Chapter 7

Relative r-noncommuting graphs of finite rings

In this chapter, we generalize the notion of r-noncommuting graph of a finite ring R. More precisely, we consider $relative\ r$ -noncommuting graph of R relative to a subring S, which is denoted by $\Gamma_{S,R}^r$ and defined as a simple undirected graph with vertex set R and two vertices x and y are adjacent if $x \in S$ or $y \in S$ and $[x,y] \neq r,-r$. Clearly $\Gamma_{R,R}^r$ is the r-noncommuting graph of R. Further, if r=0 then the induced subgraph of $\Gamma_{S,R}^r$ with vertex set $R \setminus C_R(S)$ is nothing but the relative non-commuting graph of R which has been studied in [20]. In Section [7.2], we derive formula for degree of any vertex in $\Gamma_{S,R}^r$ and characterize all finite rings such that $\Gamma_{S,R}^r$ is a star, lollipop or a regular graph. In Section [7.3], we show that Γ_{S_1,R_1}^r is isomorphic to $\Gamma_{S_2,R_2}^{\psi(r)}$ if (ϕ,ψ) is an isoclinism between the pairs of finite rings (S_1,R_1) , (S_2,R_2) and $|Z(S_1,R_1)|=|Z(S_2,R_2)|$. In Section [7.4], we obtain certain relations between the number of edges in $\Gamma_{S,R}^r$ and $\Pr_r(S,K)$. Finally, we conclude the chapter by deriving certain results on the induced subgraph of $\Gamma_{S,R}^r$ with vertex set $R \setminus Z(S,R)$. This chapter is based on our paper [87] submitted for publication.

7.1 Preliminary observations

We have the following observations regarding $\Gamma^r_{S,R}$ analogous to the observations in Section 3.1.

Observation 7.1.1. Let S be a subring of a finite ring R and $r \in R$. Then we have the following.

(a) If $r \notin K(S,R)$ then $\Gamma_{S,R}^r = K_{|S|} + \overline{K_{|R|-|S|}}$ and so

$$\deg(x) = \begin{cases} |R| - 1 & \text{if } x \in S \\ |S| & \text{if } x \in R \setminus S. \end{cases}$$

(b) If $K(S,R) = \{0\}$ and r = 0 then $\Gamma_{S,R}^r = \overline{K_{|R|}}$.

It follows that if $r \notin K(S, R)$ then

- (i) $\Gamma_{S,R}^r$ is a tree if and only if $S=\{0\}$ or |S|=|R|=2.
- (ii) $\Gamma_{S,R}^r$ is a star graph if and only if $S = \{0\}$.
- (iii) $\Gamma_{S,R}^r$ is a complete graph if and only if S = R.

Note that if R is commutative or S = Z(S,R) then $K(S,R) = \{0\}$. Therefore, in view of Observation 7.1.1, we consider R to be non-commutative, S to be a subring of R such that $S \neq Z(S,R)$ and $r \in K(S,R)$ throughout this chapter.

7.2 Vertex degree and consequences

For any two given elements $x, r \in R$ we write $C_S^r(x)$ to denote the set $\{s \in S : [x, s] = r\}$. Note that $C_S^r(x)$ is the centralizer of x in R if S = R and r = 0. The following theorem gives degree of any vertex in $\Gamma_{S,R}^r$ in terms of $C_S^r(x)$.

Theorem 7.2.1. Let x be any vertex in $\Gamma_{S,R}^r$.

(a) If
$$r = 0$$
 then $\deg(x) = \begin{cases} |R| - |C_R(x)|, & \text{if } x \in S \\ |S| - |C_S(x)|, & \text{if } x \in R \setminus S. \end{cases}$

(b) If
$$r \neq 0$$
 and $2r = 0$ then $\deg(x) = \begin{cases} |R| - |C_R^r(x)| - 1, & \text{if } x \in S \\ |S| - |C_S^r(x)|, & \text{if } x \in R \setminus S. \end{cases}$

(c) If
$$r \neq 0$$
 and $2r \neq 0$ then $\deg(x) = \begin{cases} |R| - 2|C_R^r(x)| - 1, & \text{if } x \in S \\ |S| - 2|C_S^r(x)|, & \text{if } x \in R \setminus S. \end{cases}$

Proof. (a) Let r = 0. If $x \in S$ then $\deg(x)$ is the number of $s \in R$ such that $sx \neq sx$. Hence, $\deg(x) = |R| - |C_R(x)|$. If $x \in R \setminus S$ then $\deg(x)$ is the number of $s \in S$ such that $sx \neq sx$. Hence, $\deg(x) = |S| - |C_S(x)|$.

- (b) Let $r \neq 0$ and 2r = 0. In this case, r = -r. If $x \in S$ then $s \in R$ is not adjacent to x if and only if s = x or $s \in C_R^r(x)$. Hence, $\deg(x) = |R| |C_R^r(x)| 1$. If $x \in R \setminus S$ then $s \in S$ is not adjacent to x if and only if $s \in C_S^r(x)$. Hence, $\deg(x) = |S| |C_S^r(x)|$.
- (c) Let $r \neq 0$ and $2r \neq 0$. In this case, $r \neq -r$. Also, $C_S^r(x) \cap C_S^{-r}(x) = \emptyset$ and $s \in C_S^r(x)$ if and only if $-s \in C_S^{-r}(x)$. Therefore, $C_S^r(x)$ and $C_S^{-r}(x)$ have same cardinality. Further, if $x \in S$ then $s \in R$ is not adjacent to x if and only if s = x, $s \in C_R^r(x)$ or $s \in C_R^{-r}(x)$. Hence, $\deg(x) = |R| |C_R^r(x)| |C_R^{-r}(x)| 1$. If $x \in R \setminus S$ then $s \in S$ is not adjacent to x if and only if $s \in C_S^r(x)$ or $s \in C_S^{-r}(x)$. Hence, $\deg(x) = |S| |C_S^r(x)| |C_S^{-r}(x)|$. Hence, the result follows.

The next lemma shows that for all $x, r \in R$ the cardinality of $C_S^r(x)$ is either zero or $|C_S(x)|$.

Lemma 7.2.2. If $C_S^r(x)$ is non-empty then $|C_S^r(x)| = |C_S(x)|$ for all $x, r \in R$.

