
Chapter 7

Relative r-noncommuting graphs

of finite rings

In this chapter, we generalize the notion of r-noncommuting graph of a finite ringR. More

precisely, we consider relative r-noncommuting graph of R relative to a subring S, which

is denoted by ΓrS,R and defined as a simple undirected graph with vertex set R and two

vertices x and y are adjacent if x ∈ S or y ∈ S and [x, y] 6= r,−r. Clearly ΓrR,R is the

r-noncommuting graph of R. Further, if r = 0 then the induced subgraph of ΓrS,R with

vertex set R \ CR(S) is nothing but the relative non-commuting graph of R which has

been studied in [20]. In Section 7.2, we derive formula for degree of any vertex in ΓrS,R

and characterize all finite rings such that ΓrS,R is a star, lollipop or a regular graph. In

Section 7.3, we show that ΓrS1,R1
is isomorphic to Γ

ψ(r)
S2,R2

if (φ, ψ) is an isoclinism between

the pairs of finite rings (S1, R1), (S2, R2) and |Z(S1, R1)| = |Z(S2, R2)|. In Section 7.4, we

obtain certain relations between the number of edges in ΓrS,R and Prr(S,K). Finally, we

conclude the chapter by deriving certain results on the induced subgraph of ΓrS,R with

vertex set R \ Z(S,R). This chapter is based on our paper [87] submitted for publication.
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Chapter 7. Relative r-noncommuting graphs of finite rings

7.1 Preliminary observations

We have the following observations regarding ΓrS,R analogous to the observations in Sec-

tion 3.1.

Observation 7.1.1. Let S be a subring of a finite ring R and r ∈ R. Then we have the

following.

(a) If r /∈ K(S,R) then ΓrS,R = K|S| +K|R|−|S| and so

deg(x) =


|R| − 1 if x ∈ S

|S| if x ∈ R \ S.

(b) If K(S,R) = {0} and r = 0 then ΓrS,R = K|R|.

It follows that if r /∈ K(S,R) then

(i) ΓrS,R is a tree if and only if S = {0} or |S| = |R| = 2.

(ii) ΓrS,R is a star graph if and only if S = {0}.

(iii) ΓrS,R is a complete graph if and only if S = R.

Note that if R is commutative or S = Z(S,R) then K(S,R) = {0}. Therefore, in view

of Observation 7.1.1, we consider R to be non-commutative, S to be a subring of R such

that S 6= Z(S,R) and r ∈ K(S,R) throughout this chapter.

7.2 Vertex degree and consequences

For any two given elements x, r ∈ R we write CrS(x) to denote the set {s ∈ S : [x, s] = r}.
Note that CrS(x) is the centralizer of x in R if S = R and r = 0. The following theorem

gives degree of any vertex in ΓrS,R in terms of CrS(x).

Theorem 7.2.1. Let x be any vertex in ΓrS,R.

(a) If r = 0 then deg(x) =


|R| − |CR(x)|, if x ∈ S

|S| − |CS(x)|, if x ∈ R \ S.
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(b) If r 6= 0 and 2r = 0 then deg(x) =


|R| − |CrR(x)| − 1, if x ∈ S

|S| − |CrS(x)|, if x ∈ R \ S.

(c) If r 6= 0 and 2r 6= 0 then deg(x) =


|R| − 2|CrR(x)| − 1, if x ∈ S

|S| − 2|CrS(x)|, if x ∈ R \ S.

Proof. (a) Let r = 0. If x ∈ S then deg(x) is the number of s ∈ R such that sx 6= sx.

