Chapter 7

Relative r-noncommuting graphs of finite rings

In this chapter, we generalize the notion of r-noncommuting graph of a finite ring R. More precisely, we consider relative r-noncommuting graph of R relative to a subring S, which is denoted by $\Gamma_{S, R}^{r}$ and defined as a simple undirected graph with vertex set R and two vertices x and y are adjacent if $x \in S$ or $y \in S$ and $[x, y] \neq r,-r$. Clearly $\Gamma_{R, R}^{r}$ is the r-noncommuting graph of R. Further, if $r=0$ then the induced subgraph of $\Gamma_{S, R}^{r}$ with vertex set $R \backslash C_{R}(S)$ is nothing but the relative non-commuting graph of R which has been studied in [20]. In Section 7.2, we derive formula for degree of any vertex in $\Gamma_{S, R}^{r}$ and characterize all finite rings such that $\Gamma_{S, R}^{r}$ is a star, lollipop or a regular graph. In Section 7.3. we show that $\Gamma_{S_{1}, R_{1}}^{r}$ is isomorphic to $\Gamma_{S_{2}, R_{2}}^{\psi(r)}$ if (ϕ, ψ) is an isoclinism between the pairs of finite rings $\left(S_{1}, R_{1}\right),\left(S_{2}, R_{2}\right)$ and $\left|Z\left(S_{1}, R_{1}\right)\right|=\left|Z\left(S_{2}, R_{2}\right)\right|$. In Section 7.4 we obtain certain relations between the number of edges in $\Gamma_{S, R}^{r}$ and $\operatorname{Pr}_{r}(S, K)$. Finally, we conclude the chapter by deriving certain results on the induced subgraph of $\Gamma_{S, R}^{r}$ with vertex set $R \backslash Z(S, R)$. This chapter is based on our paper [87] submitted for publication.

7.1 Preliminary observations

We have the following observations regarding $\Gamma_{S, R}^{r}$ analogous to the observations in Section 3.1.

Observation 7.1.1. Let S be a subring of a finite ring R and $r \in R$. Then we have the following.
(a) If $r \notin K(S, R)$ then $\Gamma_{S, R}^{r}=K_{|S|}+\overline{K_{|R|-|S|}}$ and so

$$
\operatorname{deg}(x)= \begin{cases}|R|-1 & \text { if } x \in S \\ |S| & \text { if } x \in R \backslash S\end{cases}
$$

(b) If $K(S, R)=\{0\}$ and $r=0$ then $\Gamma_{S, R}^{r}=\overline{K_{|R|}}$.

It follows that if $r \notin K(S, R)$ then
(i) $\Gamma_{S, R}^{r}$ is a tree if and only if $S=\{0\}$ or $|S|=|R|=2$.
(ii) $\Gamma_{S, R}^{r}$ is a star graph if and only if $S=\{0\}$.
(iii) $\Gamma_{S, R}^{r}$ is a complete graph if and only if $S=R$.

Note that if R is commutative or $S=Z(S, R)$ then $K(S, R)=\{0\}$. Therefore, in view of Observation 7.1.1, we consider R to be non-commutative, S to be a subring of R such that $S \neq Z(S, R)$ and $r \in K(S, R)$ throughout this chapter.

7.2 Vertex degree and consequences

For any two given elements $x, r \in R$ we write $C_{S}^{r}(x)$ to denote the set $\{s \in S:[x, s]=r\}$. Note that $C_{S}^{r}(x)$ is the centralizer of x in R if $S=R$ and $r=0$. The following theorem gives degree of any vertex in $\Gamma_{S, R}^{r}$ in terms of $C_{S}^{r}(x)$.

Theorem 7.2.1. Let x be any vertex in $\Gamma_{S, R}^{r}$.
(a) If $r=0$ then $\operatorname{deg}(x)= \begin{cases}|R|-\left|C_{R}(x)\right|, & \text { if } x \in S \\ |S|-\left|C_{S}(x)\right|, & \text { if } x \in R \backslash S .\end{cases}$
(b) If $r \neq 0$ and $2 r=0$ then $\operatorname{deg}(x)= \begin{cases}|R|-\left|C_{R}^{r}(x)\right|-1, & \text { if } x \in S \\ |S|-\left|C_{S}^{r}(x)\right|, & \text { if } x \in R \backslash S .\end{cases}$
(c) If $r \neq 0$ and $2 r \neq 0$ then $\operatorname{deg}(x)= \begin{cases}|R|-2\left|C_{R}^{r}(x)\right|-1, & \text { if } x \in S \\ |S|-2\left|C_{S}^{r}(x)\right|, & \text { if } x \in R \backslash S .\end{cases}$

Proof. (a) Let $r=0$. If $x \in S$ then $\operatorname{deg}(x)$ is the number of $s \in R$ such that $s x \neq s x$. Hence, $\operatorname{deg}(x)=|R|-\left|C_{R}(x)\right|$. If $x \in R \backslash S$ then $\operatorname{deg}(x)$ is the number of $s \in S$ such that $s x \neq s x$. Hence, $\operatorname{deg}(x)=|S|-\left|C_{S}(x)\right|$.
(b) Let $r \neq 0$ and $2 r=0$. In this case, $r=-r$. If $x \in S$ then $s \in R$ is not adjacent to x if and only if $s=x$ or $s \in C_{R}^{r}(x)$. Hence, $\operatorname{deg}(x)=|R|-\left|C_{R}^{r}(x)\right|-1$. If $x \in R \backslash S$ then $s \in S$ is not adjacent to x if and only if $s \in C_{S}^{r}(x)$. Hence, $\operatorname{deg}(x)=|S|-\left|C_{S}^{r}(x)\right|$.
(c) Let $r \neq 0$ and $2 r \neq 0$. In this case, $r \neq-r$. Also, $C_{S}^{r}(x) \cap C_{S}^{-r}(x)=\emptyset$ and $s \in C_{S}^{r}(x)$ if and only if $-s \in C_{S}^{-r}(x)$. Therefore, $C_{S}^{r}(x)$ and $C_{S}^{-r}(x)$ have same cardinality. Further, if $x \in S$ then $s \in R$ is not adjacent to x if and only if $s=x, s \in C_{R}^{r}(x)$ or $s \in C_{R}^{-r}(x)$. Hence, $\operatorname{deg}(x)=|R|-\left|C_{R}^{r}(x)\right|-\left|C_{R}^{-r}(x)\right|-1$. If $x \in R \backslash S$ then $s \in S$ is not adjacent to x if and only if $s \in C_{S}^{r}(x)$ or $s \in C_{S}^{-r}(x)$. Hence, $\operatorname{deg}(x)=|S|-\left|C_{S}^{r}(x)\right|-\left|C_{S}^{-r}(x)\right|$. Hence, the result follows.

The next lemma shows that for all $x, r \in R$ the cardinality of $C_{S}^{r}(x)$ is either zero or $\left|C_{S}(x)\right|$.

