary 6.1.2. Let x be any vertex in I'y.

R - 1’ ) CT — @
(a) If r #0 and 2r = 0 then deg(x) = |B| if Ch(x)

|R| — |Cr(x)| — 1, otherwise.

R -1, if Cp(x) =0
(b) If r #0 and 2r # 0 then deg(z) =
|R| — 2|CRr(x)| — 1, otherwise.

Proof. Noticethat CF,(z) #0 if and onlyif € [z, R]. Supposethat C}(z) #0. Let te Ch(x)
and p € t+Cg(z). Then [z,p] = r and so p € Cj(x). Therefore, t+Cr(x) C Cp(x). Again,
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if y € Ch(x) then (y —t) € Cr(x) and so y € t + Cr(x). Therefore, Ci(x) C t 4+ Cr(x).
Thus |Cf(z)| = |Cr(x)] if CR(z) # 0. Hence the result follows from Theorem O

We now present some results regarding realization of the graph I'; and characteriza-

tion of R through certain properties of I'}; as applications of Theorem[6.1.1]

Theorem 6.1.3. Let R be a ring with unity. The r-noncommuting graph I' is a tree if
and only if |R| =2 and r # 0.

Proof. If r = 0 then, by Theorem (a), we have deg(r) = 0. Hence, I'}; is not a tree.
Suppose that 7 # 0. If R is commutative then r ¢ K(R). Hence, I'};, is complete graph.
Therefore I'y, is a tree if and only if |R| = 2. If R is non-commutative then [z,0] # r, —r
and [z,1] # r, —r for any « € R. Therefore deg(x) > 2 for all € R. Hence, I'}; is not a
tree. 0

Theorem 6.1.4. Let R be a non-commutative ring. If I'y has an end vertex then r # 0
and Fgﬁo is a star graph if and only if R is isomorphic to E(4) = (a,b:2a =2b = 0,a> =
a,b®> = b,ab = a,ba = b) or F(4) = (a,b: 2a = 2b = 0,a®> = a,b*> = b,ab = b,ba = a).
Hence, I' is not a lollipop graph.

Proof. Let € R be an end vertex in I';. Then deg(x) = 1. If » = 0 then x ¢ Z(R) and
so |[Cr(x)] < @. Also, by Theorem a), we have deg(z) = |R| — |Cr(z)|. These give
|R|—|CRr(x)| = 1. Hence, |R| < 2, a contradiction. Therefore, r # 0. By Corollary[6.1.2] we
have deg(z) = |R|—1,|R|—|Cgr(z)|—1 or |R| —2|Cgr(z)|—1. These give |R|—|Cgr(x)| = 2 or
|R| —2|Cr(z)| = 2. Clearly z ¢ Z(G) and so |Cr(z)| < @. Therefore, if |R| — |Cr(z)| = 2
then |R| < 4. If |R| —2|Cgr(z)| = 2 then |R| is even and |Cr(x)| < @. Therefore, |R| < 6.
Since R is non-commutative we have |R| = 4 and so R is isomorphic to either E(4) or F(4).
In Figure 6.2, it is shown that F%( 2 is a star graph if r £ 0. Also, F””E( 2 is isomorphic to

FTF( e Hence, the result follows. O

It follows that if R is non-commutative having more than four elements then there is no
vertex of degree one in I'},.

It is observed that I'}; is (|R| — 1)-regular if » ¢ K(R). Also, if » = 0 and R is com-
mutative then I'}; is 0-regular. In the following theorem, we show that I'}; is not regular if
re K(R).
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Theorem 6.1.5. Let R be a non-commutative ring and r € K(R). Then I'y, is not reqular.

Proof. If r = 0 then, by Theorem [6.1.1f(a), we have deg(r) = 0. Let = € R be a non-central
element. Then |Cg(z)| # |R|. Therefore, by Theorem [6.1.1)(a), deg(z) # 0 = deg(r). This
shows that I'}, is not regular. If 7 # 0 then C}(0) = 0. Therefore, by Corollary we
have deg(0) = |R| — 1. Since r € K(R), there exists 0 # x € R such that Cf(z) # 0.
Therefore, by Corollary [6.1.2] we have deg(z) = |R| — |Cr(z)| — 1 or |R| — 2|Cr(z)| — 1. If
I, is regular then deg(x) = deg(0). Therefore

[R| = |Cr(2)] = 1= [R| = 2|CRr(x)| = 1= [R] -1

which gives |Cg(z)| = 0, a contradiction. Hence, I'}; is not regular. This completes the

proof. O
The following result shows that I'y, is not complete bipartite if |R| > 3 and |Z(R)| > 2.
Theorem 6.1.6. Let R be a finite ring.
(a) If r =0 then I'}; is not complete bipartite.
(b) If r # 0 then I'y is not complete bipartite for |R| > 3 with |Z(R)| > 2.

Proof. Let I'; be complete bipartite. Then there exist subsets V; and V5 of R such that
VinVo=0,V1UVy =R and if z € V; and y € V5 then x and y are adjacent.