Proof. Let $t \in C_S^r(x)$ and $p \in t + C_S(x)$. Then p = t + m for some $m \in C_S(x)$. We have

$$[x,p] = [x,t+m] = x(t+m) - (t+m)x = [x,t] = r$$

and so $p \in C_S^r(x)$. Therefore, $t + C_S(x) \subseteq C_S^r(x)$. Again, if $y \in C_S^r(x)$ then [x, t] = [x, y] which implies (y - t)x = x(y - t). Therefore $(y - t) \in C_S(x)$ and so $y \in t + C_S(x)$. Thus $C_S^r(x) \subseteq t + C_S(x)$. Hence, $C_S^r(x) = t + C_S(x)$ and the result follows.

By Lemma 7.2.2 and Theorem 7.2.1, we have the following two corollaries.

Corollary 7.2.3. Let $x \in S$ be a vertex in $\Gamma_{S,R}^r$.

(a) If
$$r \neq 0$$
 and $2r = 0$ then $\deg(x) = \begin{cases} |R| - |C_R(x)| - 1, & \text{if } C_R^r(x) \neq \emptyset \\ |R| - 1, & \text{otherwise.} \end{cases}$

(b) If
$$r \neq 0$$
 and $2r \neq 0$ then $\deg(x) = \begin{cases} |R| - 2|C_R(x)| - 1, & \text{if } C_R^r(x) \neq \emptyset \\ |R| - 1, & \text{otherwise.} \end{cases}$

Corollary 7.2.4. Let $x \in R \setminus S$ be a vertex in $\Gamma_{S,R}^r$.

(a) If
$$r \neq 0$$
 and $2r = 0$ then $\deg(x) = \begin{cases} |S| - |C_S(x)|, & \text{if } C_S^r(x) \neq \emptyset \\ |S|, & \text{otherwise.} \end{cases}$

(b) If
$$r \neq 0$$
 and $2r \neq 0$ then $\deg(x) = \begin{cases} |S| - 2|C_S(x)|, & \text{if } C_S^r(x) \neq \emptyset \\ |S|, & \text{otherwise.} \end{cases}$

In the next few results we discuss some properties of $\Gamma_{S,R}^r$. The following lemma shows that $\Gamma_{S,R}^r$ is a disconnected graph if r=0.

Lemma 7.2.5. If
$$x \in Z(S, R)$$
 then $\deg(x) = \begin{cases} 0, & \text{if } r = 0 \\ |R| - 1, & \text{if } r \neq 0. \end{cases}$

Proof. The result follows from Theorem 7.2.1 noting that $x \in S$ and

$$C_R^r(x) = \begin{cases} C_R(x) = R, & \text{if } r = 0\\ \emptyset, & \text{if } r \neq 0. \end{cases}$$

Lemma 7.2.6. Let S be a subring of a non-commutative ring R with unity 1 and $r \neq 0$. If $1 \in S$ then $deg(x) \geq 2$ for all $x \in R$.

Proof. The result follows from the fact that $[x,0] = [x,1] \neq r$ and -r for all $x \in R$.

Theorem 7.2.7. Let S be a subring of a non-commutative ring R and $r \in R$.

- (a) If r = 0 then $\Gamma_{S,R}^r$ is not a tree, star graph, lollipop graph and complete graph.
- (b) If $r \neq 0$ and R has unity $1 \in S$ then $\Gamma_{S,R}^r$ is not a tree and a star graph.

Proof. The results follow from Lemma 7.2.5 and Lemma 7.2.6.

Theorem 7.2.8. Let S be a subring of a non-commutative ring R and $r \neq 0$. Then $\Gamma_{S,R}^r$ is a star if and only if 2r = 0, $S \neq \{0\}$ and R is isomorphic to $E(4) = \langle a, b : 2a = 2b = 0, a^2 = a, b^2 = b, ab = a, ba = b \rangle$ or $F(4) = \langle x, y : 2x = 2y = 0, x^2 = x, y^2 = y, xy = y, yx = x \rangle$.

Proof. If R is isomorphic to E(4) or F(4) then it is easy to see that $\Gamma_{S,R}^r$ is a star graph for any subring S.

Suppose that $\Gamma_{S,R}^r$ is a star graph. Clearly, $\deg(0) = |R| - 1$. Also, $\deg(x) = 1$ for all $0 \neq x \in R$. Since $r \neq 0$ and $r \in K(S,R)$ we have $S \neq \{0\}$. Let $0 \neq y \in R$. Then consider the following cases.

Case 1: $y \in S$.

Note that $deg(y) \neq |R| - 1$. Therefore, if 2r = 0 then, by Corollary 7.2.3(a), we have

$$1 = \deg(y) = |R| - |C_R(y)| - 1.$$

Therefore, $|R| - |C_R(y)| = 2$. We have $0, y \in C_R(y)$. Since $C_R(y)$ is a subring of R, $|C_R(y)|$ divides $|R| - |C_R(y)|$. Therefore, $|C_R(y)| = 2$ and hence |R| = 4.

If $2r \neq 0$ then, by Corollary 7.2.3(b), we have

$$1 = \deg(y) = |R| - 2|C_R(y)| - 1.$$

Therefore, $|C_R(y)| = 2$ and hence |R| = 6, a contradiction since R is non-commutative. Hence, 2r = 0 and |R| = 4.

Case 2: $y \in R \setminus S$.

Note that $deg(y) \neq |S|$, otherwise |S| = 1; a contradiction. Therefore, if 2r = 0 then, by Corollary 7.2.4(a), we have

$$1 = \deg(y) = |S| - |C_S(y)|.$$

We have $0 \in C_S(y)$. Since $C_S(y)$ is a subring of S, $|C_S(y)|$ divides $|S| - |C_S(y)|$. Therefore, $|C_S(y)| = 1$ and hence |S| = 2. Thus, S has a non-zero element and so, by Case 1, we have |R| = 4.

If $2r \neq 0$ then, by Corollary 7.2.4(b), we have

$$1 = \deg(y) = |S| - 2|C_S(y)|.$$

Therefore, $|C_S(y)| = 1$ and hence |S| = 3. Therefore, S has a non-zero element and so, by Case 1, we have 2r = 0 and |R| = 4, a contradiction.

Hence, 2r = 0 and R is isomorphic to E(4) or F(4). Hence, the result follows.

Theorem 7.2.9. Let S be a non-commutative subring of R. Then $\Gamma_{S,R}^r$ is not a lollipop graph.

