
Chapter 6

On r-noncommuting graphs of

finite rings

In this chapter, we introduce and study r-noncommuting graph of a finite ring R for

any given element r ∈ R analogous to g-noncommuting graph of a finite group. The r-

noncommuting graph of R, denoted by ΓrR , is a simple undirected graph whose vertex set

is R and two vertices x and y are adjacent if [x, y] 6= r and [x, y] 6= −r. Clearly, ΓrR = Γ−rR .

If r = 0 then the induced subgraph of ΓrR with vertex set R \ Z(R), denoted by ∆r
R, is

nothing but the non-commuting graph of R. Note that ΓrR is 0-regular graph if r = 0 and

R is commutative. Also, ΓrR is complete if r /∈ K(R). Thus for r /∈ K(R), ΓrR is n-regular if

and only if R is of order n+ 1. Therefore throughout the chapter we consider r ∈ K(R).

In Section 6.1, we first compute degree of any vertex of ΓrR in terms of its centraliz-

ers. Then we characterize R if ΓrR is a tree, in particular a star graph. We further show

that ΓrR is not a regular graph (if r ∈ K(R)) or a lollipop graph for any non-commutative

ring R. We conclude this section by showing that ΓrR1
is isomorphic to Γ

ψ(r)
R2

if (φ, ψ)

is an isoclinism between two finite rings R1 and R2 such that |Z(R1)| = |Z(R2)|. In

Section 6.2, we consider the induced subgraph ∆r
R of ΓrR, induced by R \ Z(R), and ob-

tain results on clique number and diameter of ∆r
R along with certain characterizations

of finite non-commutative rings such that ∆r
R is n-regular for some positive integer n.

More precisely, we characterize certain finite non-commutative rings such that their non-
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Chapter 6. On r-noncommuting graphs of finite rings

commuting graphs are n-regular for n ≤ 6. This chapter is based on our paper [74] pub-

lished in Axioms.

It has been shown in [42] that there are only two non-commutative rings (up to iso-

morphism) having order p2, where p is a prime, and the rings are given by

E(p2) = 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b〉

and F (p2) = 〈x, y : px = py = 0, x2 = x, y2 = y, xy = y, yx = x〉.

Following figures show the graphs ΓrE(p2) for p = 2, 3.
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Figure 6.3: Γ0
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Figure 6.4: Γr
E(9),

where r = a+ 2b or 2a+ b

It is worth noting here that the graphs Γ0
F (4),Γ

x+y
F (4),Γ

0
F (9) and Γx+2y

F (9) are isomorphic to

Γ0
E(4),Γ

a+b
E(4),Γ

0
E(9) and Γa+2b

E(9) respectively.

6.1 Some properties of ΓrR

In this section, we characterize R when ΓrR is a tree or a star graph. We also show the non-

existence of finite non-commutative rings R whose r-noncommuting graph is a regular
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graph (if r ∈ K(R)), a lollipop graph or a complete bipartite graph. However, we first

compute degree of any vertex in the graph ΓrR. For any two given elements x and r

of R, we write CrR(x) to denote the generalized centralizer {y ∈ R : [x, y] = r} of x.

The following theorem gives the degree of any vertex of ΓrR in terms of its generalized

centralizers.

Theorem 6.1.1. Let x be any vertex in ΓrR. Then

(a) deg(x) = |R| − |CR(x)| if r = 0.

(b) if r 6= 0 then deg(x) =


|R| − |CrR(x)| − 1, if 2r = 0

|R| − 2|CrR(x)| − 1, if 2r 6= 0.

Proof. (a) If r = 0 then deg(x) is the number of y ∈ R such that xy 6= yx. Note that

|CR(x)| gives the number of elements that commute with x. Hence, deg(x) = |R|−|CR(x)|.
(b) Consider the case when r 6= 0. If 2r = 0 then r = −r. Note that y ∈ R is not

adjacent to x if and only if y = x or y ∈ CrR(x). Therefore, deg(x) = |R| − |CrR(x)| − 1. If

2r 6= 0 then r 6= −r. It is easy to see that CrR(x)∩C−rR (x) = ∅ and y ∈ CrR(x) if and only if

−y ∈ C−rR (x). Therefore, |CrR(x)| = |C−rR (x)|. Note that y ∈ R is not adjacent to x if and

only if y = x or y ∈ CrR(x) or y ∈ C−rR (x). Therefore, deg(x) = |R|−|CrR(x)|−|C−rR (x)|−1.

Hence the result follows.

The following corollary gives degree of any vertex of ΓrR in terms of its centralizers.

Corollary 6.1.2. Let x be any vertex in ΓrR.

(a) If r 6= 0 and 2r = 0 then deg(x) =


|R| − 1, if CrR(x) = ∅

|R| − |CR(x)| − 1, otherwise.

(b) If r 6= 0 and 2r 6= 0 then deg(x) =


|R| − 1, if CrR(x) = ∅

|R| − 2|CR(x)| − 1, otherwise.

Proof. NoticethatCrR(x) 6=∅ if and only if r∈ [x,R]. Supposethat CrR(x) 6=∅. Let t∈ CrR(x)

and p ∈ t+CR(x). Then [x, p] = r and so p ∈ CrR(x). Therefore, t+CR(x) ⊆ CrR(x). Again,
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if y ∈ CrR(x) then (y − t) ∈ CR(x) and so y ∈ t + CR(x). Therefore, CrR(x) ⊆ t + CR(x).

Thus |CrR(x)| = |CR(x)| if CrR(x) 6= ∅. Hence the result follows from Theorem 6.1.1.

We now present some results regarding realization of the graph ΓrR and characteriza-

tion of R through certain properties of ΓrR as applications of Theorem 6.1.1.

Theorem 6.1.3. Let R be a ring with unity. The r-noncommuting graph ΓrR is a tree if

and only if |R| = 2 and r 6= 0.

Proof. If r = 0 then, by Theorem 6.1.1(a), we have deg(r) = 0. Hence, ΓrR is not a tree.