(a) If r = 0 then for z € V} and y € Vo we have [z,y] # 0. Therefore, [x,x + y] # 0
which implies x+y € V5. Again [y, z+y| # 0 which implies x+y € V;. Thus z+y € ViNVa,
a contradiction. Hence I'}; is not complete bipartite.

(b) If  #0,|R| > 3 and |Z(R)| > 2 then for any 21,22 € Z(R), 21 and z3 are adjacent.
Let us take z; € V; and 2o € Va. Since |R| > 3 we have z € R such that = # z; and
x # z9. Also [z,z1] = 0 = [z, 2z2]. Therefore x is adjacent to both z; and z,. Therefore

x ¢ V1 UVa = R, a contradiction. Hence I'}; is not complete bipartite. ]

If Ry and R, are two isomorphic rings and o : Ry — Rp is an isomorphism then it is

)

easy to see that T, = ') In the following theorem we show that I, = T'“") if R, and
y 1 R2 g 1 RQ

Ry are two isoclinic rings with isoclinism (¢, ).
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Theorem 6.1.7. Let Ry and Ry be two finite rings such that |Z(Ry)| = |Z(R2)|. If (¢, )

18 an isoclinism between Ry and Rg then

~ %(r)
Rl :FRQT .

Proof. Since ¢ : R}%l — Z?RQ) is an isomorphism, Zﬁ%) and Z(R) have same number
of elements. Let ‘ ‘ = ‘ ) = n. Again since |Z(R1)| = |Z(Rz2)|, there exists a
bijection 6 : Z(R1) — Z(Rg) Let {ri:1<i<n}and {s;:1<j <n} betwo transversals
of Z{%l) and Z(ﬁ) respectively. Let ¢ : % = 75 22 and ¢ : [R1, R1] — [Ra, Ra] be
defined as ¢(r; + Z(R1)) = s; + Z(R2) and ¢([r; + 21, 7j + 22]) = [si + 21, 55 + 23] for some
21,20 € Z(R1), 21,75 € Z(Rg) and 1 < 4,5 < n.

Let us define a map « : Ry — Rg such that a(r; + z) = s; + 6(z) for z € Z(R). Clearly

« is a bijection. We claim that a preserves adjacency. Let x and y be two elements of R;
such that x and y are adjacent. Then [z,y| # r,—r. We have v =1, + 2z; and y = rj + 2;
where z;,z; € Z(R1) and 1 <14, j < n. Therefore
[ri + zi,rj + zj] 1, =1

=([ri + zi,rj + 2]) # $(r), =(r)

=[5+ 0(z1). 85 +0(23)] # ¥(r), (1)

=a(r +21),alr; + %)) £ V), (1)

:>[OL(:E), a(y)] 7& 711(7“)7 _sz(r)'

This shows that a(z) and a(y) are adjacent. Hence the result follows. O

6.2 An induced subgraph of r-noncommuting graph

We write A}, to denote the induced subgraph of I'; with vertex set R \ Z(R). It is worth
mentioning that AY is the non-commuting graph of R. If r # 0 then it is easy to see that
the commuting graph of R is a spanning subgraph of A’;,. The following result gives a

condition such that A, is the commuting graph of R.
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Theorem 6.2.1. Let R be a non-commutative ring and r # 0. If K(R) = {0,r,—r} then
A, is the commuting graph of R.

Proof. The result follows from the fact that two vertices x,y in A%, are adjacent if and

only if zy = y=x. O

Let w(A') be the clique number of A’,. The following result gives a lower bound for
w(AR).

Theorem 6.2.2. Let R be a non-commutative ring and v # 0. If S is a commutative

subring of R having maximal order then w(A%) > |S| =[S N Z(R)].

Proof. The result follows from the fact that the subset S\ SNZ(R) of R\ Z(R) is a clique
of A%,. O

By Result 1.4.29, it follows that the diameter of A% is less than or equal to 2. The next
result gives some information regarding diameter of A%, when r # 0. For any two vertices

x and y, we write x <+ y to denote x and y are adjacent, otherwise = = y.

Theorem 6.2.3. Let R be a non-commutative ring and v € R\ Z(R) such that 2r # 0.
(a) If 3r # 0 then diam(A%) < 3.
(b) If |Z(R)| =1, |Cr(r)| # 3 and 3r = 0 then diam(A%) < 3.

Proof. (a) If x <» r for all x € R\ Z(R) such that = # r then, it is easy to see that
diam(A’;) < 2. Suppose there exists a vertex + € R\ Z(R) such that z < r. Then

[z,7] =7 or —r. We have
2r, if [x,r] =7
—2r, if [z,r] = —r.

Since 2r # 0 we have [z,2r] # 0 and hence 2r € R\ Z(R). Also, 2r # r, —r. Therefore,
[x,2r] # r,—r and so z <> 2r. Let y € R\ Z(R) such that y # x. If y <> r then d(x,y) <3
noting that r «» 2r. If y «» r then y < 2r (as shown above). In this case d(x,y) < 2.
Hence, diam(A%) < 3.
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(b) If < r for all z € R\ Z(R) such that x # r then, it is easy to see that diam(A}) <
2. Suppose there exists a vertex x € R\ Z(R) such that x «» r. Let y € R\ Z(R) such
that y # x. We consider the following two cases.