Lemma 7.2.2. If $C_{S}^{r}(x)$ is non-empty then $\left|C_{S}^{r}(x)\right|=\left|C_{S}(x)\right|$ for all $x, r \in R$.
Proof. Let $t \in C_{S}^{r}(x)$ and $p \in t+C_{S}(x)$. Then $p=t+m$ for some $m \in C_{S}(x)$. We have

$$
[x, p]=[x, t+m]=x(t+m)-(t+m) x=[x, t]=r
$$

and so $p \in C_{S}^{r}(x)$. Therefore, $t+C_{S}(x) \subseteq C_{S}^{r}(x)$. Again, if $y \in C_{S}^{r}(x)$ then $[x, t]=[x, y]$ which implies $(y-t) x=x(y-t)$. Therefore $(y-t) \in C_{S}(x)$ and so $y \in t+C_{S}(x)$. Thus $C_{S}^{r}(x) \subseteq t+C_{S}(x)$. Hence, $C_{S}^{r}(x)=t+C_{S}(x)$ and the result follows.

By Lemma 7.2.2 and Theorem 7.2.1, we have the following two corollaries.

Corollary 7.2.3. Let $x \in S$ be a vertex in $\Gamma_{S, R}^{r}$.
(a) If $r \neq 0$ and $2 r=0$ then $\operatorname{deg}(x)= \begin{cases}|R|-\left|C_{R}(x)\right|-1, & \text { if } C_{R}^{r}(x) \neq \emptyset \\ |R|-1, & \text { otherwise. }\end{cases}$
(b) If $r \neq 0$ and $2 r \neq 0$ then $\operatorname{deg}(x)= \begin{cases}|R|-2\left|C_{R}(x)\right|-1, & \text { if } C_{R}^{r}(x) \neq \emptyset \\ |R|-1, & \text { otherwise. }\end{cases}$

Corollary 7.2.4. Let $x \in R \backslash S$ be a vertex in $\Gamma_{S, R}^{r}$.
(a) If $r \neq 0$ and $2 r=0$ then $\operatorname{deg}(x)= \begin{cases}|S|-\left|C_{S}(x)\right|, & \text { if } C_{S}^{r}(x) \neq \emptyset \\ |S|, & \text { otherwise. }\end{cases}$
(b) If $r \neq 0$ and $2 r \neq 0$ then $\operatorname{deg}(x)= \begin{cases}|S|-2\left|C_{S}(x)\right|, & \text { if } C_{S}^{r}(x) \neq \emptyset \\ |S|, & \text { otherwise. }\end{cases}$

In the next few results we discuss some properties of $\Gamma_{S, R}^{r}$. The following lemma shows that $\Gamma_{S, R}^{r}$ is a disconnected graph if $r=0$.
Lemma 7.2.5. If $x \in Z(S, R)$ then $\operatorname{deg}(x)= \begin{cases}0, & \text { if } r=0 \\ |R|-1, & \text { if } r \neq 0 .\end{cases}$
Proof. The result follows from Theorem 7.2.1 noting that $x \in S$ and

$$
C_{R}^{r}(x)= \begin{cases}C_{R}(x)=R, & \text { if } r=0 \\ \emptyset, & \text { if } r \neq 0\end{cases}
$$

Lemma 7.2.6. Let S be a subring of a non-commutative ring R with unity 1 and $r \neq 0$. If $1 \in S$ then $\operatorname{deg}(x) \geq 2$ for all $x \in R$.

Proof. The result follows from the fact that $[x, 0]=[x, 1] \neq r$ and $-r$ for all $x \in R$.

Theorem 7.2.7. Let S be a subring of a non-commutative ring R and $r \in R$.
(a) If $r=0$ then $\Gamma_{S, R}^{r}$ is not a tree, star graph, lollipop graph and complete graph.
(b) If $r \neq 0$ and R has unity $1 \in S$ then $\Gamma_{S, R}^{r}$ is not a tree and a star graph.

Proof. The results follow from Lemma 7.2.5 and Lemma 7.2.6.
Theorem 7.2.8. Let S be a subring of a non-commutative ring R and $r \neq 0$. Then $\Gamma_{S, R}^{r}$ is a star if and only if $2 r=0, S \neq\{0\}$ and R is isomorphic to $E(4)=\left\langle a, b: 2 a=2 b=0, a^{2}=\right.$ $\left.a, b^{2}=b, a b=a, b a=b\right\rangle$ or $F(4)=\left\langle x, y: 2 x=2 y=0, x^{2}=x, y^{2}=y, x y=y, y x=x\right\rangle$.

Proof. If R is isomorphic to $E(4)$ or $F(4)$ then it is easy to see that $\Gamma_{S, R}^{r}$ is a star graph for any subring S.

Suppose that $\Gamma_{S, R}^{r}$ is a star graph. Clearly, $\operatorname{deg}(0)=|R|-1$. Also, $\operatorname{deg}(x)=1$ for all $0 \neq x \in R$. Since $r \neq 0$ and $r \in K(S, R)$ we have $S \neq\{0\}$. Let $0 \neq y \in R$. Then consider the following cases.
Case 1: $y \in S$.
Note that $\operatorname{deg}(y) \neq|R|-1$. Therefore, if $2 r=0$ then, by Corollary 7.2.3(a), we have

$$
1=\operatorname{deg}(y)=|R|-\left|C_{R}(y)\right|-1 .
$$

Therefore, $|R|-\left|C_{R}(y)\right|=2$. We have $0, y \in C_{R}(y)$. Since $C_{R}(y)$ is a subring of $R,\left|C_{R}(y)\right|$ divides $|R|-\left|C_{R}(y)\right|$. Therefore, $\left|C_{R}(y)\right|=2$ and hence $|R|=4$.

If $2 r \neq 0$ then, by Corollary 7.2 .3 (b), we have

$$
1=\operatorname{deg}(y)=|R|-2\left|C_{R}(y)\right|-1
$$

Therefore, $\left|C_{R}(y)\right|=2$ and hence $|R|=6$, a contradiction since R is non-commutative.
Hence, $2 r=0$ and $|R|=4$.
Case 2: $y \in R \backslash S$.
Note that $\operatorname{deg}(y) \neq|S|$, otherwise $|S|=1$; a contradiction. Therefore, if $2 r=0$ then, by Corollary 7.2.4 (a), we have

$$
1=\operatorname{deg}(y)=|S|-\left|C_{S}(y)\right| .
$$

We have $0 \in C_{S}(y)$. Since $C_{S}(y)$ is a subring of $S,\left|C_{S}(y)\right|$ divides $|S|-\left|C_{S}(y)\right|$. Therefore, $\left|C_{S}(y)\right|=1$ and hence $|S|=2$. Thus, S has a non-zero element and so, by Case 1 , we have $|R|=4$.

If $2 r \neq 0$ then, by Corollary 7.2 .4 (b), we have

$$
1=\operatorname{deg}(y)=|S|-2\left|C_{S}(y)\right| .
$$

Therefore, $\left|C_{S}(y)\right|=1$ and hence $|S|=3$. Therefore, S has a non-zero element and so, by Case 1, we have $2 r=0$ and $|R|=4$, a contradiction.

Hence, $2 r=0$ and R is isomorphic to $E(4)$ or $F(4)$. Hence, the result follows.
Theorem 7.2.9. Let S be a non-commutative subring of R. Then $\Gamma_{S, R}^{r}$ is not a lollipop graph.