Suppose that r 6= 0. If R is commutative then r /∈ K(R). Hence, ΓrR is complete graph.

Therefore ΓrR is a tree if and only if |R| = 2. If R is non-commutative then [x, 0] 6= r,−r
and [x, 1] 6= r,−r for any x ∈ R. Therefore deg(x) ≥ 2 for all x ∈ R. Hence, ΓrR is not a

tree.

Theorem 6.1.4. Let R be a non-commutative ring. If ΓrR has an end vertex then r 6= 0

and Γr 6=0
R is a star graph if and only if R is isomorphic to E(4) = 〈a, b : 2a = 2b = 0, a2 =

a, b2 = b, ab = a, ba = b〉 or F (4) = 〈a, b : 2a = 2b = 0, a2 = a, b2 = b, ab = b, ba = a〉.
Hence, ΓrR is not a lollipop graph.

Proof. Let x ∈ R be an end vertex in ΓrR. Then deg(x) = 1. If r = 0 then x /∈ Z(R) and

so |CR(x)| ≤ |R|2 . Also, by Theorem 6.1.1(a), we have deg(x) = |R| − |CR(x)|. These give

|R|−|CR(x)| = 1. Hence, |R| ≤ 2, a contradiction. Therefore, r 6= 0. By Corollary 6.1.2, we

have deg(x) = |R|−1, |R|−|CR(x)|−1 or |R|−2|CR(x)|−1. These give |R|−|CR(x)| = 2 or

|R|−2|CR(x)| = 2. Clearly x /∈ Z(G) and so |CR(x)| ≤ |R|2 . Therefore, if |R|− |CR(x)| = 2

then |R| ≤ 4. If |R| − 2|CR(x)| = 2 then |R| is even and |CR(x)| ≤ |R|2 . Therefore, |R| ≤ 6.

Since R is non-commutative we have |R| = 4 and so R is isomorphic to either E(4) or F (4).

In Figure 6.2, it is shown that ΓrE(4) is a star graph if r 6= 0. Also, ΓrE(4) is isomorphic to

ΓrF (4). Hence, the result follows.

It follows that if R is non-commutative having more than four elements then there is no

vertex of degree one in ΓrR.

It is observed that ΓrR is (|R| − 1)-regular if r /∈ K(R). Also, if r = 0 and R is com-

mutative then ΓrR is 0-regular. In the following theorem, we show that ΓrR is not regular if

r ∈ K(R).
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Theorem 6.1.5. Let R be a non-commutative ring and r ∈ K(R). Then ΓrR is not regular.

Proof. If r = 0 then, by Theorem 6.1.1(a), we have deg(r) = 0. Let x ∈ R be a non-central

element. Then |CR(x)| 6= |R|. Therefore, by Theorem 6.1.1(a), deg(x) 6= 0 = deg(r). This

shows that ΓrR is not regular. If r 6= 0 then CrR(0) = ∅. Therefore, by Corollary 6.1.2, we

have deg(0) = |R| − 1. Since r ∈ K(R), there exists 0 6= x ∈ R such that CrR(x) 6= ∅.
Therefore, by Corollary 6.1.2, we have deg(x) = |R| − |CR(x)| − 1 or |R| − 2|CR(x)| − 1. If

ΓrR is regular then deg(x) = deg(0). Therefore

|R| − |CR(x)| − 1 = |R| − 2|CR(x)| − 1 = |R| − 1

which gives |CR(x)| = 0, a contradiction. Hence, ΓrR is not regular. This completes the

proof.

The following result shows that ΓrR is not complete bipartite if |R| ≥ 3 and |Z(R)| ≥ 2.

Theorem 6.1.6. Let R be a finite ring.

(a) If r = 0 then ΓrR is not complete bipartite.

(b) If r 6= 0 then ΓrR is not complete bipartite for |R| ≥ 3 with |Z(R)| ≥ 2.

Proof. Let ΓrR be complete bipartite. Then there exist subsets V1 and V2 of R such that

V1 ∩ V2 = ∅, V1 ∪ V2 = R and if x ∈ V1 and y ∈ V2 then x and y are adjacent.

(a) If r = 0 then for x ∈ V1 and y ∈ V2 we have [x, y] 6= 0. Therefore, [x, x + y] 6= 0

which implies x+y ∈ V2. Again [y, x+y] 6= 0 which implies x+y ∈ V1. Thus x+y ∈ V1∩V2,

a contradiction. Hence ΓrR is not complete bipartite.

(b) If r 6= 0, |R| ≥ 3 and |Z(R)| ≥ 2 then for any z1, z2 ∈ Z(R), z1 and z2 are adjacent.

Let us take z1 ∈ V1 and z2 ∈ V2. Since |R| ≥ 3 we have x ∈ R such that x 6= z1 and

x 6= z2. Also [x, z1] = 0 = [x, z2]. Therefore x is adjacent to both z1 and z2. Therefore

x /∈ V1 ∪ V2 = R, a contradiction. Hence ΓrR is not complete bipartite.

If R1 and R2 are two isomorphic rings and α : R1 → R2 is an isomorphism then it is

easy to see that ΓrR1
∼= Γ

α(r)
R2

. In the following theorem we show that ΓrR1
∼= Γ

ψ(r)
R2

if R1 and

R2 are two isoclinic rings with isoclinism (φ, ψ).
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Theorem 6.1.7. Let R1 and R2 be two finite rings such that |Z(R1)| = |Z(R2)|. If (φ, ψ)

is an isoclinism between R1 and R2 then

ΓrR1
∼= Γ

ψ(r)
R2

.

Proof. Since φ : R1
Z(R1) →

R2
Z(R2) is an isomorphism, R1

Z(R1) and R2
Z(R2) have same number

of elements. Let
∣∣∣ R1
Z(R1)

∣∣∣ =
∣∣∣ R2
Z(R2)

∣∣∣ = n. Again since |Z(R1)| = |Z(R2)|, there exists a

bijection θ : Z(R1)→ Z(R2). Let {ri : 1 ≤ i ≤ n} and {sj : 1 ≤ j ≤ n} be two transversals

of R1
Z(R1) and R2

Z(R2) respectively. Let φ : R1
Z(R1) →

R2
Z(R2) and ψ : [R1, R1] → [R2, R2] be

defined as φ(ri +Z(R1)) = si +Z(R2) and ψ([ri + z1, rj + z2]) = [si + z′1, sj + z′2] for some

z1, z2 ∈ Z(R1), z′1, z
′
2 ∈ Z(R2) and 1 ≤ i, j ≤ n.