Case 1: z «+» r and x < 2r.

If y <+ r then d(z,y) < 3 noting that r <> 2r. Therefore, diam(Ay) < 3. If y «» r
but y <> 2r then d(z,y) < 2. Consider the case when y <» r as well as y <» 2r. Therefore
[y,r] = r or —r. If [y,7] = r then [y,2r] = 2[y,r] = 2r = —r; otherwise y + 2r, a
contradiction. Let a € Cr(r) such that a # 0,7, —r (such element exists, since |Cr(r)| > 3).
Clearly a € R\ Z(R). Suppose y <> a. Then z <> 2r <> a +> y and so d(z,y) < 3. Suppose
y <» a. Then [y,a] =7 or —r. If [y,a] = r then

[y, —a]l = [y, 7] = [y,a) =r —r=0.
Note that r —a € R\ Z(R); otherwise a = r, a contradiction. Therefore, y <> r — a. Also,
[r —a,2r] =2[r,a] = 0.
That is, 7 — a <> 2r. Thus = <> 2r <> r — a <> y. Therefore, d(z,y) < 3. If [y,a] = —r then
[y.2r —a] = [y,2r] = [y,a] = —r — (=1) = 0.

Note that 2r—a € R\ Z(R); otherwise a = 2r = —r, a contradiction. Therefore, y <> 2r—a.
Also,
[2r —a,2r] = 2[r,a] = 0.

That is, 2r — a <> 2r. Thus x <> 2r <> 2r — a <> y. Therefore, d(z,y) < 3.
If [y,r] = —r then [y,2r] = 2[y,r] = —2r = r; otherwise y <> 2r, a contradiction.
Let a € Cr(r) such that a # 0,7, —r. Suppose y <> a. Then x <+ 2r <> a <> y and so

d(z,y) < 3. Suppose y < a. Then [y,a] =r or —r. If [y,a] = r then
[y,T-FCL] = [y,r] + [y’a] =-r+r=0.
Note that r+a € R\ Z(R); otherwise a = —r, a contradiction. Therefore, y <> r+a. Also,

[r + a,2r] = 2[a,r] = 0.
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That is, 7 +a <> 2r. Thus z <> 2r <> r+a <> y. Therefore, d(z,y) < 3. If [y,a] = —r then
[y, 2r +a] =y, 2r] + [y,a] =r + (-=r) = 0.

Note that 2r+a € R\ Z(R); otherwise a = —2r = r, a contradiction. Therefore, y <> 2r+a.
Also,
2r +a,2r] = 2[a,r] = 0.

That is, 2r + a <> 2r. Thus z < 2r < 2r + a < y. Therefore, d(z,y) < 3 and hence
diam(A%,) < 3.
Case 2: z <+ r and x + 2r.
Let a € Cg(r) such that a # 0,7, —r.
Subcase 2.1: z <> a

If y <> r then y <> r <> a <> x. Therefore d(z,y) < 3. If y «+» r but y <> 2r then
y <> 2r <> a <> x. Therefore, d(x,y) < 3. Consider the case when y <» r as well as y « 2r.
Therefore [y,r] = r or —r. If [y,r] = r then [y, 2r] = 2[y, r] = 2r = —r; otherwise y > 2r,
a contradiction. Suppose y <> a. Then y <> a <> = and so d(x,y) < 2. Suppose y < a.
Then [y,a] = r or —r. If [y,a] = r then [y,r — a] = 0. Therefore, y > r —a <> a < x.
Therefore, d(z,y) < 3. If [y,a] = —r then [y,2r — a] = 0. Therefore, y <> 2r —a <> a <>
and so d(z,y) < 3.

If [y,r] = —r then [y,2r] = 2[y,r] = —2r = r; otherwise y <> 2r, a contradiction.
Suppose y <> a. Then y <> a <> x and so d(z,y) < 2. Suppose y < a. Then [y,a] = r or
—r. If [y,a] = r then [y, + a] = 0. Therefore, y <> 7+ a <> a > x. Therefore, d(x,y) < 3.
If [y,a] = —r then [y,2r 4+ a] = 0. Therefore, y <> 2r + a <> a <> = and so d(z,y) < 3.
Hence, diam(A%) < 3.

Subcase 2.2: z +» a

In this case we have x «» r and x <» 2r. It can be seen that [z, r] = r implies [z, 2r] = —r
and [z,r] = —r implies [z, 2r] = 7.

Suppose [z,7] = r and [x,a] = r. Then [z,r —a] = [z,7] — [x,a] = 0. Hence, x <> r —a.

Now, we have the following cases.
(i)rzeor—aeoreyifyor.

(i) x> r—a<2r < yify«» r but y < 2r.
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Suppose y «» 1 as well as y <» 2r. Then, proceeding as in Subcase 2.1, we get the following

cases:
(iii) 2 r—a<>a<+>yif y «» r and 2r but y < a.

(iv) y<>r—a< zif [y,r] =r and [y,a] = 7.