Proof. If $r=0$ then the result follows from Theorem 7.2.7(a). Let $r \neq 0$ and $\Gamma_{S, R}^{r}$ be a lollipop graph. Then there exits an element $x \in R$ such that $\operatorname{deg}(x)=1$.
Case 1: $x \in S$
By Corollary 7.2.3, we have $\operatorname{deg}(x)=|R|-1=1$ or $\operatorname{deg}(x)=|R|-\left|C_{R}(x)\right|-1=1$ or $\operatorname{deg}(x)=|R|-2\left|C_{R}(x)\right|-1=1$. Therefore $|R|-\left|C_{R}(x)\right|=2$ or $|R|-2\left|C_{R}(x)\right|=2$ since $|R| \neq 2$. Thus $\left|C_{R}(x)\right|=2$ and so $|R|=4$ since $|R| \neq 6$. Hence, by Theorem $7.2 .8, \Gamma_{S, R}^{r}$ is a star graph; a contradiction.
Case 2: $x \in R \backslash S$
By Corollary 7.2.4, we have $\operatorname{deg}(x)=|S|-\left|C_{S}(x)\right|=1$ or $\operatorname{deg}(x)=|S|-2\left|C_{S}(x)\right|=1$ since $|S| \neq 1$. Therefore $\left|C_{S}(x)\right|=1$ and so $|S|=2$ or 3 . Hence, S is commutative, a contradiction.

Note that Theorem 7.2.9 is a generalization of Theorem 6.1.4. We conclude this section with the following result.

Theorem 7.2.10. Let S be a subring of a non-commutative ring R. Then $\Gamma_{S, R}^{r}$ is regular if and only if $K(S, R)=\{0\}$.

Proof. If $K(S, R)=\{0\}$ then $r=0$. Therefore, by Observation 7.1.1(b), it follows that $\Gamma_{S, R}^{r}$ is regular. Suppose that $\Gamma_{S, R}^{r}$ is regular. If $r=0$ then, by Lemma 7.2.5, we have $\operatorname{deg}(0)=0$. Therefore $\Gamma_{S, R}^{r}=\overline{K_{|R|}}$ and so $K(S, R)=\{0\}$. If $r \neq 0$ then, by Lemma 7.2.5.
we have $\operatorname{deg}(0)=|R|-1$. Therefore, $\Gamma_{S, R}^{r}$ is a complete graph and so $S=R$. That is, $\Gamma_{R, R}^{r}$ is regular; which is a contradiction by Theorem 6.1.5.

$7.3 \Gamma_{S, R}^{r}$ of isoclinic pairs

In this section, we mainly prove the following result.
Theorem 7.3.1. Let R_{1} and R_{2} be two finite rings. Let S_{1} and S_{2} be two subrings of R_{1} and R_{2} respectively such that $\left|Z\left(S_{1}, R_{1}\right)\right|=\left|Z\left(S_{2}, R_{2}\right)\right|$. If $r \in\left[S_{1}, R_{1}\right]$ and (ϕ, ψ) is an isoclinism between the pairs $\left(S_{1}, R_{1}\right)$ and $\left(S_{2}, R_{2}\right)$ then $\Gamma_{S_{1}, R_{1}}^{r} \cong \Gamma_{S_{2}, R_{2}}^{\psi(r)}$.

Proof. We have $\phi: \frac{R_{1}}{Z\left(S_{1}, R_{1}\right)} \rightarrow \frac{R_{2}}{Z\left(S_{2}, R_{2}\right)}$ is an isomorphism such that $\phi\left(\frac{S_{1}}{Z\left(S_{1}, R_{1}\right)}\right)=$ $\frac{S_{2}}{Z\left(S_{2}, R_{2}\right)}$. Therefore, $\left|\frac{R_{1}}{Z\left(S_{1}, R_{1}\right)}\right|=\left|\frac{R_{2}}{Z\left(S_{2}, R_{2}\right)}\right|$ and $\left|\frac{S_{1}}{Z\left(S_{1}, R_{1}\right)}\right|=\left|\frac{S_{2}}{Z\left(S_{2}, R_{2}\right)}\right|$. Let $\left|\frac{S_{1}}{Z\left(S_{1}, R_{1}\right)}\right|=m$ and $\left|\frac{R_{1}}{Z\left(S_{1}, R_{1}\right)}\right|=n$. Let $\left\{s_{1}, s_{2}, \ldots, s_{m}, r_{m+1}, \ldots, r_{n}\right\}$ and $\left\{s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{m}^{\prime}, r_{m+1}^{\prime}, \ldots, r_{n}^{\prime}\right\}$ be two transversals of $\frac{R_{1}}{Z\left(S_{1}, R_{1}\right)}$ and $\frac{R_{2}}{Z\left(S_{2}, R_{2}\right)}$ respectively such that $\left\{s_{1}, s_{2}, \ldots, s_{m}\right\}$ and $\left\{s_{1}^{\prime}, s_{2}^{\prime}, \ldots, s_{m}^{\prime}\right\}$ are transversals of $\frac{S_{1}}{Z\left(S_{1}, R_{1}\right)}$ and $\frac{S_{2}}{Z\left(S_{2}, R_{2}\right)}$ respectively.

Let ϕ be defined as $\phi\left(s_{i}+Z\left(S_{1}, R_{1}\right)\right)=s_{i}^{\prime}+Z\left(S_{2}, R_{2}\right), \phi\left(r_{j}+Z\left(S_{1}, R_{1}\right)\right)=r_{j}^{\prime}+Z\left(S_{2}, R_{2}\right)$ for $1 \leq i \leq m$ and $m+1 \leq j \leq n$. Let $\theta: Z\left(S_{1}, R_{1}\right) \rightarrow Z\left(S_{2}, R_{2}\right)$ be a one-to-one correspondence. Let us define a map $\alpha: R_{1} \rightarrow R_{2}$ such that $\alpha\left(s_{i}+z\right)=s_{i}^{\prime}+\theta(z)$, $\alpha\left(r_{j}+z\right)=r_{j}^{\prime}+\theta(z)$ for $z \in Z\left(S_{1}, R_{1}\right), 1 \leq i \leq m$ and $m+1 \leq j \leq n$. Then α is a bijection. Suppose u, v are adjacent in $\Gamma_{S_{1}, R_{1}}^{r}$. Then $u \in S_{1}$ or $v \in S_{1}$ and $[u, v] \neq r,-r$. Without any loss of generality, let us assume that $u \in S_{1}$. Then $u=s_{i}+z$ for $1 \leq i \leq m$ and $v=t+z_{1}$ where $z, z_{1} \in Z\left(S_{1}, R_{1}\right), t \in\left\{s_{1}, s_{2}, \ldots, s_{m}, r_{m+1}, \ldots, r_{n}\right\}$. Therefore, for some $t^{\prime} \in\left\{s_{1}^{\prime}, \ldots, s_{m}^{\prime}, r_{m+1}^{\prime}, \ldots, r_{n}^{\prime}\right\}$, we have

$$
\begin{aligned}
& {\left[s_{i}+z, t+z_{1}\right] \neq r,-r } \\
\Rightarrow & \psi\left(\left[s_{i}+z, t+z_{1}\right]\right) \neq \psi(r),-\psi(r) \\
\Rightarrow & {\left[s_{i}^{\prime}+\theta(z), t^{\prime}+\theta\left(z_{1}\right)\right] \neq \psi(r),-\psi(r) } \\
\Rightarrow & {\left[\alpha\left(s_{i}+z\right), \alpha\left(t+z_{1}\right)\right] \neq \psi(r),-\psi(r) } \\
\Rightarrow & {[\alpha(u), \alpha(v)] \neq \psi(r),-\psi(r) . }
\end{aligned}
$$

This shows that $\alpha(u)$ and $\alpha(v)$ are adjacent in $\Gamma_{S_{2}, R_{2}}^{\psi(r)}$ noting that $\alpha(u) \in S_{2}$. Hence, α is an isomorphism between the graphs $\Gamma_{S_{1}, R_{1}}^{r}$ and $\Gamma_{S_{2}, R_{2}}^{\psi(r)}$. This completes the proof.