Let us define a map α : R1 → R2 such that α(ri + z) = si + θ(z) for z ∈ Z(R). Clearly

α is a bijection. We claim that α preserves adjacency. Let x and y be two elements of R1

such that x and y are adjacent. Then [x, y] 6= r,−r. We have x = ri + zi and y = rj + zj

where zi, zj ∈ Z(R1) and 1 ≤ i, j ≤ n. Therefore

[ri + zi, rj + zj ] 6= r,−r

⇒ψ([ri + zi, rj + zj ]) 6= ψ(r),−ψ(r)

⇒[si + θ(zi), sj + θ(zj)] 6= ψ(r),−ψ(r)

⇒[α(ri + zi), α(rj + zj)] 6= ψ(r),−ψ(r)

⇒[α(x), α(y)] 6= ψ(r),−ψ(r).

This shows that α(x) and α(y) are adjacent. Hence the result follows.

6.2 An induced subgraph of r-noncommuting graph

We write ∆r
R to denote the induced subgraph of ΓrR with vertex set R \ Z(R). It is worth

mentioning that ∆0
R is the non-commuting graph of R. If r 6= 0 then it is easy to see that

the commuting graph of R is a spanning subgraph of ∆r
R. The following result gives a

condition such that ∆r
R is the commuting graph of R.
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Theorem 6.2.1. Let R be a non-commutative ring and r 6= 0. If K(R) = {0, r,−r} then

∆r
R is the commuting graph of R.

Proof. The result follows from the fact that two vertices x, y in ∆r
R are adjacent if and

only if xy = yx.

Let ω(∆r
R) be the clique number of ∆r

R. The following result gives a lower bound for

ω(∆r
R).

Theorem 6.2.2. Let R be a non-commutative ring and r 6= 0. If S is a commutative

subring of R having maximal order then ω(∆r
R) ≥ |S| − |S ∩ Z(R)|.

Proof. The result follows from the fact that the subset S \S ∩Z(R) of R \Z(R) is a clique

of ∆r
R.

By Result 1.4.29, it follows that the diameter of ∆0
R is less than or equal to 2. The next

result gives some information regarding diameter of ∆r
R when r 6= 0. For any two vertices

x and y, we write x↔ y to denote x and y are adjacent, otherwise x= y.

Theorem 6.2.3. Let R be a non-commutative ring and r ∈ R \ Z(R) such that 2r 6= 0.

(a) If 3r 6= 0 then diam(∆r
R) ≤ 3.

(b) If |Z(R)| = 1, |CR(r)| 6= 3 and 3r = 0 then diam(∆r
R) ≤ 3.

Proof. (a) If x ↔ r for all x ∈ R \ Z(R) such that x 6= r then, it is easy to see that

diam(∆r
R) ≤ 2. Suppose there exists a vertex x ∈ R \ Z(R) such that x = r. Then

[x, r] = r or −r. We have

[x, 2r] = 2[x, r] =


2r, if [x, r] = r

−2r, if [x, r] = −r.

Since 2r 6= 0 we have [x, 2r] 6= 0 and hence 2r ∈ R \ Z(R). Also, 2r 6= r,−r. Therefore,

[x, 2r] 6= r,−r and so x↔ 2r. Let y ∈ R \Z(R) such that y 6= x. If y ↔ r then d(x, y) ≤ 3

noting that r ↔ 2r. If y = r then y ↔ 2r (as shown above). In this case d(x, y) ≤ 2.

Hence, diam(∆r
R) ≤ 3.
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(b) If x↔ r for all x ∈ R\Z(R) such that x 6= r then, it is easy to see that diam(∆r
R) ≤

2. Suppose there exists a vertex x ∈ R \ Z(R) such that x = r. Let y ∈ R \ Z(R) such

that y 6= x. We consider the following two cases.

Case 1: x= r and x↔ 2r.

If y ↔ r then d(x, y) ≤ 3 noting that r ↔ 2r. Therefore, diam(∆r
R) ≤ 3. If y = r

but y ↔ 2r then d(x, y) ≤ 2. Consider the case when y = r as well as y = 2r. Therefore

[y, r] = r or −r. If [y, r] = r then [y, 2r] = 2[y, r] = 2r = −r; otherwise y ↔ 2r, a

contradiction. Let a ∈ CR(r) such that a 6= 0, r,−r (such element exists, since |CR(r)| > 3).

Clearly a ∈ R \Z(R). Suppose y ↔ a. Then x↔ 2r ↔ a↔ y and so d(x, y) ≤ 3. Suppose

y = a. Then [y, a] = r or −r. If [y, a] = r then

[y, r − a] = [y, r]− [y, a] = r − r = 0.

Note that r − a ∈ R \ Z(R); otherwise a = r, a contradiction. Therefore, y ↔ r − a. Also,

[r − a, 2r] = 2[r, a] = 0.

That is, r− a↔ 2r. Thus x↔ 2r ↔ r− a↔ y. Therefore, d(x, y) ≤ 3. If [y, a] = −r then

[y, 2r − a] = [y, 2r]− [y, a] = −r − (−r) = 0.

Note that 2r−a ∈ R\Z(R); otherwise a = 2r = −r, a contradiction. Therefore, y ↔ 2r−a.

Also,

[2r − a, 2r] = 2[r, a] = 0.

That is, 2r − a↔ 2r. Thus x↔ 2r ↔ 2r − a↔ y. Therefore, d(x, y) ≤ 3.

If [y, r] = −r then [y, 2r] = 2[y, r] = −2r = r; otherwise y ↔ 2r, a contradiction.