(V) yeo2r—aer—asxifly,r]=r and [y,a] = —r.
(Vi) yer+aeor—aexif y,r]=—r and [y,a] = 7.
(vii) y e 2r+a<r—a+ zif [y,r] = —r and [y,a] = —r.

Therefore, d(z,y) < 3.

Suppose [z,r] = r and [z,a] = —r. Then
[x,2r —a] = [z,2r] — [z,a] = —r — (—1) = 0.
Hence, z +> 2r — a. Now, proceeding as above we get the following cases:
i)z 2r—asoreyifyor.
(ii) x > 2r —a < 2r <> y if y <» r but y < 2r.
(iii) x <> 2r—a <+ a <>y if y «+» r and 2r but y < a.

(iv) yor—ao2r—awxif [y,r] =r and [y,a] =r.

(V) y<2r—a+ zxif [y,r] =r and [y,a] = —r.
(Vl) y<—>7“+(1<—>27“—(1<—>1‘if[y,’]“]:—Tand [y7a]:r.
(vil) y > 2r+a <> 2r—a <>z if [y,r] = —r and [y,a] = —r.

Therefore, d(x,y) < 3.

Suppose [z,r] = —r and [z,a] = . Then
[x77a+a] = [.Z’,?"] + [x,a] =-r+r=0
Hence, z <+ r + a. Proceeding as above we get the following similar cases:
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(i)zer+aereyifyor.
(i) x> r+a+2r<yif y «» r but y « 2r.
(i) z > r+a<>a<+yif y «» r and 2r but y + a.

(iv) yerr—asr+aszif [y,r]=r and [y,a] = 7.

(V) yeo2r—aeor+asxifly,r]=rand [y,a] = —r.
(vi) y>r+a<xif [y,r] = —r and [y,a] = .
(vii) y > 2r+a<r+a+ xif [y,r] = —r and [y,a] = —r.

Therefore, d(z,y) < 3.
Suppose [z,r] = —r and [z,a] = —r. Then

[z,2r 4+ a] = [z,2r] + [z,a] =7+ (—r) = 0.
Hence, = > 2r 4+ a and so we get the the following similar cases:
(i)rze2rtaeoreoyifyor
(i) x> 2r+a < 2r <> yif y <» r but y <> 2r.
(iii) x <> 2r+a <> a <> yif y «» r and 2r but y < a.

(iv) yor—ae2rt+aezify,r]=rand [y,a] =r.

(V) ye2r—a<<>2r+a<zif [y,r]=r and [y,a] = —7.
(Vi) yer+a<2r+a<<xif [y,r] = —r and [y,a] = 7.
(vil) y > 2r+a < xif [y,r] = —r and [y,a] = —r.

completes the

Therefore, d(z,y) < 3. Hence, in all the cases diam(A%) < 3. This
[

proof.

As a consequence of Theorem a) and Corollary we get the following

result.

159



Chapter 6. On r-noncommuting graphs of finite rings

Corollary 6.2.4. Let x be any vertex in Al,.
(a) If r =0 then deg(x) = |R| — |Cr(z)|.

(b) If r # 0 and 2r = 0 then

R —|Z(R)| -1, if Clh(x) =0
deg(z) =
|R| — |Z(R)| — |CRr(x)| — 1, otherwise.

(¢) If r #0 and 2r # 0 then

|R| —|Z(R)| -1, if Ch(z) =0
deg(r) =
|R| —|Z(R)| — 2|Cr(z)| — 1, otherwise.

Some applications of Corollary are given below.

Theorem 6.2.5. Let R be a non-commutative ring such that |R| # 8 and let K,, be the
complete graph on n-vertices. If A, has an end vertex then r # 0 and ATR#O = 4Ky if and
only if R is isomorphic to E(9) or F'(9). Hence, I'y is neither a tree nor a lollipop graph.

Proof. Let x € R\ Z(R) be an end vertex in A',. Then deg(z) = 1. If 7 =0 then, by
Corollary [6.2.4(a), we have deg(z) = |R| —|Cgr(z)|. Therefore, |R|—|Cg(z)| = 1 and hence
|Cr(z)| =1, a contradiction. Therefore, r # 0. Now we consider the following cases.
Case 1: r # 0 and 2r = 0.

By Corollary [6.2.4(b), we have deg(z) = |R| — |Z(R)| — 1 or |R|— |Z(R)| — |Cr(z)| — 1.
Hence |R| — |Z(R)|—1=1or |R|—|Z(R)| — |Cr(z)] —1=1.

Subcase 1.1: |R|— |Z(R)| = 2.

In this case we have |Z(R)| = 1 or 2. If |Z(R)| = 1 then |R| = 3, a contradiction. If
|Z(R)| = 2 then |R| = 4. Therefore, the additive quotient group % is cyclic. Hence, by
Result 1.3.1, R is commutative; a contradiction.

Subcase 1.2: |R| — |Z(R)| — |Cr(z)| = 2.