7.4 Connecting $\Gamma_{S, R}^{r}$ with $\operatorname{Pr}_{r}(S, R)$

In this section, we derive some connections between $\Gamma_{S, R}^{r}$ and $\operatorname{Pr}_{r}(S, R)$. Let $\left|e\left(\Gamma_{S, R}^{r}\right)\right|$ denotes the number of edges in $\Gamma_{S, R}^{r}$. If $r \notin K(S, R)$ then it follows from Observation 7.1.1 that

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right|=|S||R|-\frac{|S|^{2}+|S|}{2} .
$$

The following theorem gives the number of edges in $\Gamma_{S, R}^{r}$ in terms of $\operatorname{Pr}_{r}(S, R)$ and $\operatorname{Pr}_{r}(S)$.
Theorem 7.4.1. Let S be a subring of a finite ring R.
(a) If $r=0$ then

$$
2\left|e\left(\Gamma_{S, R}^{r}\right)\right|=2|S||R|(1-\operatorname{Pr}(S, R))-|S|^{2}(1-\operatorname{Pr}(S)) .
$$

(b) If $r \neq 0$ and $2 r=0$ then

$$
2\left|e\left(\Gamma_{S, R}^{r}\right)\right|=\left\{\begin{array}{l}
2|S||R|\left(1-\operatorname{Pr}_{r}(S, R)\right)-|S|^{2}\left(1-\operatorname{Pr}_{r}(S)\right)-|S|, \quad \text { if } r \in S \\
2|S||R|\left(1-\operatorname{Pr}_{r}(S, R)\right)-|S|^{2}-|S|, \quad \text { if } r \in R \backslash S
\end{array}\right.
$$

(c) If $r \neq 0$ and $2 r \neq 0$ then

$$
2\left|e\left(\Gamma_{S, R}^{r}\right)\right|= \begin{cases}2|S||R|\left(1-\sum_{u=r,-r} \operatorname{Pr}_{u}(S, R)\right)- \\ |S|^{2}\left(1-\sum_{u=r,-r} \operatorname{Pr}_{u}(S)\right)-|S|, & \text { if } r \in S \\ 2|S||R|\left(1-\sum_{u=r,-r} \operatorname{Pr}_{u}(S, R)\right)-|S|^{2}-|S|, & \text { if } r \in R \backslash S\end{cases}
$$

Proof. Let $\mathbb{I}=\{(x, y) \in S \times R: x \neq y,[x, y] \neq r$ and $[x, y] \neq-r\}$ and $\mathbb{J}=\{(x, y) \in$ $R \times S: x \neq y,[x, y] \neq r$ and $[x, y] \neq-r\}$. Then $\mathbb{I} \cap \mathbb{J}=\{(x, y) \in S \times S: x \neq y,[x, y] \neq$ r and $[x, y] \neq-r\}$.

It is easy to see that $(x, y) \mapsto(y, x)$ defines a bijective map from \mathbb{I} to \mathbb{J} and so $|\mathbb{I}|=|\mathbb{J}|$. Also, $2\left|e\left(\Gamma_{S, R}^{r}\right)\right|=|\mathbb{I} \cup \mathbb{J}|$. Therefore,

$$
\begin{equation*}
2\left|e\left(\Gamma_{S, R}^{r}\right)\right|=2|\mathbb{I}|-|\mathbb{I} \cap \mathbb{J}| . \tag{7.4.1}
\end{equation*}
$$

(a) If $r=0$ then, by equation (1.3.2), we have

$$
\begin{aligned}
|\mathbb{\mathbb { Z }}| & =|\{(x, y) \in S \times R:[x, y] \neq 0\}| \\
& =|S||R|-|\{(x, y) \in S \times R:[x, y]=0\}| \\
& =|S||R|(1-\operatorname{Pr}(S, R))
\end{aligned}
$$

and

$$
\begin{aligned}
|\mathbb{I} \cap \mathbb{J}| & =|\{(x, y) \in S \times S:[x, y] \neq 0\}| \\
& =|S|^{2}-|\{(x, y) \in S \times S:[x, y]=0\}| \\
& =|S|^{2}(1-\operatorname{Pr}(S)) .
\end{aligned}
$$

Hence, the result follows from equation 7.4.1).
(b) If $r \neq 0$ and $2 r=0$ then $r=-r$. Therefore, by equation (1.3.2), we have

$$
\begin{aligned}
|\mathbb{I}| & =|\{(x, y) \in S \times R: x \neq y,[x, y] \neq r\}| \\
& =|S||R|-|\{(x, y) \in S \times R:[x, y]=r\}|-|\{(x, y) \in S \times S: x=y\}| \\
& =|S||R|\left(1-\operatorname{Pr}_{r}(S, R)\right)-|S| .
\end{aligned}
$$

If $r \in S$ then, by equation (1.3.2), we have

$$
\begin{aligned}
|\mathbb{I} \cap \mathbb{J}| & =|\{(x, y) \in S \times S: x \neq y,[x, y] \neq r\}| \\
& =|S|^{2}-|\{(x, y) \in S \times S:[x, y]=r\}|-|\{(x, y) \in S \times S: x=y\}| \\
& =|S|^{2}\left(1-\operatorname{Pr}_{r}(S)\right)-|S| .
\end{aligned}
$$

If $r \in R \backslash S$ then we have

$$
|\mathbb{I} \cap \mathbb{J}|=|S|^{2}-|S|
$$

noting that $\{(x, y) \in S \times S:[x, y]=r\}$ is empty. Therefore,

$$
|\mathbb{I} \cap \mathbb{J}|= \begin{cases}|S|^{2}\left(1-\operatorname{Pr}_{r}(S)\right)-|S|, & \text { if } r \in S \\ |S|^{2}-|S|, & \text { if } r \in R \backslash S\end{cases}
$$

Hence, the result follows from equation 7.4.1).
(c) If $\mathrm{r} \neq 0$ and $2 r \neq 0$ then, by equation (1.3.2), we have

$$
\begin{aligned}
|\mathbb{I}|= & \mid\{(x, y) \in S \times R: x \neq y,[x, y] \neq r \text { and }[x, y] \neq-r\} \mid \\
= & |S||R|-|\{(x, y) \in S \times R:[x, y]=r\}| \\
& \quad-|\{(x, y) \in S \times R:[x, y]=-r\}| \\
& \quad-|\{(x, y) \in S \times S: x=y\}| \\
= & |S||R|\left(1-\sum_{u=r,-r} \operatorname{Pr}_{u}(S, R)\right)-|S| .
\end{aligned}
$$