Proof. If r=0 then the result follows from Theorem 7.2.7(a). Let $r\neq 0$ and $\Gamma_{S,R}^r$ be a lollipop graph. Then there exits an element $x\in R$ such that $\deg(x)=1$.

Case 1: $x \in S$

By Corollary 7.2.3, we have $\deg(x) = |R| - 1 = 1$ or $\deg(x) = |R| - |C_R(x)| - 1 = 1$ or $\deg(x) = |R| - 2|C_R(x)| - 1 = 1$. Therefore $|R| - |C_R(x)| = 2$ or $|R| - 2|C_R(x)| = 2$ since $|R| \neq 2$. Thus $|C_R(x)| = 2$ and so |R| = 4 since $|R| \neq 6$. Hence, by Theorem 7.2.8, $\Gamma_{S,R}^r$ is a star graph; a contradiction.

Case 2: $x \in R \setminus S$

By Corollary 7.2.4, we have $\deg(x) = |S| - |C_S(x)| = 1$ or $\deg(x) = |S| - 2|C_S(x)| = 1$ since $|S| \neq 1$. Therefore $|C_S(x)| = 1$ and so |S| = 2 or 3. Hence, S is commutative, a contradiction.

Note that Theorem 7.2.9 is a generalization of Theorem 6.1.4. We conclude this section with the following result.

Theorem 7.2.10. Let S be a subring of a non-commutative ring R. Then $\Gamma_{S,R}^r$ is regular if and only if $K(S,R) = \{0\}$.

Proof. If $K(S,R) = \{0\}$ then r = 0. Therefore, by Observation 7.1.1(b), it follows that $\Gamma^r_{S,R}$ is regular. Suppose that $\Gamma^r_{S,R}$ is regular. If r = 0 then, by Lemma 7.2.5, we have $\deg(0) = 0$. Therefore $\Gamma^r_{S,R} = \overline{K_{|R|}}$ and so $K(S,R) = \{0\}$. If $r \neq 0$ then, by Lemma 7.2.5,

we have deg(0) = |R| - 1. Therefore, $\Gamma_{S,R}^r$ is a complete graph and so S = R. That is, $\Gamma_{R,R}^r$ is regular; which is a contradiction by Theorem 6.1.5.

7.3 Γ_{SR}^r of isoclinic pairs

In this section, we mainly prove the following result.

Theorem 7.3.1. Let R_1 and R_2 be two finite rings. Let S_1 and S_2 be two subrings of R_1 and R_2 respectively such that $|Z(S_1, R_1)| = |Z(S_2, R_2)|$. If $r \in [S_1, R_1]$ and (ϕ, ψ) is an isoclinism between the pairs (S_1, R_1) and (S_2, R_2) then $\Gamma_{S_1, R_1}^r \cong \Gamma_{S_2, R_2}^{\psi(r)}$.

Proof. We have $\phi: \frac{R_1}{Z(S_1,R_1)} \to \frac{R_2}{Z(S_2,R_2)}$ is an isomorphism such that $\phi\left(\frac{S_1}{Z(S_1,R_1)}\right) = \frac{S_2}{Z(S_2,R_2)}$. Therefore, $|\frac{R_1}{Z(S_1,R_1)}| = |\frac{R_2}{Z(S_2,R_2)}|$ and $|\frac{S_1}{Z(S_1,R_1)}| = |\frac{S_2}{Z(S_2,R_2)}|$. Let $|\frac{S_1}{Z(S_1,R_1)}| = m$ and $|\frac{R_1}{Z(S_1,R_1)}| = n$. Let $\{s_1,s_2,\ldots,s_m,r_{m+1},\ldots,r_n\}$ and $\{s'_1,s'_2,\ldots,s'_m,r'_{m+1},\ldots,r'_n\}$ be two transversals of $\frac{R_1}{Z(S_1,R_1)}$ and $\frac{R_2}{Z(S_2,R_2)}$ respectively such that $\{s_1,s_2,\ldots,s_m\}$ and $\{s'_1,s'_2,\ldots,s'_m\}$ are transversals of $\frac{S_1}{Z(S_1,R_1)}$ and $\frac{S_2}{Z(S_2,R_2)}$ respectively.

Let ϕ be defined as $\phi(s_i+Z(S_1,R_1))=s_i'+Z(S_2,R_2)$, $\phi(r_j+Z(S_1,R_1))=r_j'+Z(S_2,R_2)$ for $1 \leq i \leq m$ and $m+1 \leq j \leq n$. Let $\theta: Z(S_1,R_1) \to Z(S_2,R_2)$ be a one-to-one correspondence. Let us define a map $\alpha: R_1 \to R_2$ such that $\alpha(s_i+z)=s_i'+\theta(z)$, $\alpha(r_j+z)=r_j'+\theta(z)$ for $z \in Z(S_1,R_1)$, $1 \leq i \leq m$ and $m+1 \leq j \leq n$. Then α is a bijection. Suppose u,v are adjacent in Γ_{S_1,R_1}^r . Then $u \in S_1$ or $v \in S_1$ and $[u,v] \neq r,-r$. Without any loss of generality, let us assume that $u \in S_1$. Then $u=s_i+z$ for $1 \leq i \leq m$ and $v=t+z_1$ where $z,z_1 \in Z(S_1,R_1)$, $t \in \{s_1,s_2,\ldots,s_m,r_{m+1},\ldots,r_n\}$. Therefore, for some $t' \in \{s_1',\ldots,s_m',r_{m+1}',\ldots,r_n'\}$, we have

$$[s_i + z, t + z_1] \neq r, -r$$

$$\Rightarrow \psi([s_i + z, t + z_1]) \neq \psi(r), -\psi(r)$$

$$\Rightarrow [s'_i + \theta(z), t' + \theta(z_1)] \neq \psi(r), -\psi(r)$$

$$\Rightarrow [\alpha(s_i + z), \alpha(t + z_1)] \neq \psi(r), -\psi(r)$$

$$\Rightarrow [\alpha(u), \alpha(v)] \neq \psi(r), -\psi(r).$$

This shows that $\alpha(u)$ and $\alpha(v)$ are adjacent in $\Gamma_{S_2,R_2}^{\psi(r)}$ noting that $\alpha(u) \in S_2$. Hence, α is an isomorphism between the graphs Γ_{S_1,R_1}^r and $\Gamma_{S_2,R_2}^{\psi(r)}$. This completes the proof.