In this case, |Z(R)| = 1 or 2. If |[Z(R)| = 1 then |R| — |Cr(z)| = 3. Therefore,
|Cr(z)| = 3 and hence |R| = 6. Therefore, R is commutative; a contradiction. If | Z(R)| = 2
then |R| — |Cr(x)| = 4. Therefore, |Cr(z)| = 4 and so |R| = 8, a contradiction.
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Case 2: r # 0 and 2r # 0.

By Corollary [6.2.4)c), we have deg(z) = |R|—|Z(R)|—1 or |R|—|Z(R)|—2|Cg(z)| - 1.
Hence, |R| — |Z(R)| —1 = 1 or |R| — |Z(R)| — 2|Cr(z)] =1 = 1. If |R| — |Z(R)| = 2
then as shown in Subcase 1.1 we get a contradiction. If |R| — |Z(R)| — 2|Cr(z)| = 2 then
|Z(R)| =1 or 2.

Subcase 2.1: |Z(R)| = 1.

In this case, |R| — 2|Cr(z)| = 3. Therefore, |Cr(z)| = 3 and so |R| = 9. Hence, R is
isomorphic to either E(9) or F'(9). It follows from Figure 6.4 that A, = 4K noting that
Ag(g) and ATF(Q) are isomorphic.

Subcase 2.2: |Z(R)| = 2.
In this case, |R| — 2|Cr(x)| = 4. Therefore, |Cr(z)| = 4 and so |R| = 12. It follows

that the additive quotient group % is cyclic. Hence, by Result 1.3.1, R is commutative;
a contradiction. Hence, the result follows. O

We have the following corollary to Theorem[6.2.5]
Corollary 6.2.6. Let R be a non-commutative ring such that |R| # 8. Then
(a) A% is 1-regqular if and only if r # 0 and R is isomorphic to E(9) or F(9).

(b) The non-commuting graph of R does not have any end verter. In particular, non-

commuting graph of such ring is neither a tree nor a lollipop graph.

Proof. The results follow from Theorem [6.2.5| noting the facts that any 1-regular graph has

end vertices and non-commuting graph of R is the graph AOR. O

Theorem 6.2.7. Let R be a non-commutative ring such that |R| # 8,12. If A}, has a
vertex of degree 2 then r =0 and AOR is a triangle if and only if R is isomorphic to E(4)
or F(4).

Proof. Suppose A’; has a vertex z of degree 2. Consider the following cases.
Case 1: r = 0.

By Corollary [6.2.4(a), we have deg(z) = |R| — |Cgr(z)|. Therefore, |R| — |Cr(z)| = 2
and hence |Cr(x)| = 2. Therefore, |R| = 4 and so R is isomorphic to E(4) or F'(4). Hence,

A, is a triangle (as shown in Figure 6.1 noting that ATE( 1) and A’"F( 4) are isomorphic).
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Case 2: r £ 0 and 2r = 0.

By Corollary [6.2.4(b), we have deg(z) = |R| — |Z(R)| — 1 or deg(z) = |R| — |Z(R)| —
|Cr(x)| — 1. Therefore |R| — |Z(R)|—1=2or |R| —|Z(R)| — |Cr(z)] — 1 =2.
Subcase 2.1: |R| —|Z(R)| = 3.

In this case we have |Z(R)| =1 or 3. If |Z(R)| = 1 then |R| = 4. As shown in Figure
6.2, A', is a null graph on three vertices. Therefore, it has no vertex of degree 2, which is
a contradiction. If |[Z(R)| = 3 then |R| = 6. Therefore, R is commutative; a contradiction.
Subcase 2.2: |R| — |Z(R)| — |Cgr(x)| = 3.

In this case, |Z(R)| = 1 or 3. If |Z(R)| = 1 then |R|—|CRr(z)| = 4. Therefore, |Cr(z)| =
2 or 4 and hence |R| = 6 or 8; a contradiction. If |Z(R)| = 3 then |R| — |Cr(z)| = 6.
Therefore, |Cr(z)| = 6 and so |R| = 12, which contradicts our assumption.

Case 3: r # 0 and 2r # 0.

By Corollary[6.2.4(c), we have deg(z) = |R|—|Z(R)|—1 or |R|— |Z(R)| —2|Cg(z)| — 1.
Hence, |R| — |Z(R)|—1=2or |R| — |Z(R)| — 2|Cr(x)| — 1 =2.

If |R| —|Z(R)| = 3 then as shown in Subcase 2.1 we get a contradiction. If |R| —
|Z(R)| — 2|CRr(z)| = 3 then |Z(R)| =1 or 3.

Subcase 3.1: |Z(R)| = 1.

In this case, |R| — 2|Cgr(z)| = 4. Therefore, |Cr(z)| = 2 or 4 and hence |R| = 8 or 12

which is a contradiction.
Subcase 3.2: |Z(R)| = 3.
In this case, |R| — 2|Cr(z)| = 6. Therefore, |Cr(x)| = 6 and so |R| = 18. It follows

that the additive quotient group % is cyclic. Hence, by Result 1.3.1, R is commutative;
a contradiction. Hence, the result follows. ]

We have the following corollary to Theorem
Corollary 6.2.8. Let R be a non-commutative ring such that |R| # 8,12. Then
(a) A% is 2-regular if and only if r =0 and R is isomorphic to E(4) or F(4).