Let a ∈ CR(r) such that a 6= 0, r,−r. Suppose y ↔ a. Then x ↔ 2r ↔ a ↔ y and so

d(x, y) ≤ 3. Suppose y = a. Then [y, a] = r or −r. If [y, a] = r then

[y, r + a] = [y, r] + [y, a] = −r + r = 0.

Note that r+a ∈ R\Z(R); otherwise a = −r, a contradiction. Therefore, y ↔ r+a. Also,

[r + a, 2r] = 2[a, r] = 0.
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That is, r+ a↔ 2r. Thus x↔ 2r ↔ r+ a↔ y. Therefore, d(x, y) ≤ 3. If [y, a] = −r then

[y, 2r + a] = [y, 2r] + [y, a] = r + (−r) = 0.

Note that 2r+a ∈ R\Z(R); otherwise a = −2r = r, a contradiction. Therefore, y ↔ 2r+a.

Also,

[2r + a, 2r] = 2[a, r] = 0.

That is, 2r + a ↔ 2r. Thus x ↔ 2r ↔ 2r + a ↔ y. Therefore, d(x, y) ≤ 3 and hence

diam(∆r
R) ≤ 3.

Case 2: x= r and x= 2r.

Let a ∈ CR(r) such that a 6= 0, r,−r.
Subcase 2.1: x↔ a

If y ↔ r then y ↔ r ↔ a ↔ x. Therefore d(x, y) ≤ 3. If y = r but y ↔ 2r then

y ↔ 2r ↔ a↔ x. Therefore, d(x, y) ≤ 3. Consider the case when y = r as well as y = 2r.

Therefore [y, r] = r or −r. If [y, r] = r then [y, 2r] = 2[y, r] = 2r = −r; otherwise y ↔ 2r,

a contradiction. Suppose y ↔ a. Then y ↔ a ↔ x and so d(x, y) ≤ 2. Suppose y = a.

Then [y, a] = r or −r. If [y, a] = r then [y, r − a] = 0. Therefore, y ↔ r − a ↔ a ↔ x.

Therefore, d(x, y) ≤ 3. If [y, a] = −r then [y, 2r − a] = 0. Therefore, y ↔ 2r − a↔ a↔ x

and so d(x, y) ≤ 3.

If [y, r] = −r then [y, 2r] = 2[y, r] = −2r = r; otherwise y ↔ 2r, a contradiction.

Suppose y ↔ a. Then y ↔ a ↔ x and so d(x, y) ≤ 2. Suppose y = a. Then [y, a] = r or

−r. If [y, a] = r then [y, r+ a] = 0. Therefore, y ↔ r+ a↔ a↔ x. Therefore, d(x, y) ≤ 3.

If [y, a] = −r then [y, 2r + a] = 0. Therefore, y ↔ 2r + a ↔ a ↔ x and so d(x, y) ≤ 3.

Hence, diam(∆r
R) ≤ 3.

Subcase 2.2: x= a

In this case we have x= r and x= 2r. It can be seen that [x, r] = r implies [x, 2r] = −r
and [x, r] = −r implies [x, 2r] = r.

Suppose [x, r] = r and [x, a] = r. Then [x, r− a] = [x, r]− [x, a] = 0. Hence, x↔ r− a.

Now, we have the following cases.

(i) x↔ r − a↔ r ↔ y if y ↔ r.

(ii) x↔ r − a↔ 2r ↔ y if y = r but y ↔ 2r.
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Suppose y = r as well as y = 2r. Then, proceeding as in Subcase 2.1, we get the following

cases:

(iii) x↔ r − a↔ a↔ y if y = r and 2r but y ↔ a.

(iv) y ↔ r − a↔ x if [y, r] = r and [y, a] = r.

(v) y ↔ 2r − a↔ r − a↔ x if [y, r] = r and [y, a] = −r.

(vi) y ↔ r + a↔ r − a↔ x if [y, r] = −r and [y, a] = r.

(vii) y ↔ 2r + a↔ r − a↔ x if [y, r] = −r and [y, a] = −r.

Therefore, d(x, y) ≤ 3.

Suppose [x, r] = r and [x, a] = −r. Then

[x, 2r − a] = [x, 2r]− [x, a] = −r − (−r) = 0.

Hence, x↔ 2r − a. Now, proceeding as above we get the following cases:

(i) x↔ 2r − a↔ r ↔ y if y ↔ r.

(ii) x↔ 2r − a↔ 2r ↔ y if y = r but y ↔ 2r.

(iii) x↔ 2r − a↔ a↔ y if y = r and 2r but y ↔ a.

(iv) y ↔ r − a↔ 2r − a↔ x if [y, r] = r and [y, a] = r.

(v) y ↔ 2r − a↔ x if [y, r] = r and [y, a] = −r.

(vi) y ↔ r + a↔ 2r − a↔ x if [y, r] = −r and [y, a] = r.

(vii) y ↔ 2r + a↔ 2r − a↔ x if [y, r] = −r and [y, a] = −r.

Therefore, d(x, y) ≤ 3.

Suppose [x, r] = −r and [x, a] = r. Then

[x, r + a] = [x, r] + [x, a] = −r + r = 0.

Hence, x↔ r + a. Proceeding as above we get the following similar cases:
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(i) x↔ r + a↔ r ↔ y if y ↔ r.

(ii) x↔ r + a↔ 2r ↔ y if y = r but y ↔ 2r.

(iii) x↔ r + a↔ a↔ y if y = r and 2r but y ↔ a.

(iv) y ↔ r − a↔ r + a↔ x if [y, r] = r and [y, a] = r.

(v) y ↔ 2r − a↔ r + a↔ x if [y, r] = r and [y, a] = −r.

(vi) y ↔ r + a↔ x if [y, r] = −r and [y, a] = r.

(vii) y ↔ 2r + a↔ r + a↔ x if [y, r] = −r and [y, a] = −r.

Therefore, d(x, y) ≤ 3.

Suppose [x, r] = −r and [x, a] = −r. Then

[x, 2r + a] = [x, 2r] + [x, a] = r + (−r) = 0.