7.4 Connecting $\Gamma_{S,R}^r$ with $Pr_r(S,R)$

In this section, we derive some connections between $\Gamma^r_{S,R}$ and $\Pr_r(S,R)$. Let $|e(\Gamma^r_{S,R})|$ denotes the number of edges in $\Gamma^r_{S,R}$. If $r \notin K(S,R)$ then it follows from Observation 7.1.1 that

$$|e(\Gamma_{S,R}^r)| = |S||R| - \frac{|S|^2 + |S|}{2}.$$

The following theorem gives the number of edges in $\Gamma^r_{S,R}$ in terms of $\Pr_r(S,R)$ and $\Pr_r(S)$.

Theorem 7.4.1. Let S be a subring of a finite ring R.

(a) If r = 0 then

$$2|e(\Gamma_{SR}^r)| = 2|S||R|(1 - \Pr(S, R)) - |S|^2(1 - \Pr(S)).$$

(b) If $r \neq 0$ and 2r = 0 then

$$2|e(\Gamma_{S,R}^r)| = \begin{cases} 2|S||R|(1 - \Pr_r(S,R)) - |S|^2(1 - \Pr_r(S)) - |S|, & \text{if } r \in S \\ 2|S||R|(1 - \Pr_r(S,R)) - |S|^2 - |S|, & \text{if } r \in R \setminus S. \end{cases}$$

(c) If $r \neq 0$ and $2r \neq 0$ then

$$2|e(\Gamma_{S,R}^r)| = \begin{cases} 2|S||R|(1 - \sum_{u=r,-r} \Pr_u(S,R)) - \\ |S|^2(1 - \sum_{u=r,-r} \Pr_u(S)) - |S|, & \text{if } r \in S \\ 2|S||R|(1 - \sum_{u=r,-r} \Pr_u(S,R)) - |S|^2 - |S|, & \text{if } r \in R \setminus S. \end{cases}$$

Proof. Let $\mathbb{I} = \{(x,y) \in S \times R : x \neq y, [x,y] \neq r \text{ and } [x,y] \neq -r\}$ and $\mathbb{J} = \{(x,y) \in R \times S : x \neq y, [x,y] \neq r \text{ and } [x,y] \neq -r\}$. Then $\mathbb{I} \cap \mathbb{J} = \{(x,y) \in S \times S : x \neq y, [x,y] \neq r \text{ and } [x,y] \neq -r\}$.

It is easy to see that $(x,y) \mapsto (y,x)$ defines a bijective map from \mathbb{I} to \mathbb{J} and so $|\mathbb{I}| = |\mathbb{J}|$. Also, $2|e(\Gamma_{S,R}^r)| = |\mathbb{I} \cup \mathbb{J}|$. Therefore,

$$2|e(\Gamma_{S,R}^r)| = 2|\mathbb{I}| - |\mathbb{I} \cap \mathbb{J}|. \tag{7.4.1}$$

(a) If r = 0 then, by equation (1.3.2), we have

$$|\mathbb{I}| = |\{(x, y) \in S \times R : [x, y] \neq 0\}|$$

$$= |S||R| - |\{(x, y) \in S \times R : [x, y] = 0\}|$$

$$= |S||R|(1 - \Pr(S, R))$$

and

$$|\mathbb{I} \cap \mathbb{J}| = |\{(x, y) \in S \times S : [x, y] \neq 0\}|$$
$$= |S|^2 - |\{(x, y) \in S \times S : [x, y] = 0\}|$$
$$= |S|^2 (1 - \Pr(S)).$$

Hence, the result follows from equation (7.4.1).

(b) If $r \neq 0$ and 2r = 0 then r = -r. Therefore, by equation (1.3.2), we have

$$|\mathbb{I}| = |\{(x,y) \in S \times R : x \neq y, [x,y] \neq r\}|$$

$$= |S||R| - |\{(x,y) \in S \times R : [x,y] = r\}| - |\{(x,y) \in S \times S : x = y\}|$$

$$= |S||R|(1 - \Pr_r(S,R)) - |S|.$$

If $r \in S$ then, by equation (1.3.2), we have

$$\begin{split} |\mathbb{I} \cap \mathbb{J}| &= |\{(x,y) \in S \times S : x \neq y, [x,y] \neq r\}| \\ &= |S|^2 - |\{(x,y) \in S \times S : [x,y] = r\}| - |\{(x,y) \in S \times S : x = y\}| \\ &= |S|^2 (1 - \Pr_r(S)) - |S|. \end{split}$$

If $r \in R \setminus S$ then we have

$$|\mathbb{I} \cap \mathbb{J}| = |S|^2 - |S|$$

noting that $\{(x,y) \in S \times S : [x,y] = r\}$ is empty. Therefore,

$$|\mathbb{I} \cap \mathbb{J}| = \begin{cases} |S|^2 (1 - \Pr_r(S)) - |S|, & \text{if } r \in S \\ |S|^2 - |S|, & \text{if } r \in R \setminus S. \end{cases}$$

Hence, the result follows from equation (7.4.1).

(c) If $r \neq 0$ and $2r \neq 0$ then, by equation (1.3.2), we have

$$\begin{split} |\mathbb{I}| = & |\{(x,y) \in S \times R : x \neq y, [x,y] \neq r \text{ and } [x,y] \neq -r\}| \\ = & |S||R| - |\{(x,y) \in S \times R : [x,y] = r\}| - |\{(x,y) \in S \times R : [x,y] = -r\}| \\ & - |\{(x,y) \in S \times S : x = y\}| \\ = & |S||R|(1 - \sum_{u = r, -r} \Pr_u(S,R)) - |S|. \end{split}$$

If $r \in S$ then, by equation (1.3.2), we have

$$\begin{split} |\mathbb{I} \cap \mathbb{J}| = & |\{(x,y) \in S \times S : x \neq y, [x,y] \neq r \text{ and } [x,y] \neq -r\}| \\ = & |S|^2 - |\{(x,y) \in S \times S : [x,y] = r\}| - |\{(x,y) \in S \times S : [x,y] = -r\}| \\ & - |\{(x,y) \in S \times S : x = y\}| \\ = & |S|^2 (1 - \sum_{u = r - r} \Pr_u(S)) - |S|. \end{split}$$

If $r \in R \setminus S$ then we have

$$|\mathbb{I} \cap \mathbb{J}| = |S|^2 - |S|.$$

noting that $\{(x,y)\in S\times S:[x,y]=r\}$ and $\{(x,y)\in S\times S:[x,y]=-r\}$ are empty. Therefore,

$$|\mathbb{I} \cap \mathbb{J}| = \begin{cases} |S|^2 (1 - \sum_{u=r,-r} \Pr_u(S)) - |S|, & \text{if } r \in S \\ |S|^2 - |S|, & \text{if } r \in R \setminus S. \end{cases}$$

Hence, the result follows from equation (7.4.1).