(b) The non-commuting graph of R is 2-regular if and only if R is isomorphic to E(4)
or F(4).
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Proof. The results follow from Theorem [6.2.7| noting the facts that any 2-regular graph has

vertices of degree 2 and non-commuting graph of R is the graph A%. O

Theorem 6.2.9. Let R be a non-commutative ring such that |R| # 16,18. Then the graph

A, has no vertex of degree 3.

Proof. Suppose A', has a vertex x of degree 3.
Case 1: 7 = 0.

By Corollary [6.2.4(a), we have deg(z) = |R| — |Cg(x)|. Therefore, |R| — |Cg(z)| = 3
and hence |Cr(z)| = 3. Therefore, |R| = 6 and hence R is commutative; a contradiction.
Case 2: r # 0 and 2r = 0.

By Corollary [6.2.4b), we have deg(z) = |R| — |Z(R)| — 1 or deg(z) = |R| — |Z(R)| —
|Cr(z)| — 1. Therefore |R| — |Z(R)|—1=3or |R|— |Z(R)| — |Cr(z)] — 1 =3.

Subcase 2.1: |R|— |Z(R)| = 4.

In this case we have |Z(R)| =1or2or4. If |Z(R)| = 1 or 2 then |R| = 5 or 6 and hence
R is commutative; a contradiction. If |Z(R)| = 4 then |R| = 8. Therefore, the additive
quotient group % is cyclic. Hence, by Result 1.3.1, R is commutative; a contradiction.
Subcase 2.2: |R| — |Z(R)| — |Cgr(z)| = 4.

In this case, |Z(R)| = 1 or 2 or 4. If |Z(R)| = 1 then |R| — |Cg(z)| = 5. Therefore,
|Cr(z)| =5 and hence |R| = 10. Therefore R is commutative; a contradiction. If |Z(R)| =
2 then |R| — |Cgr(z)| = 6. Therefore, |Cr(z)| = 6 and so |R| = 12. It follows that
the additive quotient group % is cyclic. Hence, by Result 1.3.1, R is commutative; a
contradiction. If |Z(R)| = 4 then |R| — |Cr(z)| = 8. Therefore, |Cr(z)] = 8 and so
|R| = 16; a contradiction.

Case 3: r # 0 and 2r # 0.

By Corollary[6.2.4c), we have deg(z) = |R|—|Z(R)|—1 or |R|— |Z(R)| —2|Cg(z)| — 1.
Hence, |R| —|Z(R)|—1=3or |R| — |Z(R)| — 2|Cr(x)| — 1 = 3.

If |[R| —|Z(R)| = 4 then as shown in Subcase 2.1 we get a contradiction. If |R| —
|Z(R)| — 2|CRr(z)| = 4 then |Z(R)| =1 or 2 or 4.

Subcase 3.1: |Z(R)| = 1.
In this case, |R| — 2|Cgr(z)| = 5. Therefore, |Cr(z)| = 5 then |R| = 15. Therefore R is

commutative; a contradiction.
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Subcase 3.2: |Z(R)| = 2.

In this case, |R|—2|Cgr(z)| = 6. Therefore, |Cr(x)| = 6 and so |R| = 18; a contradiction.
Subcase 3.3: |Z(R)| = 4.

In this case, |R| — 2|Cr(z)| = 8. Therefore, |Cr(x)| = 8 and so |R| = 24. It follows

that the additive quotient group % is cyclic. Hence, by Result 1.3.1, R is commutative;
a contradiction. This completes the proof. O

We have the following corollary to Theorem

Corollary 6.2.10. Let R be a non-commutative ring such that |R| # 16,18. Then A, is

not 3-reqular. In particular, the non-commuting graph of such R is not 3-regular.

Theorem 6.2.11. Let R be a non-commutative ring such that |R| # 8,12,18,20. Then

A, has no vertex of degree 4.

Proof. Suppose A’; has a vertex z of degree 4.
Case 1: r = 0.

By Corollary [6.2.4(a), we have deg(z) = |R| — |Cg(z)|. Therefore, |R| — |Cr(z)| =4
and hence |Cgr(z)| = 2 or 4. If |Cr(z)| = 2 then |R| = 6 and hence R is commutative; a
contradiction. If |Cr(x)| = 4 then |R| = 8; a contradiction.

Case 2: r £ 0 and 2r = 0.

By Corollary [6.2.4(b), we have deg(z) = |R| — |Z(R)| — 1 or deg(z) = |R| — |Z(R)| —
|Cr(x)| — 1. Therefore |R| — |Z(R)|—1=4or |R| —|Z(R)| — |Cr(z)] — 1 =4.
Subcase 2.1: |R| — |Z(R)| = 5.

In this case we have |Z(R)| =1 or 5. Then |R| = 6 or 10 and hence R is commutative;
a contradiction.

Subcase 2.2: |R| — |Z(R)| — |Cgr(z)| = 5.