Hence, x↔ 2r + a and so we get the the following similar cases:

(i) x↔ 2r + a↔ r ↔ y if y ↔ r.

(ii) x↔ 2r + a↔ 2r ↔ y if y = r but y ↔ 2r.

(iii) x↔ 2r + a↔ a↔ y if y = r and 2r but y ↔ a.

(iv) y ↔ r − a↔ 2r + a↔ x if [y, r] = r and [y, a] = r.

(v) y ↔ 2r − a↔ 2r + a↔ x if [y, r] = r and [y, a] = −r.

(vi) y ↔ r + a↔ 2r + a↔ x if [y, r] = −r and [y, a] = r.

(vii) y ↔ 2r + a↔ x if [y, r] = −r and [y, a] = −r.

Therefore, d(x, y) ≤ 3. Hence, in all the cases diam(∆r
R) ≤ 3. This completes the

proof.

As a consequence of Theorem 6.1.1(a) and Corollary 6.1.2 we get the following

result.
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Corollary 6.2.4. Let x be any vertex in ∆r
R.

(a) If r = 0 then deg(x) = |R| − |CR(x)|.

(b) If r 6= 0 and 2r = 0 then

deg(x) =


|R| − |Z(R)| − 1, if CrR(x) = ∅

|R| − |Z(R)| − |CR(x)| − 1, otherwise.

(c) If r 6= 0 and 2r 6= 0 then

deg(x) =


|R| − |Z(R)| − 1, if CrR(x) = ∅

|R| − |Z(R)| − 2|CR(x)| − 1, otherwise.

Some applications of Corollary 6.2.4 are given below.

Theorem 6.2.5. Let R be a non-commutative ring such that |R| 6= 8 and let Kn be the

complete graph on n-vertices. If ∆r
R has an end vertex then r 6= 0 and ∆r 6=0

R = 4K2 if and

only if R is isomorphic to E(9) or F (9). Hence, ΓrR is neither a tree nor a lollipop graph.

Proof. Let x ∈ R \ Z(R) be an end vertex in ∆r
R. Then deg(x) = 1. If r = 0 then, by

Corollary 6.2.4(a), we have deg(x) = |R|−|CR(x)|. Therefore, |R|−|CR(x)| = 1 and hence

|CR(x)| = 1, a contradiction. Therefore, r 6= 0. Now we consider the following cases.

Case 1: r 6= 0 and 2r = 0.

By Corollary 6.2.4(b), we have deg(x) = |R| − |Z(R)| − 1 or |R| − |Z(R)| − |CR(x)| − 1.

Hence |R| − |Z(R)| − 1 = 1 or |R| − |Z(R)| − |CR(x)| − 1 = 1.

Subcase 1.1: |R| − |Z(R)| = 2.

In this case we have |Z(R)| = 1 or 2. If |Z(R)| = 1 then |R| = 3, a contradiction. If

|Z(R)| = 2 then |R| = 4. Therefore, the additive quotient group R
Z(R) is cyclic. Hence, by

Result 1.3.1, R is commutative; a contradiction.

Subcase 1.2: |R| − |Z(R)| − |CR(x)| = 2.

In this case, |Z(R)| = 1 or 2. If |Z(R)| = 1 then |R| − |CR(x)| = 3. Therefore,

|CR(x)| = 3 and hence |R| = 6. Therefore, R is commutative; a contradiction. If |Z(R)| = 2

then |R| − |CR(x)| = 4. Therefore, |CR(x)| = 4 and so |R| = 8, a contradiction.
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Case 2: r 6= 0 and 2r 6= 0.

By Corollary 6.2.4(c), we have deg(x) = |R|− |Z(R)|−1 or |R|− |Z(R)|−2|CR(x)|−1.

Hence, |R| − |Z(R)| − 1 = 1 or |R| − |Z(R)| − 2|CR(x)| − 1 = 1. If |R| − |Z(R)| = 2

then as shown in Subcase 1.1 we get a contradiction. If |R| − |Z(R)| − 2|CR(x)| = 2 then

|Z(R)| = 1 or 2.

Subcase 2.1: |Z(R)| = 1.

In this case, |R| − 2|CR(x)| = 3. Therefore, |CR(x)| = 3 and so |R| = 9. Hence, R is

isomorphic to either E(9) or F (9). It follows from Figure 6.4 that ∆r
R = 4K2 noting that

∆r
E(9) and ∆r

F (9) are isomorphic.

Subcase 2.2: |Z(R)| = 2.

In this case, |R| − 2|CR(x)| = 4. Therefore, |CR(x)| = 4 and so |R| = 12. It follows

that the additive quotient group R
Z(R) is cyclic. Hence, by Result 1.3.1, R is commutative;

a contradiction. Hence, the result follows.

We have the following corollary to Theorem 6.2.5.

Corollary 6.2.6. Let R be a non-commutative ring such that |R| 6= 8. Then

(a) ∆r
R is 1-regular if and only if r 6= 0 and R is isomorphic to E(9) or F (9).

(b) The non-commuting graph of R does not have any end vertex. In particular, non-

commuting graph of such ring is neither a tree nor a lollipop graph.

Proof. The results follow from Theorem 6.2.5 noting the facts that any 1-regular graph has

end vertices and non-commuting graph of R is the graph ∆0
R.

Theorem 6.2.7. Let R be a non-commutative ring such that |R| 6= 8, 12. If ∆r
R has a

vertex of degree 2 then r = 0 and ∆0
R is a triangle if and only if R is isomorphic to E(4)

or F (4).

Proof. Suppose ∆r
R has a vertex x of degree 2. Consider the following cases.

Case 1: r = 0.

By Corollary 6.2.4(a), we have deg(x) = |R| − |CR(x)|. Therefore, |R| − |CR(x)| = 2

and hence |CR(x)| = 2. Therefore, |R| = 4 and so R is isomorphic to E(4) or F (4). Hence,

∆r
R is a triangle (as shown in Figure 6.1 noting that ∆r

E(4) and ∆r
F (4) are isomorphic).
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Case 2: r 6= 0 and 2r = 0.