As an application of Theorem 7.4.1, in the following two theorems, we compute the number of edges in $\Gamma_{S,R}^r$ if [S,R] has prime order.

Theorem 7.4.2. Let S be a commutative subring of a finite ring R such that |[S,R]| = p, a prime.

(a) If
$$r = 0$$
 then $|e(\Gamma_{S,R}^r)| = \frac{(p-1)|R|(|S|-|Z(S,R)|)}{p}$.

(b) If $r \neq 0$ and 2r = 0 then

$$|e(\Gamma_{S,R}^r)| = \frac{2|R|((p-1)|S| + |Z(S,R)|) - p|S|^2 - p|S|}{2p}.$$

(c) If $r \neq 0$ and $2r \neq 0$ then

$$|e(\Gamma_{S,R}^r)| = \frac{2|R|((p-2)|S|+2|Z(S,R)|)-p|S|^2-p|S|}{2p}.$$

Proof. If |[S, R]| = p then, by Result 1.3.12, we have

$$\Pr_{r}(S,R) = \begin{cases} \frac{1}{p} \left(1 + \frac{p-1}{|S:Z(S,R)|} \right), & \text{if } r = 0\\ \frac{1}{p} \left(1 - \frac{1}{|S:Z(S,R)|} \right), & \text{if } r \neq 0. \end{cases}$$

Since S is commutative, we have $[S, S] = \{0\}$. Therefore, by equation (1.3.2), we have

$$\Pr_r(S) = \begin{cases} 1, & \text{if } r = 0\\ 0, & \text{if } r \neq 0. \end{cases}$$

Hence, the results follows from Theorem 7.4.1.

Theorem 7.4.3. Let S be a non-commutative subring of a finite ring R such that |[S, R]| = p, a prime.

(a) If r = 0 then

$$|e(\Gamma_{S,R}^r)| = \frac{(p-1)[2|R|(|S|-|Z(S,R)|)-|S|(|S|-|Z(S)|)]}{2p}.$$

(b) If $r \neq 0$ and 2r = 0 then

$$|e(\Gamma_{S,R}^r)| = \begin{cases} \frac{2|R|((p-1)|S| + |Z(S,R)|) - |S|((p-1)|S| + |Z(S)|) - p|S|}{2p}, & \text{if } r \in S \\ \frac{2|R|((p-1)|S| + |Z(S,R)|) - p|S|^2 - p|S|}{2p}, & \text{if } r \in R \setminus S. \end{cases}$$

(c) If $r \neq 0$ and $2r \neq 0$ then

$$|e(\Gamma_{S,R}^r)| = \begin{cases} \frac{2|R|((p-2)|S|+2|Z(S,R)|)-|S|((p-2)|S|+2|Z(S)|)-p|S|}{2p}, & \text{if } r \in S \\ \frac{2|R|((p-2)|S|+2|Z(S,R)|)-p|S|^2-p|S|}{2p}, & \text{if } r \in R \setminus S. \end{cases}$$

Proof. If |[S, R]| = p then, by Result 1.3.12, we have

$$\operatorname{Pr}_r(S,R) = \begin{cases} \frac{1}{p} \left(1 + \frac{p-1}{|S:Z(S,R)|} \right), & \text{if } r = 0\\ \frac{1}{p} \left(1 - \frac{1}{|S:Z(S,R)|} \right), & \text{if } r \neq 0. \end{cases}$$

If S is non-commutative then |[S,S]| = |[S,R]| = p. Therefore, by Result 1.3.11, we have

$$\operatorname{Pr}_r(S) = \begin{cases} \frac{1}{p} \left(1 + \frac{p-1}{|S:Z(S)|} \right), & \text{if } r = 0\\ \frac{1}{p} \left(1 - \frac{1}{|S:Z(S)|} \right), & \text{if } r \neq 0. \end{cases}$$

Hence, the results follows from Theorem 7.4.1.

Corollary 7.4.4. Let $R = E(p^2) = \langle a, b : pa = pb = 0, a^2 = a, b^2 = b, ab = a, ba = b \rangle$ for any prime p and S be a subring of R.

(a) If |S| = p then

$$|e(\Gamma_{S,R}^r)| = \begin{cases} p(p-1)^2, & \text{if } r = 0\\ \frac{p(p-1)(2p-1)}{2}, & \text{if } r \neq 0 \text{ and } 2r = 0\\ \frac{p(p-1)(2p-3)}{2}, & \text{if } r \neq 0 \text{ and } 2r \neq 0. \end{cases}$$

(b) If S = R then

$$|e(\Gamma_{S,R}^r)| = \begin{cases} \frac{p(p-1)^2(p+1)}{2}, & \text{if } r = 0\\ \\ \frac{p(p-1)^2(p+1)}{2}, & \text{if } r \neq 0 \text{ and } 2r = 0\\ \\ \frac{p(p-1)(p-2)(p+1)}{2}, & \text{if } r \neq 0 \text{ and } 2r \neq 0. \end{cases}$$

Proof. We have $[S,R] = \{ma + (p-m)b : 1 \le m \le p\}$ and $Z(S,R) = \{0\}$. Therefore, |[S,R]| = p and |Z(S,R)| = 1. Hence, the result follows from Theorems 7.4.2 and 7.4.3 noting that |Z(S)| = 1 if S = R.

The following corollaries of Theorem 7.4.1 give certain lower bounds and upper bounds respectively for the number of edges in $\Gamma_{S,R}^r$, if $r \neq 0$.

Corollary 7.4.5. Let p be the smallest prime dividing |R| and $r \neq 0$. Then for a non-commutative subring S of R we have the following lower bounds for $|e(\Gamma_{S,R}^r)|$.