In this case, |Z(R)|= 1or 5. If |Z(R)|= 1 then |R|—|Cgr(x)|= 6. Therefore, |Cr(z)|= 2
or 3or 6. If |[Cr(z)|= 2 then |R|= 8; a contradiction. If |Cr(x)|= 3 then |R|=9. It follows
from Figure 6.4 that A = 4K, which is a contradiction. If |Cg(x)| = 6 then |R|= 12;
a contradiction. If |Z(R)| = 5 then |R| — |Cg(z)| = 10. Therefore, |Cr(x)| = 10 and so

|R| = 20; a contradiction.
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Case 3: r # 0 and 2r # 0.

By Corollary [6.2.4)c), we have deg(z) = |R|—|Z(R)|—1 or |R|—|Z(R)|—2|Cg(z)| - 1.
Hence, |R| — |Z(R)|—1=4or |R| — |Z(R)| — 2|Cr(x)| — 1 = 4.

If |[R| —|Z(R)| = 5 then as shown in Subcase 2.1 we get a contradiction. If |R| —
|Z(R)| — 2|Cgr(z)] =5 then |Z(R)| =1 or 5.
Subcase 3.1: |Z(R)| = 1.

In this case, |R| — 2|Cg(x)| = 6. Therefore, |Cr(z)| =2 or 3 or 6. If |Cr(z)| = 2 then
|R| = 10. Therefore R is commutative; a contradiction. If |[Cr(x)| = 3 or 6 then |R| = 12
or 18; a contradiction.
Subcase 3.2: |Z(R)| = 5.

In this case, |R| — 2|Cgr(z)| = 10. Therefore, |Cr(x)| = 10 and so |R| = 30. It follows

that the additive quotient group % is cyclic. Hence, by Result 1.3.1, R is commutative;
a contradiction. This completes the proof. O

We have the following corollary to Theorem 6.2.11

Corollary 6.2.12. Let R be a non-commutative ring such that |R| # 8,12,18,20. Then

A, is not 4-regular. In particular, the non-commuting graph of such R is not 4-reqular.

Theorem 6.2.13. Let R be a non-commutative ring such that |R| # 8,16,24,27. Then

A, has no vertex of degree 5.

Proof. Suppose A’; has a vertex z of degree 5.
Case 1: r = 0.

By Corollary [6.2.4(a), we have deg(z) = |R| — |Cg(z)|. Therefore, |R| — |Cr(z)| =5
and hence |Cr(x)| = 5. Then |R| = 10 and hence R is commutative; a contradiction.
Case 2: r # 0 and 2r = 0.

By Corollary [6.2.4b), we have deg(z) = |R| — |Z(R)| — 1 or deg(z) = |R| — |Z(R)| —
|Cr(z)| — 1. Therefore |R| — |Z(R)|—1=5or |R|— |Z(R)| — |Cr(z)] — 1 =5.

Subcase 2.1: |R|— |Z(R)| = 6.

In this case we have |Z(R)| = 1 or 2 or 3 or 6. If |[Z(R)| = 1 then |R| = 7 and

hence R is commutative; a contradiction. If |Z(R)| = 2 then |R| = 8; a contradiction. If

|Z(R)| = 3 then |R| = 9. It follows from Figure 6.4 that A, = 4K which is a contradiction.
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If |Z(R)| = 6 then |R| = 12. Therefore, the additive quotient group % is cyclic. Hence,
by Result 1.3.1, R is commutative; a contradiction.
Subcase 2.2: |R| — |Z(R)| — |Cgr(x)| = 6.

In this case, |Z(R)] = 1 or 2 or 3 or 6. If |Z(R)| = 1 then |R| — |Cgr(z)| = 7.

Therefore, |Cr(x)| = 7 then |R| = 14 and hence R is commutative; a contradiction. If
|Z(R)| = 2 then |R| — |Cr(x)| = 8. Therefore, |Cr(z)| = 4 or 8. If |Cr(z)| = 4 then
|R| = 12. Therefore, the additive quotient group % is cyclic. Hence, by Result 1.3.1,
R is commutative; a contradiction. If |Cr(z)] = 8 then |R| = 16; a contradiction. If
|Z(R)| = 3 then |R| — |Cr(z)| = 9. Therefore, |Cr(z)| = 9. and so |R| = 18. It follows

that the additive quotient group % is cyclic. Hence, by Result 1.3.1, R is commutative;

a contradiction. If |Z(R)| = 6 then |R| — |Cr(z)| = 12. Therefore, |Cr(x)| = 12 and so
|R| = 24; a contradiction.
Case 3: r # 0 and 2r # 0.

By Corollary[6.2.4(c), we have deg(z) = |R|—|Z(R)|—1 or |R|— |Z(R)| —2|Cg(z)| — 1.
Hence, |R| —|Z(R)|—1=5or |R| — |Z(R)| — 2|Cr(x)| — 1 = 5.

If |[R| — |Z(R)| = 6 then as shown in Subcase 2.1 we get a contradiction. If |R| —
|Z(R)| — 2|CRr(x)| = 6 then |Z(R)| =1 or 2 or 3 or 6.
Subcase 3.1: |Z(R)| = 1.