If $r \in S$ then, by equation (1.3.2), we have

$$
\begin{aligned}
|\mathbb{I} \cap \mathbb{J}|= & \mid\{(x, y) \in S \times S: x \neq y,[x, y] \neq r \text { and }[x, y] \neq-r\} \mid \\
= & |S|^{2}-|\{(x, y) \in S \times S:[x, y]=r\}| \\
& \quad-|\{(x, y) \in S \times S:[x, y]=-r\}| \\
& \quad-|\{(x, y) \in S \times S: x=y\}| \\
= & |S|^{2}\left(1-\sum_{u=r,-r} \operatorname{Pr}_{u}(S)\right)-|S| .
\end{aligned}
$$

If $r \in R \backslash S$ then we have

$$
|\mathbb{I} \cap \mathbb{J}|=|S|^{2}-|S| .
$$

noting that $\{(x, y) \in S \times S:[x, y]=r\}$ and $\{(x, y) \in S \times S:[x, y]=-r\}$ are empty. Therefore,

$$
|\mathbb{I} \cap \mathbb{J}|= \begin{cases}|S|^{2}\left(1-\sum_{u=r,-r} \operatorname{Pr}_{u}(S)\right)-|S|, & \text { if } r \in S \\ |S|^{2}-|S|, & \text { if } r \in R \backslash S\end{cases}
$$

Hence, the result follows from equation (7.4.1).
As an application of Theorem 7.4.1, in the following two theorems, we compute the number of edges in $\Gamma_{S, R}^{r}$ if $[S, R]$ has prime order.

Theorem 7.4.2. Let S be a commutative subring of a finite ring R such that $|[S, R]|=p$, a prime.
(a) If $r=0$ then $\left|e\left(\Gamma_{S, R}^{r}\right)\right|=\frac{(p-1)|R|| | S|-|Z(S, R)|)}{p}$.
(b) If $r \neq 0$ and $2 r=0$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right|=\frac{2|R|((p-1)|S|+|Z(S, R)|)-p|S|^{2}-p|S|}{2 p} .
$$

(c) If $r \neq 0$ and $2 r \neq 0$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right|=\frac{2|R|((p-2)|S|+2|Z(S, R)|)-p|S|^{2}-p|S|}{2 p} .
$$

Proof. If $|[S, R]|=p$ then, by Result 1.3.12, we have

$$
\operatorname{Pr}_{r}(S, R)= \begin{cases}\frac{1}{p}\left(1+\frac{p-1}{|S: Z(S, R)|}\right), & \text { if } r=0 \\ \frac{1}{p}\left(1-\frac{1}{|S: Z(S, R)|}\right), & \text { if } r \neq 0\end{cases}
$$

Since S is commutative, we have $[S, S]=\{0\}$. Therefore, by equation (1.3.2), we have

$$
\operatorname{Pr}_{r}(S)= \begin{cases}1, & \text { if } r=0 \\ 0, & \text { if } r \neq 0\end{cases}
$$

Hence, the results follows from Theorem 7.4.1.
Theorem 7.4.3. Let S be a non-commutative subring of a finite ring R such that $|[S, R]|=$ p, a prime.
(a) If $r=0$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right|=\frac{(p-1)[2|R|(|S|-|Z(S, R)|)-|S|(|S|-|Z(S)|)]}{2 p} .
$$

(b) If $r \neq 0$ and $2 r=0$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right|= \begin{cases}\frac{2|R|((p-1)|S|+|Z(S, R)|)-|S|((p-1)|S|+|Z(S)|)-p|S|}{2 p}, & \text { if } r \in S \\ \frac{2|R|((p-1)|S|+|Z(S, R)|)-p|S|^{2}-p|S|}{2 p}, & \text { if } r \in R \backslash S .\end{cases}
$$

(c) If $r \neq 0$ and $2 r \neq 0$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right|= \begin{cases}\frac{2|R|((p-2)|S|+2|Z(S, R)|)-|S|((p-2)|S|+2|Z(S)|)-p|S|}{2 p}, & \text { if } r \in S \\ \frac{2|R|((p-2)|S|+2|Z(S, R)|)-p|S|^{2}-p|S|}{2 p}, & \text { if } r \in R \backslash S .\end{cases}
$$

Proof. If $|[S, R]|=p$ then, by Result 1.3.12, we have

$$
\operatorname{Pr}_{r}(S, R)= \begin{cases}\frac{1}{p}\left(1+\frac{p-1}{|S: Z(S, R)|}\right), & \text { if } r=0 \\ \frac{1}{p}\left(1-\frac{1}{|S: Z(S, R)|}\right), & \text { if } r \neq 0\end{cases}
$$

If S is non-commutative then $|[S, S]|=|[S, R]|=p$. Therefore, by Result 1.3.11, we have

$$
\operatorname{Pr}_{r}(S)= \begin{cases}\frac{1}{p}\left(1+\frac{p-1}{|S: Z(S)|}\right), & \text { if } r=0 \\ \frac{1}{p}\left(1-\frac{1}{|S: Z(S)|}\right), & \text { if } r \neq 0 .\end{cases}
$$

Hence, the results follows from Theorem 7.4.1.
Corollary 7.4.4. Let $R=E\left(p^{2}\right)=\left\langle a, b: p a=p b=0, a^{2}=a, b^{2}=b, a b=a, b a=b\right\rangle$ for any prime p and S be a subring of R.
(a) If $|S|=p$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right|= \begin{cases}p(p-1)^{2}, & \text { if } r=0 \\ \frac{p(p-1)(2 p-1)}{2}, & \text { if } r \neq 0 \text { and } 2 r=0 \\ \frac{p(p-1)(2 p-3)}{2}, & \text { if } r \neq 0 \text { and } 2 r \neq 0\end{cases}
$$

(b) If $S=R$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right|= \begin{cases}\frac{p(p-1)^{2}(p+1)}{2}, & \text { if } r=0 \\ \frac{p(p-1)^{2}(p+1)}{2}, & \text { if } r \neq 0 \text { and } 2 r=0 \\ \frac{p(p-1)(p-2)(p+1)}{2}, & \text { if } r \neq 0 \text { and } 2 r \neq 0\end{cases}
$$

Proof. We have $[S, R]=\{m a+(p-m) b: 1 \leq m \leq p\}$ and $Z(S, R)=\{0\}$. Therefore, $|[S, R]|=p$ and $|Z(S, R)|=1$. Hence, the result follows from Theorems 7.4.2 and 7.4.3 noting that $|Z(S)|=1$ if $S=R$.

The following corollaries of Theorem7.4.1 give certain lower bounds and upper bounds respectively for the number of edges in $\Gamma_{S, R}^{r}$, if $r \neq 0$.