(a) If 2r = 0 then

$$|e(\Gamma_{S,R}^r)| \ge \begin{cases} \frac{2(p-1)|R||S|+2|R||Z(S,R)|-p|S|^2+6p|Z(S)|^2-p|S|)}{2p}, & \text{if } r \in S\\ \frac{2(p-1)|R||S|+2|R||Z(S,R)|-p|S|^2-p|S|}{2p}, & \text{if } r \in R \setminus S. \end{cases}$$

(b) If $2r \neq 0$ then

$$|e(\Gamma_{S,R}^r)| \ge \begin{cases} \frac{2(p-2)|R||S|+4|R||Z(S,R)|-p|S|^2+12p|Z(S)|^2-p|S|)}{2p}, & \text{if } r \in S\\ \frac{2(p-2)|R||S|+4|R||Z(S,R)|-p|S|^2-p|S|}{2p}, & \text{if } r \in R \setminus S. \end{cases}$$

Proof. By Result 1.3.13 we have

$$1 - \Pr_r(S, R) \ge \frac{(p-1)|S| + |Z(S, R)|}{p|S|}$$
(7.4.2)

and

$$1 - \sum_{u=r-r} \Pr_u(S, R) \ge \frac{(p-2)|S| + 2|Z(S, R)|}{p|S|}.$$
 (7.4.3)

By Result 1.3.10 we have

$$\Pr_r(S) \ge \frac{6|Z(S)|^2}{|S|^2}.$$
 (7.4.4)

(a) We have 2r = 0. Therefore, if $r \in S$ then, using Theorem 7.4.1(b) and equations (7.4.2) and (7.4.4), we get

$$2|e(\Gamma_{S,R}^r)| + |S|^2 + |S| \ge 2|S||R| \left(\frac{(p-1)|S| + |Z(S,R)|}{p|S|}\right) + |S|^2 \left(\frac{6|Z(S)|^2}{|S|^2}\right).$$

Hence the result follows.

If $r \in R \setminus S$ then, using Theorem 7.4.1(b) and equation (7.4.2), we get

$$2|e(\Gamma_{S,R}^r)| + |S|^2 + |S| \ge 2|S||R| \left(\frac{(p-1)|S| + |Z(S,R)|}{p|S|}\right).$$

Hence the result follows.

(b) We have $2r \neq 0$. Therefore, if $r \in S$ then, using Theorem 7.4.1(c) and equations (7.4.3) and (7.4.4), we get

$$2|e(\Gamma_{S,R}^r)| + |S|^2 + |S| \ge 2|S||R| \left(\frac{(p-2)|S| + 2|Z(S,R)|}{p|S|}\right) + |S|^2 \left(\frac{12|Z(S)|^2}{|S|^2}\right).$$

Hence the result follows.

If $r \in R \setminus S$ then, using Theorem 7.4.1(c) and equation (7.4.3), we get

$$2|e(\Gamma_{S,R}^r)| + |S|^2 + |S| \ge 2|S||R| \left(\frac{(p-2)|S| + 2|Z(S,R)|}{p|S|}\right).$$

Hence the result follows.

Corollary 7.4.6. Let p be the smallest prime dividing |R| and $Z(R,S) = \{t \in R : ts = st \text{ for all } s \in S\}$ for any non-commutative subring S of R. If $r \neq 0$, then we have the following upper bounds for $|e(\Gamma_{S,R}^r)|$.

(a) If 2r = 0 then

$$|e(\Gamma_{S,R}^r)| \le \begin{cases} \frac{2p|R||S| - 4p|Z(S,R)||Z(R,S)| - (p-1)|S|^2 - |S||Z(S)| - p|S|}{2p}, & \text{if } r \in S \\ \frac{2|R||S| - 4|Z(S,R)||Z(R,S)| - |S|^2 - |S|}{2p}, & \text{if } r \in R \setminus S. \end{cases}$$

(b) If $2r \neq 0$ then

$$|e(\Gamma_{S,R}^r)| \le \begin{cases} \frac{2p|R||S| - 8p|Z(S,R)||Z(R,S)| - (p-2)|S|^2 - 2|S||Z(S)| - p|S|}{2p}, & \text{if } r \in S \\ \frac{2|R||S| - 8|Z(S,R)||Z(R,S)| - |S|^2 - |S|}{2p}, & \text{if } r \in R \setminus S. \end{cases}$$

Proof. By Result 1.3.9 we have

$$\Pr_r(S) \le \frac{|S| - |Z(S)|}{p|S|}.$$
 (7.4.5)

By Result 1.3.14(b) we have

$$1 - \Pr_r(S, R) \le \frac{|S||R| - 2|Z(S, R)||Z(R, S)|}{|S||R|}$$
(7.4.6)

and

$$1 - \sum_{u=r-r} \Pr_u(S,R) \le \frac{|S||R| - 4|Z(S,R)||Z(R,S)|}{|S||R|}.$$
 (7.4.7)

(a) We have 2r = 0. Therefore, if $r \in S$ then, using Theorem 7.4.1(b) and equations (7.4.5) and (7.4.6), we get

$$2|e(\Gamma_{S,R}^r)|+|S|^2+|S|$$

$$\leq 2|S||R|\left(\frac{|S||R|-2|Z(S,R)||Z(R,S)|}{|S||R|}\right)+|S|^2\left(\frac{|S|-|Z(S)|}{p|S|}\right).$$

Hence the result follows.

If $r \in R \setminus S$ then, using Theorem 7.4.1(b) and equation (7.4.6), we get

$$2|e(\Gamma_{S,R}^r)| + |S|^2 + |S| \le 2|S||R| \left(\frac{|S||R| - 2|Z(S,R)||Z(R,S)|}{|S||R|}\right).$$

Hence the result follows.

(b) We have $2r \neq 0$. Therefore, if $r \in S$ then, using Theorem 7.4.1(c) and equations (7.4.5) and (7.4.7), we get

$$\begin{split} 2|e(\Gamma_{S,R}^r)|+|S|^2+|S|\\ \leq &2|S||R|\left(\frac{|S||R|-4|Z(S,R)||Z(R,S)|}{|S||R|}\right)+2|S|^2\left(\frac{|S|-|Z(S)|}{p|S|}\right). \end{split}$$

Hence the result follows.

If $r \in R \setminus S$ then, using Theorem 7.4.1(c) and equation (7.4.7), we get

$$2|e(\Gamma_{S,R}^r)| + |S|^2 + |S| \le 2|S||R| \left(\frac{|S||R| - 4|Z(S,R)||Z(R,S)|}{|S||R|}\right).$$

Hence the result follows.

We conclude the section noting that if r=0 then using Theorem 7.4.1(a) and various bounds for $\Pr(S,R)$ and $\Pr(S)$, obtained in [22], we may derive various bounds for $|e(\Gamma_{S,R}^r)|$.