By Corollary 6.2.4(b), we have deg(x) = |R| − |Z(R)| − 1 or deg(x) = |R| − |Z(R)| −
|CR(x)| − 1. Therefore |R| − |Z(R)| − 1 = 2 or |R| − |Z(R)| − |CR(x)| − 1 = 2.

Subcase 2.1: |R| − |Z(R)| = 3.

In this case we have |Z(R)| = 1 or 3. If |Z(R)| = 1 then |R| = 4. As shown in Figure

6.2, ∆r
R is a null graph on three vertices. Therefore, it has no vertex of degree 2, which is

a contradiction. If |Z(R)| = 3 then |R| = 6. Therefore, R is commutative; a contradiction.

Subcase 2.2: |R| − |Z(R)| − |CR(x)| = 3.

In this case, |Z(R)| = 1 or 3. If |Z(R)| = 1 then |R|−|CR(x)| = 4. Therefore, |CR(x)| =
2 or 4 and hence |R| = 6 or 8; a contradiction. If |Z(R)| = 3 then |R| − |CR(x)| = 6.

Therefore, |CR(x)| = 6 and so |R| = 12, which contradicts our assumption.

Case 3: r 6= 0 and 2r 6= 0.

By Corollary 6.2.4(c), we have deg(x) = |R|− |Z(R)|−1 or |R|− |Z(R)|−2|CR(x)|−1.

Hence, |R| − |Z(R)| − 1 = 2 or |R| − |Z(R)| − 2|CR(x)| − 1 = 2.

If |R| − |Z(R)| = 3 then as shown in Subcase 2.1 we get a contradiction. If |R| −
|Z(R)| − 2|CR(x)| = 3 then |Z(R)| = 1 or 3.

Subcase 3.1: |Z(R)| = 1.

In this case, |R| − 2|CR(x)| = 4. Therefore, |CR(x)| = 2 or 4 and hence |R| = 8 or 12

which is a contradiction.

Subcase 3.2: |Z(R)| = 3.

In this case, |R| − 2|CR(x)| = 6. Therefore, |CR(x)| = 6 and so |R| = 18. It follows

that the additive quotient group R
Z(R) is cyclic. Hence, by Result 1.3.1, R is commutative;

a contradiction. Hence, the result follows.

We have the following corollary to Theorem 6.2.7.

Corollary 6.2.8. Let R be a non-commutative ring such that |R| 6= 8, 12. Then

(a) ∆r
R is 2-regular if and only if r = 0 and R is isomorphic to E(4) or F (4).

(b) The non-commuting graph of R is 2-regular if and only if R is isomorphic to E(4)

or F (4).
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Proof. The results follow from Theorem 6.2.7 noting the facts that any 2-regular graph has

vertices of degree 2 and non-commuting graph of R is the graph ∆0
R.

Theorem 6.2.9. Let R be a non-commutative ring such that |R| 6= 16, 18. Then the graph

∆r
R has no vertex of degree 3.

Proof. Suppose ∆r
R has a vertex x of degree 3.

Case 1: r = 0.

By Corollary 6.2.4(a), we have deg(x) = |R| − |CR(x)|. Therefore, |R| − |CR(x)| = 3

and hence |CR(x)| = 3. Therefore, |R| = 6 and hence R is commutative; a contradiction.

Case 2: r 6= 0 and 2r = 0.

By Corollary 6.2.4(b), we have deg(x) = |R| − |Z(R)| − 1 or deg(x) = |R| − |Z(R)| −
|CR(x)| − 1. Therefore |R| − |Z(R)| − 1 = 3 or |R| − |Z(R)| − |CR(x)| − 1 = 3.

Subcase 2.1: |R| − |Z(R)| = 4.

In this case we have |Z(R)| = 1 or 2 or 4. If |Z(R)| = 1 or 2 then |R| = 5 or 6 and hence

R is commutative; a contradiction. If |Z(R)| = 4 then |R| = 8. Therefore, the additive

quotient group R
Z(R) is cyclic. Hence, by Result 1.3.1, R is commutative; a contradiction.

Subcase 2.2: |R| − |Z(R)| − |CR(x)| = 4.

In this case, |Z(R)| = 1 or 2 or 4. If |Z(R)| = 1 then |R| − |CR(x)| = 5. Therefore,

|CR(x)| = 5 and hence |R| = 10. Therefore R is commutative; a contradiction. If |Z(R)| =
2 then |R| − |CR(x)| = 6. Therefore, |CR(x)| = 6 and so |R| = 12. It follows that

the additive quotient group R
Z(R) is cyclic. Hence, by Result 1.3.1, R is commutative; a

contradiction. If |Z(R)| = 4 then |R| − |CR(x)| = 8. Therefore, |CR(x)| = 8 and so

|R| = 16; a contradiction.

Case 3: r 6= 0 and 2r 6= 0.

By Corollary 6.2.4(c), we have deg(x) = |R|− |Z(R)|−1 or |R|− |Z(R)|−2|CR(x)|−1.

Hence, |R| − |Z(R)| − 1 = 3 or |R| − |Z(R)| − 2|CR(x)| − 1 = 3.

If |R| − |Z(R)| = 4 then as shown in Subcase 2.1 we get a contradiction. If |R| −
|Z(R)| − 2|CR(x)| = 4 then |Z(R)| = 1 or 2 or 4.

Subcase 3.1: |Z(R)| = 1.

In this case, |R| − 2|CR(x)| = 5. Therefore, |CR(x)| = 5 then |R| = 15. Therefore R is

commutative; a contradiction.
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Subcase 3.2: |Z(R)| = 2.

In this case, |R|−2|CR(x)| = 6. Therefore, |CR(x)| = 6 and so |R| = 18; a contradiction.

Subcase 3.3: |Z(R)| = 4.

In this case, |R| − 2|CR(x)| = 8. Therefore, |CR(x)| = 8 and so |R| = 24. It follows

that the additive quotient group R
Z(R) is cyclic. Hence, by Result 1.3.1, R is commutative;

a contradiction. This completes the proof.