Corollary 7.4.5. Let p be the smallest prime dividing $|R|$ and $r \neq 0$. Then for a noncommutative subring S of R we have the following lower bounds for $\left|e\left(\Gamma_{S, R}^{r}\right)\right|$.
(a) If $2 r=0$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right| \geq \begin{cases}\frac{\left.\left.2(p-1)|R \||S|+2| R| | Z(S, R)|-p| S\right|^{2}+6 p|Z(S)|^{2}-p|S|\right)}{2 p}, & \text { if } r \in S \\ \frac{2(p-1)|R \| S|+2|R||Z(S, R)|-p|S|^{2}-p|S|}{2 p}, & \text { if } r \in R \backslash S\end{cases}
$$

(b) If $2 r \neq 0$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right| \geq \begin{cases}\frac{\left.2(p-2)|R||S|+4|R||Z(S, R)|-p|S|^{2}+12 p|Z(S)|^{2}-p|S|\right)}{2 p}, & \text { if } r \in S \\ \frac{2(p-2)|R||S|+4|R||Z(S, R)|-p|S|^{2}-p|S|}{2 p}, & \text { if } r \in R \backslash S\end{cases}
$$

Proof. By Result 1.3.13 we have

$$
\begin{equation*}
1-\operatorname{Pr}_{r}(S, R) \geq \frac{(p-1)|S|+|Z(S, R)|}{p|S|} \tag{7.4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\sum_{u=r,-r} \operatorname{Pr}_{u}(S, R) \geq \frac{(p-2)|S|+2|Z(S, R)|}{p|S|} \tag{7.4.3}
\end{equation*}
$$

By Result 1.3.10 we have

$$
\begin{equation*}
\operatorname{Pr}_{r}(S) \geq \frac{6|Z(S)|^{2}}{|S|^{2}} \tag{7.4.4}
\end{equation*}
$$

(a) We have $2 r=0$. Therefore, if $r \in S$ then, using Theorem 7.4.1(b) and equations 7.4.2) and (7.4.4, we get

$$
2\left|e\left(\Gamma_{S, R}^{r}\right)\right|+|S|^{2}+|S| \geq 2|S||R|\left(\frac{(p-1)|S|+|Z(S, R)|}{p|S|}\right)+|S|^{2}\left(\frac{6|Z(S)|^{2}}{|S|^{2}}\right) .
$$

Hence the result follows.

If $r \in R \backslash S$ then, using Theorem 7.4.1(b) and equation (7.4.2), we get

$$
2\left|e\left(\Gamma_{S, R}^{r}\right)\right|+|S|^{2}+|S| \geq 2|S||R|\left(\frac{(p-1)|S|+|Z(S, R)|}{p|S|}\right)
$$

Hence the result follows.
(b) We have $2 r \neq 0$. Therefore, if $r \in S$ then, using Theorem 7.4.1 (c) and equations 7.4.3) and (7.4.4, we get

$$
2\left|e\left(\Gamma_{S, R}^{r}\right)\right|+|S|^{2}+|S| \geq 2|S||R|\left(\frac{(p-2)|S|+2|Z(S, R)|}{p|S|}\right)+|S|^{2}\left(\frac{12|Z(S)|^{2}}{|S|^{2}}\right) .
$$

Hence the result follows.
If $r \in R \backslash S$ then, using Theorem 7.4.1(c) and equation 7.4.3), we get

$$
2\left|e\left(\Gamma_{S, R}^{r}\right)\right|+|S|^{2}+|S| \geq 2|S||R|\left(\frac{(p-2)|S|+2|Z(S, R)|}{p|S|}\right) .
$$

Hence the result follows.
Corollary 7.4.6. Let p be the smallest prime dividing $|R|$ and $Z(R, S)=\{t \in R: t s=$ st for all $s \in S\}$ for any non-commutative subring S of R. If $r \neq 0$, then we have the following upper bounds for $\left|e\left(\Gamma_{S, R}^{r}\right)\right|$.
(a) If $2 r=0$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right| \leq \begin{cases}\frac{2 p|R||S|-4 p|Z(S, R)||Z(R, S)|-(p-1)|S|^{2}-|S||Z(S)|-p|S|}{2 p}, & \text { if } r \in S \\ \frac{2|R||S|-4|Z(S, R)||Z(R, S)|-|S|^{2}-|S|}{2 p}, & \text { if } r \in R \backslash S\end{cases}
$$

(b) If $2 r \neq 0$ then

$$
\left|e\left(\Gamma_{S, R}^{r}\right)\right| \leq \begin{cases}\frac{2 p|R||S|-8 p|Z(S, R)||Z(R, S)|-(p-2)|S|^{2}-2|S||Z(S)|-p|S|}{2 p}, & \text { if } r \in S \\ \frac{2|R \||S|-8| Z(S, R)| | Z(R, S)\left|-|S|^{2}-|S|\right.}{2 p}, & \text { if } r \in R \backslash S\end{cases}
$$

Proof. By Result 1.3.9 we have

$$
\begin{equation*}
\operatorname{Pr}_{r}(S) \leq \frac{|S|-|Z(S)|}{p|S|} \tag{7.4.5}
\end{equation*}
$$

By Result 1.3.14(b) we have

$$
\begin{equation*}
1-\operatorname{Pr}_{r}(S, R) \leq \frac{|S||R|-2|Z(S, R)||Z(R, S)|}{|S||R|} \tag{7.4.6}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\sum_{u=r,-r} \operatorname{Pr}_{u}(S, R) \leq \frac{|S||R|-4|Z(S, R)||Z(R, S)|}{|S||R|} . \tag{7.4.7}
\end{equation*}
$$

(a) We have $2 r=0$. Therefore, if $r \in S$ then, using Theorem 7.4.1(b) and equations 7.4.5) and (7.4.6), we get

$$
\begin{aligned}
& 2\left|e\left(\Gamma_{S, R}^{r}\right)\right|+|S|^{2}+|S| \\
& \qquad \leq 2|S||R|\left(\frac{|S||R|-2|Z(S, R)||Z(R, S)|}{|S||R|}\right)+|S|^{2}\left(\frac{|S|-|Z(S)|}{p|S|}\right) .
\end{aligned}
$$

Hence the result follows.
If $r \in R \backslash S$ then, using Theorem 7.4.1(b) and equation (7.4.6), we get

$$
2\left|e\left(\Gamma_{S, R}^{r}\right)\right|+|S|^{2}+|S| \leq 2|S||R|\left(\frac{|S||R|-2|Z(S, R)||Z(R, S)|}{|S||R|}\right) .
$$

Hence the result follows.
(b) We have $2 r \neq 0$. Therefore, if $r \in S$ then, using Theorem 7.4.1(c) and equations 7.4.5) and 7.4.7), we get

$$
\begin{aligned}
& 2\left|e\left(\Gamma_{S, R}^{r}\right)\right|+|S|^{2}+|S| \\
& \quad \leq 2|S||R|\left(\frac{|S||R|-4|Z(S, R)||Z(R, S)|}{|S||R|}\right)+2|S|^{2}\left(\frac{|S|-|Z(S)|}{p|S|}\right) .
\end{aligned}
$$

Hence the result follows.
If $r \in R \backslash S$ then, using Theorem 7.4.1(c) and equation 7.4.7), we get

$$
2\left|e\left(\Gamma_{S, R}^{r}\right)\right|+|S|^{2}+|S| \leq 2|S||R|\left(\frac{|S||R|-4|Z(S, R)||Z(R, S)|}{|S||R|}\right) .
$$

Hence the result follows.
We conclude the section noting that if $r=0$ then using Theorem 7.4.1 (a) and various bounds for $\operatorname{Pr}(S, R)$ and $\operatorname{Pr}(S)$, obtained in [22], we may derive various bounds for $\left|e\left(\Gamma_{S, R}^{r}\right)\right|$.