Hence, deg(x) = |R| − |CR(x)|. If x ∈ R \ S then deg(x) is the number of s ∈ S such that

sx 6= sx. Hence, deg(x) = |S| − |CS(x)|.
(b) Let r 6= 0 and 2r = 0. In this case, r = −r. If x ∈ S then s ∈ R is not adjacent to

x if and only if s = x or s ∈ CrR(x). Hence, deg(x) = |R| − |CrR(x)| − 1. If x ∈ R \ S then

s ∈ S is not adjacent to x if and only if s ∈ CrS(x). Hence, deg(x) = |S| − |CrS(x)|.
(c) Let r 6= 0 and 2r 6= 0. In this case, r 6= −r. Also, CrS(x)∩C−rS (x) = ∅ and s ∈ CrS(x)

if and only if −s ∈ C−rS (x). Therefore, CrS(x) and C−rS (x) have same cardinality. Further,

if x ∈ S then s ∈ R is not adjacent to x if and only if s = x, s ∈ CrR(x) or s ∈ C−rR (x).

Hence, deg(x) = |R| − |CrR(x)| − |C−rR (x)| − 1. If x ∈ R \ S then s ∈ S is not adjacent to x

if and only if s ∈ CrS(x) or s ∈ C−rS (x). Hence, deg(x) = |S| − |CrS(x)| − |C−rS (x)|. Hence,

the result follows.

The next lemma shows that for all x, r ∈ R the cardinality of CrS(x) is either zero or

|CS(x)|.

Lemma 7.2.2. If CrS(x) is non-empty then |CrS(x)| = |CS(x)| for all x, r ∈ R.

Proof. Let t ∈ CrS(x) and p ∈ t+ CS(x). Then p = t+m for some m ∈ CS(x). We have

[x, p] = [x, t+m] = x(t+m)− (t+m)x = [x, t] = r

and so p ∈ CrS(x). Therefore, t + CS(x) ⊆ CrS(x). Again, if y ∈ CrS(x) then [x, t] = [x, y]

which implies (y − t)x = x(y − t). Therefore (y − t) ∈ CS(x) and so y ∈ t+ CS(x). Thus

CrS(x) ⊆ t+ CS(x). Hence, CrS(x) = t+ CS(x) and the result follows.

By Lemma 7.2.2 and Theorem 7.2.1, we have the following two corollaries.

171



Chapter 7. Relative r-noncommuting graphs of finite rings

Corollary 7.2.3. Let x ∈ S be a vertex in ΓrS,R.

(a) If r 6= 0 and 2r = 0 then deg(x) =


|R| − |CR(x)| − 1, if CrR(x) 6= ∅

|R| − 1, otherwise.

(b) If r 6= 0 and 2r 6= 0 then deg(x) =


|R| − 2|CR(x)| − 1, if CrR(x) 6= ∅

|R| − 1, otherwise.

Corollary 7.2.4. Let x ∈ R \ S be a vertex in ΓrS,R.

(a) If r 6= 0 and 2r = 0 then deg(x) =


|S| − |CS(x)|, if CrS(x) 6= ∅

|S|, otherwise.

(b) If r 6= 0 and 2r 6= 0 then deg(x) =


|S| − 2|CS(x)|, if CrS(x) 6= ∅

|S|, otherwise.

In the next few results we discuss some properties of ΓrS,R. The following lemma

shows that ΓrS,R is a disconnected graph if r = 0.

Lemma 7.2.5. If x ∈ Z(S,R) then deg(x) =


0, if r = 0

|R| − 1, if r 6= 0.

Proof. The result follows from Theorem 7.2.1 noting that x ∈ S and

CrR(x) =


CR(x) = R, if r = 0

∅, if r 6= 0.

Lemma 7.2.6. Let S be a subring of a non-commutative ring R with unity 1 and r 6= 0.

If 1 ∈ S then deg(x) ≥ 2 for all x ∈ R.

Proof. The result follows from the fact that [x, 0] = [x, 1] 6= r and −r for all x ∈ R.
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Theorem 7.2.7. Let S be a subring of a non-commutative ring R and r ∈ R.

(a) If r = 0 then ΓrS,R is not a tree, star graph, lollipop graph and complete graph.

(b) If r 6= 0 and R has unity 1 ∈ S then ΓrS,R is not a tree and a star graph.

Proof. The results follow from Lemma 7.2.5 and Lemma 7.2.6.