We have the following corollary to Theorem 6.2.9.

Corollary 6.2.10. Let R be a non-commutative ring such that |R| 6= 16, 18. Then ∆r
R is

not 3-regular. In particular, the non-commuting graph of such R is not 3-regular.

Theorem 6.2.11. Let R be a non-commutative ring such that |R| 6= 8, 12, 18, 20. Then

∆r
R has no vertex of degree 4.

Proof. Suppose ∆r
R has a vertex x of degree 4.

Case 1: r = 0.

By Corollary 6.2.4(a), we have deg(x) = |R| − |CR(x)|. Therefore, |R| − |CR(x)| = 4

and hence |CR(x)| = 2 or 4. If |CR(x)| = 2 then |R| = 6 and hence R is commutative; a

contradiction. If |CR(x)| = 4 then |R| = 8; a contradiction.

Case 2: r 6= 0 and 2r = 0.

By Corollary 6.2.4(b), we have deg(x) = |R| − |Z(R)| − 1 or deg(x) = |R| − |Z(R)| −
|CR(x)| − 1. Therefore |R| − |Z(R)| − 1 = 4 or |R| − |Z(R)| − |CR(x)| − 1 = 4.

Subcase 2.1: |R| − |Z(R)| = 5.

In this case we have |Z(R)| = 1 or 5. Then |R| = 6 or 10 and hence R is commutative;

a contradiction.

Subcase 2.2: |R| − |Z(R)| − |CR(x)| = 5.

In this case, |Z(R)|= 1 or 5. If |Z(R)|= 1 then |R|−|CR(x)|= 6. Therefore, |CR(x)|= 2

or 3 or 6. If |CR(x)|= 2 then |R|= 8; a contradiction. If |CR(x)|= 3 then |R|= 9. It follows

from Figure 6.4 that ∆r
R = 4K2 which is a contradiction. If |CR(x)|= 6 then |R|= 12;

a contradiction. If |Z(R)| = 5 then |R| − |CR(x)| = 10. Therefore, |CR(x)| = 10 and so

|R| = 20; a contradiction.
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Case 3: r 6= 0 and 2r 6= 0.

By Corollary 6.2.4(c), we have deg(x) = |R|− |Z(R)|−1 or |R|− |Z(R)|−2|CR(x)|−1.

Hence, |R| − |Z(R)| − 1 = 4 or |R| − |Z(R)| − 2|CR(x)| − 1 = 4.

If |R| − |Z(R)| = 5 then as shown in Subcase 2.1 we get a contradiction. If |R| −
|Z(R)| − 2|CR(x)| = 5 then |Z(R)| = 1 or 5.

Subcase 3.1: |Z(R)| = 1.

In this case, |R| − 2|CR(x)| = 6. Therefore, |CR(x)| = 2 or 3 or 6. If |CR(x)| = 2 then

|R| = 10. Therefore R is commutative; a contradiction. If |CR(x)| = 3 or 6 then |R| = 12

or 18; a contradiction.

Subcase 3.2: |Z(R)| = 5.

In this case, |R| − 2|CR(x)| = 10. Therefore, |CR(x)| = 10 and so |R| = 30. It follows

that the additive quotient group R
Z(R) is cyclic. Hence, by Result 1.3.1, R is commutative;

a contradiction. This completes the proof.

We have the following corollary to Theorem 6.2.11.

Corollary 6.2.12. Let R be a non-commutative ring such that |R| 6= 8, 12, 18, 20. Then

∆r
R is not 4-regular. In particular, the non-commuting graph of such R is not 4-regular.

Theorem 6.2.13. Let R be a non-commutative ring such that |R| 6= 8, 16, 24, 27. Then

∆r
R has no vertex of degree 5.

Proof. Suppose ∆r
R has a vertex x of degree 5.

Case 1: r = 0.

By Corollary 6.2.4(a), we have deg(x) = |R| − |CR(x)|. Therefore, |R| − |CR(x)| = 5

and hence |CR(x)| = 5. Then |R| = 10 and hence R is commutative; a contradiction.

Case 2: r 6= 0 and 2r = 0.

By Corollary 6.2.4(b), we have deg(x) = |R| − |Z(R)| − 1 or deg(x) = |R| − |Z(R)| −
|CR(x)| − 1. Therefore |R| − |Z(R)| − 1 = 5 or |R| − |Z(R)| − |CR(x)| − 1 = 5.

Subcase 2.1: |R| − |Z(R)| = 6.

In this case we have |Z(R)| = 1 or 2 or 3 or 6. If |Z(R)| = 1 then |R| = 7 and

hence R is commutative; a contradiction. If |Z(R)| = 2 then |R| = 8; a contradiction. If

|Z(R)| = 3 then |R| = 9. It follows from Figure 6.4 that ∆r
R = 4K2 which is a contradiction.
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If |Z(R)| = 6 then |R| = 12. Therefore, the additive quotient group R
Z(R) is cyclic. Hence,

by Result 1.3.1, R is commutative; a contradiction.

Subcase 2.2: |R| − |Z(R)| − |CR(x)| = 6.

In this case, |Z(R)| = 1 or 2 or 3 or 6. If |Z(R)| = 1 then |R| − |CR(x)| = 7.

Therefore, |CR(x)| = 7 then |R| = 14 and hence R is commutative; a contradiction. If

|Z(R)| = 2 then |R| − |CR(x)| = 8. Therefore, |CR(x)| = 4 or 8. If |CR(x)| = 4 then

|R| = 12. Therefore, the additive quotient group R
Z(R) is cyclic. Hence, by Result 1.3.1,

R is commutative; a contradiction. If |CR(x)| = 8 then |R| = 16; a contradiction. If

|Z(R)| = 3 then |R| − |CR(x)| = 9. Therefore, |CR(x)| = 9. and so |R| = 18. It follows

that the additive quotient group R
Z(R) is cyclic. Hence, by Result 1.3.1, R is commutative;

a contradiction. If |Z(R)| = 6 then |R| − |CR(x)| = 12. Therefore, |CR(x)| = 12 and so

|R| = 24; a contradiction.