Here we have, |R| — 2|Cg(z)| = 7. Therefore, |Cr(z)| = 7 then |R| = 21 and hence R
is commutative; a contradiction.
Subcase 3.2: |Z(R)| = 2.

In this case, |R| — 2|Cgr(x)| = 8. Therefore, |Cr(z)| =4 or 8. If |Cr(z)| = 4 or 8 then
|R| = 16 or 24; a contradiction.
Subcase 3.3: |Z(R)| = 3.

In this case, |R|—2|Cg(x)| = 9. Therefore, |Cr(x)| = 9 and so |R| = 27; a contradiction.
Subcase 3.4: |Z(R)| = 6.

In this case, |R| — 2|Cr(z)| = 12. Therefore, |Cr(z)| = 12 and so |R| = 36. It follows
that the additive quotient group % is cyclic. Hence, by Result 1.3.1, R is commutative;

a contradiction. This completes the proof. ]

We have the following corollary to Theorem|[6.2.13
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Corollary 6.2.14. Let R be a non-commutative ring such that |R| # 8,16,24,27. Then

A, is not 5-regular. In particular, the non-commuting graph of such R is not 5-regular.
We conclude this chapter with the following characterization of R.

Theorem 6.2.15. Let R be a non-commutative ring such that |R| # 8,12,16, 24,28. Then
A, has a vertex of degree 6 if and only if r =0 and R is isomorphic to E(9) or F(9).

Proof. Suppose A', has a vertex z of degree 6.
Case 1: 7 = 0.

By Corollary [6.2.4f(a), we have deg(x) = |R|—|Cg(z)|. Therefore, |R|—|Cgr(z)| = 6 and
hence |Cr(z)| = 2 or 3 or 6. If |Cr(z)| = 2 then |R| = 8; a contradiction. If |Cr(x)| =3
then |R| = 9. Therefore, A}, is a 6-regular graph (as shown in Figure 6.3). If |Cr(z)| = 6
then |R| = 12; a contradiction.

Case 2: r # 0 and 2r = 0.

By Corollary [6.2.4(b), we have deg(z) = |R| — |Z(R)| — 1 or deg(z) = |R| — |Z(R)| —
|Cr(z)| — 1. Therefore |R| — |Z(R)|—1=6or |R|— |Z(R)| — |Cr(z)] — 1 =6.
Subcase 2.1: |R|— |Z(R)|=T7.

In this case we have |Z(R)| =1 or 7. If |Z(R)| = 1 then |R| = 8; a contradiction. If
|Z(R)| =7 then |R| = 14 and hence R is commutative; a contradiction.
Subcase 2.2: |R|— |Z(R)| — |Cgr(x)| =T.

In this case, |Z(R)| = 1or 7. If |Z(R)| = 1 then |R|—|Cr(z)| = 8. Therefore, |Cr(z)| =
2 or 4 or 8. If |Cr(z)] = 2 then |R| = 10. Thus R is commutative; a contradiction. If
|Cr(z)| = 4 or 8 then |R| = 12 or 16; which are contradictions. If |Z(R)| = 7 then
|R| — |Cr(x)| = 14. Therefore, |Cr(z)| = 14 and so |R| = 28; a contradiction.

Case 3: r # 0 and 2r # 0.

By Corollary [6.2.4)(c), we have deg(z) = |R|—|Z(R)| -1 or |R|—|Z(R)| —2|Cr(z)| — 1.
Hence, |R| — |Z(R)| —1=6 or |R| — |Z(R)| — 2|Cr(x)] — 1 = 6.

If |R| —|Z(R)| = 7 then as shown in Subcase 2.1 we get a contradiction. If |R| —
|Z(R)| — 2|Cgr(z)| =7 then |Z(R)| =1 or 7.

Subcase 3.1: |Z(R)| = 1.
In this case, |R| — 2|Cr(z)| = 8. Therefore, |Cr(x)| =2 or 4 or 8 then |R| = 12 or 16

or 24; all are contradictions to the order of R.
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Subcase 3.2: |Z(R)|=T.
In this case, |R| — 2|Cr(z)| = 14. Therefore, |Cr(x)| = 14 and so |R| = 42. It follows
that the additive quotient group % is cyclic. Hence, by Result 1.3.1, R is commutative;

a contradiction. This completes the proof. ]

We have the following corollary to Theorem|[6.2.15

Corollary 6.2.16. Let R be a non-commutative ring such that |R| # 8,12,16, 24,28. Then
A%, is 6-regular if and only if r = 0 and R is isomorphic to E(9) or F(9). In particular,
the non-commuting graph of such R is 6-regular if and only if R is isomorphic to E(9) or
F(9).

6.3 Conclusion

In this chapter, the study of non-commuting graphs of finite rings (I'z) has been extended
by introducing r-noncommuting graph of R (I'y;) for a given element r € R. Expressions
for vertex degrees have been derived and showed that I'}; is neither a regular graph nor
a lollipop graph nor a complete bipartite graph if R is non-commutative. Among other
results, finite non-commutative rings have been characterized such that I'}; is a tree. As a
consequence of our results, characterizations of certain finite non-commutative rings such

that their non-commuting graphs are n-regular for n < 6 have been obtained.
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