7.5 An induced subgraph of Γ_{SR}^r

In this section we consider the induced subgraph $\Delta^r_{S,R}$ of $\Gamma^r_{S,R}$ with vertex set $R \setminus Z(S,R)$.

Theorem 7.5.1. Let x be any vertex in $\Delta_{S,R}^r$.

(a) If
$$r = 0$$
 then $\deg(x) = \begin{cases} |R| - |C_R(x)|, & \text{if } x \in S \setminus Z(S, R) \\ |S| - |C_S(x)|, & \text{if } x \in R \setminus S. \end{cases}$

(b) If $r \neq 0$ and 2r = 0 then

$$\deg(x) = \begin{cases} |R| - |Z(S,R)| - |C_R^r(x)| - 1, & \text{if } x \in S \setminus Z(S,R) \\ |S| - |Z(S,R)| - |C_S^r(x)|, & \text{if } x \in R \setminus S. \end{cases}$$

(c) If $r \neq 0$ and $2r \neq 0$ then

$$\deg(x) = \begin{cases} |R| - |Z(S,R)| - 2|C_R^r(x)| - 1, & \text{if } x \in S \setminus Z(S,R) \\ |S| - |Z(S,R)| - 2|C_S^r(x)|, & \text{if } x \in R \setminus S. \end{cases}$$

Proof. Let x be a vertex in $\Delta_{S,R}^r$. If $x \in S \setminus Z(S,R)$ then $\deg(x)$ is the number of $y \in R \setminus Z(S,R)$ such that $xy \neq yx$. Hence, $\deg(x) = |R| - |Z(S,R)| - (|C_R(x)| - |Z(S,R)|) = |R| - |C_R(x)|$. If $x \in R \setminus S$ then $\deg(x)$ is the number of $s \in S \setminus Z(S,R)$ such that $sx \neq xs$. Hence, $\deg(x) = |S| - |Z(S,R)| - (|C_S(x)| - |Z(S,R)|) = |S| - |C_S(x)|$. Hence, part (a) follows.

The proofs of parts (b) and (c) follow from Theorem 7.2.1 (parts (b), (c)) noting that the vertex set of $\Delta_{S,R}^r$ is $R \setminus Z(S,R)$.

By Lemma 7.2.2 and Theorem 7.5.1, we have the following two corollaries.

Corollary 7.5.2. Let $x \in S$ be a vertex in $\Delta_{S,R}^r$.

(a) If $r \neq 0$ and 2r = 0 then

$$\deg(x) = \begin{cases} |R| - |Z(S,R)| - |C_R(x)| - 1, & \text{if } C_R^r(x) \neq \emptyset \\ |R| - |Z(S,R)| - 1, & \text{otherwise.} \end{cases}$$

(b) If $r \neq 0$ and $2r \neq 0$ then

$$\deg(x) = \begin{cases} |R| - |Z(S,R)| - 2|C_R(x)| - 1, & \text{if } C_R^r(x) \neq \emptyset \\ |R| - |Z(S,R)| - 1, & \text{otherwise.} \end{cases}$$

Corollary 7.5.3. Let $x \in R \setminus S$ be a vertex in $\Gamma^r_{S,R}$.

(a) If $r \neq 0$ and 2r = 0 then

$$\deg(x) = \begin{cases} |S| - |Z(S,R)| - |C_S(x)|, & \text{if } C_S^r(x) \neq \emptyset \\ |S| - |Z(S,R)|, & \text{otherwise.} \end{cases}$$

(b) If $r \neq 0$ and $2r \neq 0$ then

$$\deg(x) = \begin{cases} |S| - |Z(S,R)| - 2|C_S(x)|, & \text{if } C_S^r(x) \neq \emptyset \\ |S| - |Z(S,R)|, & \text{otherwise.} \end{cases}$$

Theorem 7.5.4. Let S be a subring of a non-commutative ring R with unity 1 such that $|R| \neq 8$ and $1 \in S$. Then $\Delta_{S,R}^r$ is not a tree.

Proof. Suppose that $\Delta_{S,R}^r$ is a tree. Therefore, there exists $x \in R \setminus Z(S,R)$ such that $\deg(x) = 1$.

Case 1: r = 0

If $x \in S \setminus Z(S,R)$ then, by Theorem 7.5.1(a), we have $\deg(x) = |R| - |C_R(x)| = 1$. Therefore, $|C_R(x)| = 1$, contradiction. If $x \in R \setminus S$ then, by Theorem 7.5.1(a), we also have $\deg(x) = |S| - |C_S(x)| = 1$. Therefore, $|C_S(x)| = 1$, contradiction.

Case 2: $r \neq 0$ and 2r = 0

Subcase 2.1: Let $x \in S \setminus Z(S, R)$. Then, by Corollary 7.5.2(a), we have $\deg(x) = |R| - |Z(S, R)| - 1 = 1$ or $\deg(x) = |R| - |Z(S, R)| - |C_R(x)| - 1 = 1$. That is,

$$|R| - |Z(S,R)| = 2 \text{ or}$$
 (7.5.1)

$$|R| - |Z(S,R)| - |C_R(x)| = 2. (7.5.2)$$

Note that Z(S, R) is a subring of R as well as $C_R(x)$ containing 0 and 1. Therefore, |Z(S, R)| divides the left hand sides of the equations (7.5.1) and (7.5.2). It follows that |Z(S, R)| = 2. Thus equation (7.5.1) gives |R| = 4, which is a contradiction since there is no non-commutative ring with unity having order 4. Again equation (7.5.2) gives $|R| - |C_R(x)| = 4$ and so $|C_R(x)| = 4$. Therefore, |R| = 8, which contradicts our assumption.

Subcase 2.2: Let $x \in R \setminus S$. Then, by Corollary 7.5.3(a), we have $\deg(x) = |S| - |Z(S,R)| = 1$ or $\deg(x) = |S| - |Z(S,R)| - |C_S(x)| = 1$. Note that Z(S,R) is a subring of S as well as $C_S(x)$ containing 0 and 1. Therefore, |Z(S,R)| divides |S| - |Z(S,R)| and $|S| - |Z(S,R)| - |C_S(x)|$. It follows that |Z(S,R)| = 1, a contradiction.