Case 3: r 6= 0 and 2r 6= 0.

By Corollary 6.2.4(c), we have deg(x) = |R|− |Z(R)|−1 or |R|− |Z(R)|−2|CR(x)|−1.

Hence, |R| − |Z(R)| − 1 = 5 or |R| − |Z(R)| − 2|CR(x)| − 1 = 5.

If |R| − |Z(R)| = 6 then as shown in Subcase 2.1 we get a contradiction. If |R| −
|Z(R)| − 2|CR(x)| = 6 then |Z(R)| = 1 or 2 or 3 or 6.

Subcase 3.1: |Z(R)| = 1.

Here we have, |R| − 2|CR(x)| = 7. Therefore, |CR(x)| = 7 then |R| = 21 and hence R

is commutative; a contradiction.

Subcase 3.2: |Z(R)| = 2.

In this case, |R| − 2|CR(x)| = 8. Therefore, |CR(x)| = 4 or 8. If |CR(x)| = 4 or 8 then

|R| = 16 or 24; a contradiction.

Subcase 3.3: |Z(R)| = 3.

In this case, |R|−2|CR(x)| = 9. Therefore, |CR(x)| = 9 and so |R| = 27; a contradiction.

Subcase 3.4: |Z(R)| = 6.

In this case, |R| − 2|CR(x)| = 12. Therefore, |CR(x)| = 12 and so |R| = 36. It follows

that the additive quotient group R
Z(R) is cyclic. Hence, by Result 1.3.1, R is commutative;

a contradiction. This completes the proof.

We have the following corollary to Theorem 6.2.13.
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Corollary 6.2.14. Let R be a non-commutative ring such that |R| 6= 8, 16, 24, 27. Then

∆r
R is not 5-regular. In particular, the non-commuting graph of such R is not 5-regular.

We conclude this chapter with the following characterization of R.

Theorem 6.2.15. Let R be a non-commutative ring such that |R| 6= 8, 12, 16, 24, 28. Then

∆r
R has a vertex of degree 6 if and only if r = 0 and R is isomorphic to E(9) or F (9).

Proof. Suppose ∆r
R has a vertex x of degree 6.

Case 1: r = 0.

By Corollary 6.2.4(a), we have deg(x) = |R|−|CR(x)|. Therefore, |R|−|CR(x)| = 6 and

hence |CR(x)| = 2 or 3 or 6. If |CR(x)| = 2 then |R| = 8; a contradiction. If |CR(x)| = 3

then |R| = 9. Therefore, ∆r
R is a 6-regular graph (as shown in Figure 6.3). If |CR(x)| = 6

then |R| = 12; a contradiction.

Case 2: r 6= 0 and 2r = 0.

By Corollary 6.2.4(b), we have deg(x) = |R| − |Z(R)| − 1 or deg(x) = |R| − |Z(R)| −
|CR(x)| − 1. Therefore |R| − |Z(R)| − 1 = 6 or |R| − |Z(R)| − |CR(x)| − 1 = 6.

Subcase 2.1: |R| − |Z(R)| = 7.

In this case we have |Z(R)| = 1 or 7. If |Z(R)| = 1 then |R| = 8; a contradiction. If

|Z(R)| = 7 then |R| = 14 and hence R is commutative; a contradiction.

Subcase 2.2: |R| − |Z(R)| − |CR(x)| = 7.

In this case, |Z(R)| = 1 or 7. If |Z(R)| = 1 then |R|−|CR(x)| = 8. Therefore, |CR(x)| =
2 or 4 or 8. If |CR(x)| = 2 then |R| = 10. Thus R is commutative; a contradiction. If

|CR(x)| = 4 or 8 then |R| = 12 or 16; which are contradictions. If |Z(R)| = 7 then

|R| − |CR(x)| = 14. Therefore, |CR(x)| = 14 and so |R| = 28; a contradiction.

Case 3: r 6= 0 and 2r 6= 0.

By Corollary 6.2.4(c), we have deg(x) = |R|− |Z(R)|−1 or |R|− |Z(R)|−2|CR(x)|−1.

Hence, |R| − |Z(R)| − 1 = 6 or |R| − |Z(R)| − 2|CR(x)| − 1 = 6.

If |R| − |Z(R)| = 7 then as shown in Subcase 2.1 we get a contradiction. If |R| −
|Z(R)| − 2|CR(x)| = 7 then |Z(R)| = 1 or 7.

Subcase 3.1: |Z(R)| = 1.

In this case, |R| − 2|CR(x)| = 8. Therefore, |CR(x)| = 2 or 4 or 8 then |R| = 12 or 16

or 24; all are contradictions to the order of R.
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Subcase 3.2: |Z(R)| = 7.

In this case, |R| − 2|CR(x)| = 14. Therefore, |CR(x)| = 14 and so |R| = 42. It follows

that the additive quotient group R
Z(R) is cyclic. Hence, by Result 1.3.1, R is commutative;

a contradiction. This completes the proof.

We have the following corollary to Theorem 6.2.15.

Corollary 6.2.16. Let R be a non-commutative ring such that |R| 6= 8, 12, 16, 24, 28. Then

∆r
R is 6-regular if and only if r = 0 and R is isomorphic to E(9) or F (9). In particular,

the non-commuting graph of such R is 6-regular if and only if R is isomorphic to E(9) or

F (9).

6.3 Conclusion

In this chapter, the study of non-commuting graphs of finite rings (ΓR) has been extended

by introducing r-noncommuting graph of R (ΓrR) for a given element r ∈ R. Expressions

for vertex degrees have been derived and showed that ΓrR is neither a regular graph nor

a lollipop graph nor a complete bipartite graph if R is non-commutative. Among other

results, finite non-commutative rings have been characterized such that ΓrR is a tree. As a

consequence of our results, characterizations of certain finite non-commutative rings such

that their non-commuting graphs are n-regular for n ≤ 6 have been obtained.
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