7.5 An induced subgraph of $\Gamma_{S, R}^{r}$

In this section we consider the induced subgraph $\Delta_{S, R}^{r}$ of $\Gamma_{S, R}^{r}$ with vertex set $R \backslash Z(S, R)$.
Theorem 7.5.1. Let x be any vertex in $\Delta_{S, R}^{r}$.
(a) If $r=0$ then $\operatorname{deg}(x)= \begin{cases}|R|-\left|C_{R}(x)\right|, & \text { if } x \in S \backslash Z(S, R) \\ |S|-\left|C_{S}(x)\right|, & \text { if } x \in R \backslash S .\end{cases}$
(b) If $r \neq 0$ and $2 r=0$ then

$$
\operatorname{deg}(x)= \begin{cases}|R|-|Z(S, R)|-\left|C_{R}^{r}(x)\right|-1, & \text { if } x \in S \backslash Z(S, R) \\ |S|-|Z(S, R)|-\left|C_{S}^{r}(x)\right|, & \text { if } x \in R \backslash S .\end{cases}
$$

(c) If $r \neq 0$ and $2 r \neq 0$ then

$$
\operatorname{deg}(x)= \begin{cases}|R|-|Z(S, R)|-2\left|C_{R}^{r}(x)\right|-1, & \text { if } x \in S \backslash Z(S, R) \\ |S|-|Z(S, R)|-2\left|C_{S}^{r}(x)\right|, & \text { if } x \in R \backslash S\end{cases}
$$

Proof. Let x be a vertex in $\Delta_{S, R}^{r}$. If $x \in S \backslash Z(S, R)$ then $\operatorname{deg}(x)$ is the number of $y \in R \backslash Z(S, R)$ such that $x y \neq y x$. Hence, $\operatorname{deg}(x)=|R|-|Z(S, R)|-\left(\left|C_{R}(x)\right|-|Z(S, R)|\right)=$ $|R|-\left|C_{R}(x)\right|$. If $x \in R \backslash S$ then $\operatorname{deg}(x)$ is the number of $s \in S \backslash Z(S, R)$ such that $s x \neq x s$. Hence, $\operatorname{deg}(x)=|S|-|Z(S, R)|-\left(\left|C_{S}(x)\right|-|Z(S, R)|\right)=|S|-\left|C_{S}(x)\right|$. Hence, part (a) follows.

The proofs of parts (b) and (c) follow from Theorem 7.2.1 (parts (b), (c)) noting that the vertex set of $\Delta_{S, R}^{r}$ is $R \backslash Z(S, R)$.

By Lemma 7.2.2 and Theorem 7.5.1, we have the following two corollaries.
Corollary 7.5.2. Let $x \in S$ be a vertex in $\Delta_{S, R}^{r}$.
(a) If $r \neq 0$ and $2 r=0$ then

$$
\operatorname{deg}(x)= \begin{cases}|R|-|Z(S, R)|-\left|C_{R}(x)\right|-1, & \text { if } C_{R}^{r}(x) \neq \emptyset \\ |R|-|Z(S, R)|-1, & \text { otherwise }\end{cases}
$$

(b) If $r \neq 0$ and $2 r \neq 0$ then

$$
\operatorname{deg}(x)= \begin{cases}|R|-|Z(S, R)|-2\left|C_{R}(x)\right|-1, & \text { if } C_{R}^{r}(x) \neq \emptyset \\ |R|-|Z(S, R)|-1, & \text { otherwise }\end{cases}
$$

Corollary 7.5.3. Let $x \in R \backslash S$ be a vertex in $\Gamma_{S, R}^{r}$.
(a) If $r \neq 0$ and $2 r=0$ then

$$
\operatorname{deg}(x)= \begin{cases}|S|-|Z(S, R)|-\left|C_{S}(x)\right|, & \text { if } C_{S}^{r}(x) \neq \emptyset \\ |S|-|Z(S, R)|, & \text { otherwise }\end{cases}
$$

(b) If $r \neq 0$ and $2 r \neq 0$ then

$$
\operatorname{deg}(x)= \begin{cases}|S|-|Z(S, R)|-2\left|C_{S}(x)\right|, & \text { if } C_{S}^{r}(x) \neq \emptyset \\ |S|-|Z(S, R)|, & \text { otherwise }\end{cases}
$$

Theorem 7.5.4. Let S be a subring of a non-commutative ring R with unity 1 such that $|R| \neq 8$ and $1 \in S$. Then $\Delta_{S, R}^{r}$ is not a tree.

Proof. Suppose that $\Delta_{S, R}^{r}$ is a tree. Therefore, there exists $x \in R \backslash Z(S, R)$ such that $\operatorname{deg}(x)=1$.
Case 1: $r=0$
If $x \in S \backslash Z(S, R)$ then, by Theorem 7.5.1(a), we have $\operatorname{deg}(x)=|R|-\left|C_{R}(x)\right|=1$. Therefore, $\left|C_{R}(x)\right|=1$, contradiction. If $x \in R \backslash S$ then, by Theorem 7.5.1(a), we also have $\operatorname{deg}(x)=|S|-\left|C_{S}(x)\right|=1$. Therefore, $\left|C_{S}(x)\right|=1$, contradiction.
Case 2: $r \neq 0$ and $2 r=0$
Subcase 2.1: Let $x \in S \backslash Z(S, R)$. Then, by Corollary 7.5.2(a), we have $\operatorname{deg}(x)=$ $|R|-|Z(S, R)|-1=1$ or $\operatorname{deg}(x)=|R|-|Z(S, R)|-\left|C_{R}(x)\right|-1=1$. That is,

$$
\begin{gather*}
|R|-|Z(S, R)|=2 \text { or } \tag{7.5.1}\\
|R|-|Z(S, R)|-\left|C_{R}(x)\right|=2 . \tag{7.5.2}
\end{gather*}
$$

Note that $Z(S, R)$ is a subring of R as well as $C_{R}(x)$ containing 0 and 1 . Therefore, $|Z(S, R)|$ divides the left hand sides of the equations (7.5.1) and 7.5.2). It follows that $|Z(S, R)|=$ 2. Thus equation (7.5.1) gives $|R|=4$, which is a contradiction since there is no noncommutative ring with unity having order 4. Again equation (7.5.2) gives $|R|-\left|C_{R}(x)\right|=4$ and so $\left|C_{R}(x)\right|=4$. Therefore, $|R|=8$, which contradicts our assumption.