Theorem 7.2.8. Let S be a subring of a non-commutative ring R and r 6= 0. Then ΓrS,R is

a star if and only if 2r = 0, S 6= {0} and R is isomorphic to E(4) = 〈a, b : 2a = 2b = 0, a2 =

a, b2 = b, ab = a, ba = b〉 or F (4) = 〈x, y : 2x = 2y = 0, x2 = x, y2 = y, xy = y, yx = x〉.

Proof. If R is isomorphic to E(4) or F (4) then it is easy to see that ΓrS,R is a star graph

for any subring S.

Suppose that ΓrS,R is a star graph. Clearly, deg(0) = |R| − 1. Also, deg(x) = 1 for all

0 6= x ∈ R. Since r 6= 0 and r ∈ K(S,R) we have S 6= {0}. Let 0 6= y ∈ R. Then consider

the following cases.

Case 1: y ∈ S.

Note that deg(y) 6= |R| − 1. Therefore, if 2r = 0 then, by Corollary 7.2.3(a), we have

1 = deg(y) =|R| − |CR(y)| − 1.

Therefore, |R|− |CR(y)| = 2. We have 0, y ∈ CR(y). Since CR(y) is a subring of R, |CR(y)|
divides |R| − |CR(y)|. Therefore, |CR(y)| = 2 and hence |R| = 4.

If 2r 6= 0 then, by Corollary 7.2.3(b), we have

1 = deg(y) =|R| − 2|CR(y)| − 1.

Therefore, |CR(y)| = 2 and hence |R| = 6, a contradiction since R is non-commutative.

Hence, 2r = 0 and |R| = 4.

Case 2: y ∈ R \ S.

Note that deg(y) 6= |S|, otherwise |S| = 1; a contradiction. Therefore, if 2r = 0 then,

by Corollary 7.2.4(a), we have

1 = deg(y) =|S| − |CS(y)|.
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We have 0 ∈ CS(y). Since CS(y) is a subring of S, |CS(y)| divides |S|− |CS(y)|. Therefore,

|CS(y)| = 1 and hence |S| = 2. Thus, S has a non-zero element and so, by Case 1, we have

|R| = 4.

If 2r 6= 0 then, by Corollary 7.2.4(b), we have

1 = deg(y) =|S| − 2|CS(y)|.

Therefore, |CS(y)| = 1 and hence |S| = 3. Therefore, S has a non-zero element and so, by

Case 1, we have 2r = 0 and |R| = 4, a contradiction.

Hence, 2r = 0 and R is isomorphic to E(4) or F (4). Hence, the result follows.

Theorem 7.2.9. Let S be a non-commutative subring of R. Then ΓrS,R is not a lollipop

graph.

Proof. If r = 0 then the result follows from Theorem 7.2.7(a). Let r 6= 0 and ΓrS,R be a

lollipop graph. Then there exits an element x ∈ R such that deg(x) = 1.

Case 1: x ∈ S
By Corollary 7.2.3, we have deg(x) = |R| − 1 = 1 or deg(x) = |R| − |CR(x)| − 1 = 1 or

deg(x) = |R| − 2|CR(x)| − 1 = 1. Therefore |R| − |CR(x)| = 2 or |R| − 2|CR(x)| = 2 since

|R| 6= 2. Thus |CR(x)| = 2 and so |R| = 4 since |R| 6= 6. Hence, by Theorem 7.2.8, ΓrS,R is

a star graph; a contradiction.

Case 2: x ∈ R \ S
By Corollary 7.2.4, we have deg(x) = |S| − |CS(x)| = 1 or deg(x) = |S| − 2|CS(x)| = 1

since |S| 6= 1. Therefore |CS(x)| = 1 and so |S| = 2 or 3. Hence, S is commutative, a

contradiction.

Note that Theorem 7.2.9 is a generalization of Theorem 6.1.4. We conclude this section

with the following result.

Theorem 7.2.10. Let S be a subring of a non-commutative ring R. Then ΓrS,R is regular

if and only if K(S,R) = {0}.