Case 3: $r \neq 0$ and $2r \neq 0$

Subcase 3.1: Let $x \in S \setminus Z(S, R)$. Then, by Corollary 7.5.2(b), we have $\deg(x) = |R| - |Z(S, R)| - 1 = 1$ or $\deg(x) = |R| - |Z(S, R)| - 2|C_R(x)| - 1 = 1$. That is,

$$|R| - |Z(S,R)| = 2 \text{ or}$$
 (7.5.3)

$$|R| - |Z(S,R)| - 2|C_R(x)| = 2. (7.5.4)$$

Therefore, |Z(S,R)| = 2. Thus equation (7.5.3) leads to the same contradiction that we get in the first part of Subcase 2.1. By equation (7.5.4) we have $|R| - 2|C_R(x)| = 4$ and so $|C_R(x)| = 4$. Therefore, |R| = 12 and so $\frac{R}{Z(S,R)}$ is cyclic. Hence, by Result 1.3.5, R is commutative; a contradiction.

Subcase 3.2: Let $x \in R \setminus S$. Then, by Corollary 7.5.3(b), we have $\deg(x) = |S| - |Z(S,R)| = 1$ or $\deg(x) = |S| - |Z(S,R)| - 2|C_S(x)| = 1$. Therefore, |Z(S,R)| = 1, a contradiction.

The proof of Theorem 7.5.4 also tells that there is no vertex in the graph $\Delta_{S,R}^r$ having degree 1 if R is a non-commutative ring with unity 1 such that $|R| \neq 8$ and S is any subring of R with the same unity. We conclude this chapter by obtaining conditions such that $\Delta_{S,R}^r$ has no vertex having degree 2.

Theorem 7.5.5. Let S be a non-commutative subring of a ring R with unity 1 such that $1 \in S$. Then $\Delta_{S,R}^r$ has no vertex having degree 2 if $|R| \neq 12$ and $|S| \neq 8$.

Proof. Suppose that $\Delta_{S,R}^r$ has a vertex x such that $\deg(x) = 2$.

Case 1: r = 0

If $x \in S \setminus Z(S, R)$ then, by Theorem 7.5.1(a), we have $\deg(x) = |R| - |C_R(x)| = 2$. Therefore, $|C_R(x)| = 2$, contradiction. If $x \in R \setminus S$ then, by Theorem 7.5.1(a), we also have $\deg(x) = |S| - |C_S(x)| = 2$. Therefore, $|C_S(x)| = 2$ and so |S| = 4, a contradiction since there is no non-commutative ring with unity having order 4.

Case 2: $r \neq 0$ and 2r = 0

Subcase 2.1: Let $x \in S \setminus Z(S, R)$. Then, by Corollary 7.5.2(a), we have $\deg(x) = |R| - |Z(S, R)| - 1 = 2$ or $\deg(x) = |R| - |Z(S, R)| - |C_R(x)| - 1 = 2$. That is,

$$|R| - |Z(S,R)| = 3 \text{ or}$$
 (7.5.5)

$$|R| - |Z(S,R)| - |C_R(x)| = 3.$$
 (7.5.6)

Therefore, |Z(S,R)| = 3. Thus equation (7.5.5) gives |R| = 6, which is a contradiction since R is non-commutative. Again equation (7.5.6) gives $|R| - |C_R(x)| = 6$ and so $|C_R(x)| = 6$ since $|C_R(x)| \neq 3$. Therefore |R| = 12, which contradicts our assumption.

Subcase 2.2: Let $x \in R \setminus S$. Then, by Corollary 7.5.3(a), we have $\deg(x) = |S| - |Z(S,R)| = 2$ or $\deg(x) = |S| - |Z(S,R)| - |C_S(x)| = 2$. Therefore, |Z(S,R)| = 2 and so $|S| - |C_S(x)| = 4$ since $|S| \neq 4$. We have $|C_S(x)| = 4$ since $|C_S(x)| \neq 2$. Therefore |S| = 8 which contradicts our assumption.

Case 3: $r \neq 0$ and $2r \neq 0$

Subcase 3.1: Let $x \in S \setminus Z(S, R)$. Then, by Corollary 7.5.2(b), we have $\deg(x) = |R| - |Z(S, R)| - 1 = 2$ or $\deg(x) = |R| - |Z(S, R)| - 2|C_R(x)| - 1 = 2$. That is,

$$|R| - |Z(S,R)| = 3 \text{ or}$$
 (7.5.7)

$$|R| - |Z(S,R)| - 2|C_R(x)| = 3. (7.5.8)$$

Therefore, |Z(S,R)| = 3. Thus equation (7.5.7) leads to the same contradiction that we get in the first part of Subcase 2.1. By equation (7.5.8) we have $|R| - 2|C_R(x)| = 6$ and so $|C_R(x)| = 6$ since $|C_R(x)| \neq 3$. Therefore |R| = 18 and so $\frac{R}{Z(S,R)}$ is cyclic. Hence, by Result 1.3.5, R is commutative; a contradiction.

Subcase 3.2: Let $x \in R \setminus S$. Then, by Corollary 7.5.3(b), we have $\deg(x) = |S| - |Z(S,R)| = 2$ or $\deg(x) = |S| - |Z(S,R)| - 2|C_S(x)| = 2$. Therefore, |Z(S,R)| = 2 and so

$$|S| - 2|C_S(x)| = 4$$
 since $|S| \neq 4$. Therefore, $|C_S(x)| = 4$. Therefore $|S| = 12$ and so $\frac{S}{Z(S,R)}$ is cyclic. Hence, by Result 1.3.5, S is commutative; a contradiction.

7.6 Conclusion

In this chapter, we have introduced relative r-noncommuting graph of a finite ring R relative to a subring S of R and obtained results analogous to the results obtained in Chapter 3. We have determined degree of any vertex in $\Gamma^r_{S,R}$ and studied certain graph theoretical properties of $\Gamma^r_{S,R}$. We have shown that $\Gamma^r_{S_1,R_1}$ is isomorphic to $\Gamma^{\psi(r)}_{S_2,R_2}$ if (ϕ,ψ) is an isoclinism between the pairs of finite rings (S_1,R_1) , (S_2,R_2) and $|Z(S_1,R_1)|=|Z(S_2,R_2)|$. Furthermore, we have established connections between the number of edges in $\Gamma^r_{S,R}$ and various generalized commuting probabilities of R. Finally, we have studied a subgraph of $\Gamma^r_{S,R}$ induced on $R\setminus Z(S,R)$.