Subcase 2.2: Let $x \in R \backslash S$. Then, by Corollary 7.5.3(a), we have $\operatorname{deg}(x)=|S|-$ $|Z(S, R)|=1$ or $\operatorname{deg}(x)=|S|-|Z(S, R)|-\left|C_{S}(x)\right|=1$. Note that $Z(S, R)$ is a subring of S as well as $C_{S}(x)$ containing 0 and 1 . Therefore, $|Z(S, R)|$ divides $|S|-|Z(S, R)|$ and $|S|-|Z(S, R)|-\left|C_{S}(x)\right|$. It follows that $|Z(S, R)|=1$, a contradiction.
Case 3: $r \neq 0$ and $2 r \neq 0$
Subcase 3.1: Let $x \in S \backslash Z(S, R)$. Then, by Corollary 7.5.2(b), we have $\operatorname{deg}(x)=$ $|R|-|Z(S, R)|-1=1$ or $\operatorname{deg}(x)=|R|-|Z(S, R)|-2\left|C_{R}(x)\right|-1=1$. That is,

$$
\begin{gather*}
|R|-|Z(S, R)|=2 \text { or } \tag{7.5.3}\\
|R|-|Z(S, R)|-2\left|C_{R}(x)\right|=2 . \tag{7.5.4}
\end{gather*}
$$

Therefore, $|Z(S, R)|=2$. Thus equation (7.5.3) leads to the same contradiction that we get in the first part of Subcase 2.1. By equation (7.5.4) we have $|R|-2\left|C_{R}(x)\right|=4$ and so $\left|C_{R}(x)\right|=4$. Therefore, $|R|=12$ and so $\frac{R}{Z(S, R)}$ is cyclic. Hence, by Result 1.3.5, R is commutative; a contradiction.

Subcase 3.2: Let $x \in R \backslash S$. Then, by Corollary 7.5.3(b), we have $\operatorname{deg}(x)=|S|-$ $|Z(S, R)|=1$ or $\operatorname{deg}(x)=|S|-|Z(S, R)|-2\left|C_{S}(x)\right|=1$. Therefore, $|Z(S, R)|=1$, a contradiction.

The proof of Theorem 7.5 .4 also tells that there is no vertex in the graph $\Delta_{S, R}^{r}$ having degree 1 if R is a non-commutative ring with unity 1 such that $|R| \neq 8$ and S is any subring of R with the same unity. We conclude this chapter by obtaining conditions such that $\Delta_{S, R}^{r}$ has no vertex having degree 2.

Theorem 7.5.5. Let S be a non-commutative subring of a ring R with unity 1 such that $1 \in S$. Then $\Delta_{S, R}^{r}$ has no vertex having degree 2 if $|R| \neq 12$ and $|S| \neq 8$.

Proof. Suppose that $\Delta_{S, R}^{r}$ has a vertex x such that $\operatorname{deg}(x)=2$.

Case 1: $r=0$
If $x \in S \backslash Z(S, R)$ then, by Theorem 7.5.1 (a), we have $\operatorname{deg}(x)=|R|-\left|C_{R}(x)\right|=2$. Therefore, $\left|C_{R}(x)\right|=2$, contradiction. If $x \in R \backslash S$ then, by Theorem 7.5.1 (a), we also have $\operatorname{deg}(x)=|S|-\left|C_{S}(x)\right|=2$. Therefore, $\left|C_{S}(x)\right|=2$ and so $|S|=4$, a contradiction since there is no non-commutative ring with unity having order 4 .
Case 2: $r \neq 0$ and $2 r=0$
Subcase 2.1: Let $x \in S \backslash Z(S, R)$. Then, by Corollary 7.5.2(a), we have $\operatorname{deg}(x)=$ $|R|-|Z(S, R)|-1=2$ or $\operatorname{deg}(x)=|R|-|Z(S, R)|-\left|C_{R}(x)\right|-1=2$. That is,

$$
\begin{gather*}
|R|-|Z(S, R)|=3 \text { or } \tag{7.5.5}\\
|R|-|Z(S, R)|-\left|C_{R}(x)\right|=3 . \tag{7.5.6}
\end{gather*}
$$

Therefore, $|Z(S, R)|=3$. Thus equation (7.5.5) gives $|R|=6$, which is a contradiction since R is non-commutative. Again equation (7.5.6) gives $|R|-\left|C_{R}(x)\right|=6$ and so $\left|C_{R}(x)\right|=6$ since $\left|C_{R}(x)\right| \neq 3$. Therefore $|R|=12$, which contradicts our assumption.

Subcase 2.2: Let $x \in R \backslash S$. Then, by Corollary 7.5.3(a), we have $\operatorname{deg}(x)=|S|-$ $|Z(S, R)|=2$ or $\operatorname{deg}(x)=|S|-|Z(S, R)|-\left|C_{S}(x)\right|=2$. Therefore, $|Z(S, R)|=2$ and so $|S|-\left|C_{S}(x)\right|=4$ since $|S| \neq 4$. We have $\left|C_{S}(x)\right|=4$ since $\left|C_{S}(x)\right| \neq 2$. Therefore $|S|=8$ which contradicts our assumption.
Case 3: $r \neq 0$ and $2 r \neq 0$
Subcase 3.1: Let $x \in S \backslash Z(S, R)$. Then, by Corollary 7.5.2(b), we have $\operatorname{deg}(x)=$ $|R|-|Z(S, R)|-1=2$ or $\operatorname{deg}(x)=|R|-|Z(S, R)|-2\left|C_{R}(x)\right|-1=2$. That is,

$$
\begin{gather*}
|R|-|Z(S, R)|=3 \text { or } \tag{7.5.7}\\
|R|-|Z(S, R)|-2\left|C_{R}(x)\right|=3 . \tag{7.5.8}
\end{gather*}
$$

Therefore, $|Z(S, R)|=3$. Thus equation (7.5.7) leads to the same contradiction that we get in the first part of Subcase 2.1. By equation 7.5.8) we have $|R|-2\left|C_{R}(x)\right|=6$ and so $\left|C_{R}(x)\right|=6$ since $\left|C_{R}(x)\right| \neq 3$. Therefore $|R|=18$ and so $\frac{R}{Z(S, R)}$ is cyclic. Hence, by Result 1.3.5, R is commutative; a contradiction.

Subcase 3.2: Let $x \in R \backslash S$. Then, by Corollary 7.5.3(b), we have $\operatorname{deg}(x)=|S|-$ $|Z(S, R)|=2$ or $\operatorname{deg}(x)=|S|-|Z(S, R)|-2\left|C_{S}(x)\right|=2$. Therefore, $|Z(S, R)|=2$ and so
$|S|-2\left|C_{S}(x)\right|=4$ since $|S| \neq 4$. Therefore, $\left|C_{S}(x)\right|=4$. Therefore $|S|=12$ and so $\frac{S}{Z(S, R)}$ is cyclic. Hence, by Result 1.3.5, S is commutative; a contradiction.

7.6 Conclusion

In this chapter, we have introduced relative r-noncommuting graph of a finite ring R relative to a subring S of R and obtained results analogous to the results obtained in Chapter 3. We have determined degree of any vertex in $\Gamma_{S, R}^{r}$ and studied certain graph theoretical properties of $\Gamma_{S, R}^{r}$. We have shown that $\Gamma_{S_{1}, R_{1}}^{r}$ is isomorphic to $\Gamma_{S_{2}, R_{2}}^{\psi(r)}$ if (ϕ, ψ) is an isoclinism between the pairs of finite rings $\left(S_{1}, R_{1}\right),\left(S_{2}, R_{2}\right)$ and $\left|Z\left(S_{1}, R_{1}\right)\right|=\left|Z\left(S_{2}, R_{2}\right)\right|$. Furthermore, we have established connections between the number of edges in $\Gamma_{S, R}^{r}$ and various generalized commuting probabilities of R. Finally, we have studied a subgraph of $\Gamma_{S, R}^{r}$ induced on $R \backslash Z(S, R)$.