Proof. If K(S,R) = {0} then r = 0. Therefore, by Observation 7.1.1(b), it follows that

ΓrS,R is regular. Suppose that ΓrS,R is regular. If r = 0 then, by Lemma 7.2.5, we have

deg(0) = 0. Therefore ΓrS,R = K|R| and so K(S,R) = {0}. If r 6= 0 then, by Lemma 7.2.5,
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we have deg(0) = |R| − 1. Therefore, ΓrS,R is a complete graph and so S = R. That is,

ΓrR,R is regular; which is a contradiction by Theorem 6.1.5.

7.3 ΓrS,R of isoclinic pairs

In this section, we mainly prove the following result.

Theorem 7.3.1. Let R1 and R2 be two finite rings. Let S1 and S2 be two subrings of R1

and R2 respectively such that |Z(S1, R1)| = |Z(S2, R2)|. If r ∈ [S1, R1] and (φ, ψ) is an

isoclinism between the pairs (S1, R1) and (S2, R2) then ΓrS1,R1
∼= Γ

ψ(r)
S2,R2

.

Proof. We have φ : R1
Z(S1,R1) →

R2
Z(S2,R2) is an isomorphism such that φ

(
S1

Z(S1,R1)

)
=

S2
Z(S2,R2) . Therefore, | R1

Z(S1,R1) | = | R2
Z(S2,R2) | and | S1

Z(S1,R1) | = | S2
Z(S2,R2) |. Let | S1

Z(S1,R1) | = m

and | R1
Z(S1,R1) | = n. Let {s1, s2, . . . , sm, rm+1, . . . , rn} and {s′1, s′2, . . . , s′m, r′m+1, . . . , r

′
n}

be two transversals of R1
Z(S1,R1) and R2

Z(S2,R2) respectively such that {s1, s2, . . . , sm} and

{s′1, s′2, . . . , s′m} are transversals of S1
Z(S1,R1) and S2

Z(S2,R2) respectively.

Let φ be defined as φ(si+Z(S1, R1)) = s′i+Z(S2, R2), φ(rj+Z(S1, R1)) = r′j+Z(S2, R2)

for 1 ≤ i ≤ m and m + 1 ≤ j ≤ n. Let θ : Z(S1, R1) → Z(S2, R2) be a one-to-one

correspondence. Let us define a map α : R1 → R2 such that α(si + z) = s′i + θ(z),

α(rj + z) = r′j + θ(z) for z ∈ Z(S1, R1), 1 ≤ i ≤ m and m + 1 ≤ j ≤ n. Then α is a

bijection. Suppose u, v are adjacent in ΓrS1,R1
. Then u ∈ S1 or v ∈ S1 and [u, v] 6= r,−r.

Without any loss of generality, let us assume that u ∈ S1. Then u = si + z for 1 ≤ i ≤ m

and v = t + z1 where z, z1 ∈ Z(S1, R1), t ∈ {s1, s2, . . . , sm, rm+1, . . . , rn}. Therefore, for

some t′ ∈ {s′1, . . . , s′m, r′m+1, . . . , r
′
n}, we have

[si + z, t+ z1] 6= r,−r

⇒ψ([si + z, t+ z1]) 6= ψ(r),−ψ(r)

⇒ [s′i + θ(z), t′ + θ(z1)] 6= ψ(r),−ψ(r)

⇒ [α(si + z), α(t+ z1)] 6= ψ(r),−ψ(r)

⇒ [α(u), α(v)] 6= ψ(r),−ψ(r).
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This shows that α(u) and α(v) are adjacent in Γ
ψ(r)
S2,R2

noting that α(u) ∈ S2. Hence, α is

an isomorphism between the graphs ΓrS1,R1
and Γ

ψ(r)
S2,R2

. This completes the proof.

7.4 Connecting ΓrS,R with Prr(S,R)

In this section, we derive some connections between ΓrS,R and Prr(S,R). Let |e(ΓrS,R)|
denotes the number of edges in ΓrS,R. If r /∈ K(S,R) then it follows from Observation

7.1.1 that

|e(ΓrS,R)| = |S||R| − |S|
2 + |S|

2
.

The following theorem gives the number of edges in ΓrS,R in terms of Prr(S,R) and Prr(S).

Theorem 7.4.1. Let S be a subring of a finite ring R.

(a) If r = 0 then

2|e(ΓrS,R)| = 2|S||R|(1− Pr(S,R))− |S|2(1− Pr(S)).

(b) If r 6= 0 and 2r = 0 then

2|e(ΓrS,R)| =


2|S||R|(1− Prr(S,R))− |S|2(1− Prr(S))− |S|, if r ∈ S

2|S||R|(1− Prr(S,R))− |S|2 − |S|, if r ∈ R \ S.

(c) If r 6= 0 and 2r 6= 0 then

2|e(ΓrS,R)| =



2|S||R|(1−
∑

u=r,−r
Pru(S,R))−

|S|2(1−
∑

u=r,−r
Pru(S))− |S|, if r ∈ S

2|S||R|(1−
∑

u=r,−r
Pru(S,R))− |S|2 − |S|, if r ∈ R \ S.

Proof. Let I = {(x, y) ∈ S × R : x 6= y, [x, y] 6= r and [x, y] 6= −r} and J = {(x, y) ∈
R × S : x 6= y, [x, y] 6= r and [x, y] 6= −r}. Then I ∩ J = {(x, y) ∈ S × S : x 6= y, [x, y] 6=
r and [x, y] 6= −r}.
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It is easy to see that (x, y) 7→ (y, x) defines a bijective map from I to J and so |I| = |J|.
Also, 2|e(ΓrS,R)| = |I ∪ J|. Therefore,

2|e(ΓrS,R)| = 2|I| − |I ∩ J|. (7.4.1)

(a) If r = 0 then, by equation (1.3.2), we have

|I| =|{(x, y) ∈ S ×R : [x, y] 6= 0}|

= |S||R| − |{(x, y) ∈ S ×R : [x, y] = 0}|

= |S||R|(1− Pr(S,R))

and

|I ∩ J| =|{(x, y) ∈ S × S : [x, y] 6= 0}|

= |S|2 − |{(x, y) ∈ S × S : [x, y] = 0}|

= |S|2(1− Pr(S)).

Hence, the result follows from equation (7.4.1).

(b) If r 6= 0 and 2r = 0 then r = −r. Therefore, by equation (1.3.2), we have

|I| =|{(x, y) ∈ S ×R : x 6= y, [x, y] 6= r}|

= |S||R| − |{(x, y) ∈ S ×R : [x, y] = r}| − |{(x, y) ∈ S × S : x = y}|

= |S||R|(1− Prr(S,R))− |S|.

If r ∈ S then, by equation (1.3.2), we have

|I ∩ J| =|{(x, y) ∈ S × S : x 6= y, [x, y] 6= r}|

= |S|2 − |{(x, y) ∈ S × S : [x, y] = r}| − |{(x, y) ∈ S × S : x = y}|

= |S|2(1− Prr(S))− |S|.

If r ∈ R \ S then we have

|I ∩ J| = |S|2 − |S|
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noting that {(x, y) ∈ S × S : [x, y] = r} is empty. Therefore,

|I ∩ J| =


|S|2(1− Prr(S))− |S|, if r ∈ S

|S|2 − |S|, if r ∈ R \ S.

Hence, the result follows from equation (7.4.1).

(c) If r 6= 0 and 2r 6= 0 then, by equation (1.3.2), we have

|I| =|{(x, y) ∈ S ×R : x 6= y, [x, y] 6= r and [x, y] 6= −r}|

= |S||R| − |{(x, y) ∈ S ×R : [x, y] = r}| − |{(x, y) ∈ S ×R : [x, y] = −r}|

− |{(x, y) ∈ S × S : x = y}|

= |S||R|(1−
∑

u=r,−r
Pru(S,R))− |S|.

If r ∈ S then, by equation (1.3.2), we have

|I ∩ J| =|{(x, y) ∈ S × S : x 6= y, [x, y] 6= r and [x, y] 6= −r}|

= |S|2 − |{(x, y) ∈ S × S : [x, y] = r}| − |{(x, y) ∈ S × S : [x, y] = −r}|

− |{(x, y) ∈ S × S : x = y}|

= |S|2(1−
∑

u=r,−r
Pru(S))− |S|.

If r ∈ R \ S then we have

|I ∩ J| = |S|2 − |S|.

noting that {(x, y) ∈ S × S : [x, y] = r} and {(x, y) ∈ S × S : [x, y] = −r} are empty.

Therefore,

|I ∩ J| =


|S|2(1−

∑
u=r,−r

Pru(S))− |S|, if r ∈ S

|S|2 − |S|, if r ∈ R \ S.

Hence, the result follows from equation (7.4.1).

As an application of Theorem 7.4.1, in the following two theorems, we compute the

number of edges in ΓrS,R if [S,R] has prime order.
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Theorem 7.4.2. Let S be a commutative subring of a finite ring R such that |[S,R]| = p,

a prime.

(a) If r = 0 then |e(ΓrS,R)| = (p−1)|R|(|S|−|Z(S,R)|)
p .

(b) If r 6= 0 and 2r = 0 then

|e(ΓrS,R)| = 2|R|((p− 1)|S|+ |Z(S,R)|)− p|S|2 − p|S|
2p

.

(c) If r 6= 0 and 2r 6= 0 then

|e(ΓrS,R)| = 2|R|((p− 2)|S|+ 2|Z(S,R)|)− p|S|2 − p|S|
2p

.

Proof. If |[S,R]| = p then, by Result 1.3.12, we have

Prr(S,R) =


1
p

(
1 + p−1

|S:Z(S,R)|

)
, if r = 0

1
p

(
1− 1

|S:Z(S,R)|

)
, if r 6= 0.

Since S is commutative, we have [S, S] = {0}. Therefore, by equation (1.3.2), we have

Prr(S) =


1, if r = 0

0, if r 6= 0.

Hence, the results follows from Theorem 7.4.1.

Theorem 7.4.3. Let S be a non-commutative subring of a finite ring R such that |[S,R]| =
p, a prime.

(a) If r = 0 then

|e(ΓrS,R)| = (p− 1)[2|R|(|S| − |Z(S,R)|)− |S|(|S| − |Z(S)|)]
2p

.

(b) If r 6= 0 and 2r = 0 then

|e(ΓrS,R)| =


2|R|((p−1)|S|+|Z(S,R)|)−|S|((p−1)|S|+|Z(S)|)−p|S|

2p , if r ∈ S

2|R|((p−1)|S|+|Z(S,R)|)−p|S|2−p|S|
2p , if r ∈ R \ S.
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(c) If r 6= 0 and 2r 6= 0 then

|e(ΓrS,R)| =


2|R|((p−2)|S|+2|Z(S,R)|)−|S|((p−2)|S|+2|Z(S)|)−p|S|

2p , if r ∈ S

2|R|((p−2)|S|+2|Z(S,R)|)−p|S|2−p|S|
2p , if r ∈ R \ S.

Proof. If |[S,R]| = p then, by Result 1.3.12, we have

Prr(S,R) =


1
p

(
1 + p−1

|S:Z(S,R)|

)
, if r = 0

1
p

(
1− 1

|S:Z(S,R)|

)
, if r 6= 0.

If S is non-commutative then |[S, S]| = |[S,R]| = p. Therefore, by Result 1.3.11, we have

Prr(S) =


1
p

(
1 + p−1

|S:Z(S)|

)
, if r = 0

1
p

(
1− 1

|S:Z(S)|

)
, if r 6= 0.

Hence, the results follows from Theorem 7.4.1.

Corollary 7.4.4. Let R = E(p2) = 〈a, b : pa = pb = 0, a2 = a, b2 = b, ab = a, ba = b〉 for

any prime p and S be a subring of R.

(a) If |S| = p then

|e(ΓrS,R)| =


p(p− 1)2, if r = 0

p(p−1)(2p−1)
2 , if r 6= 0 and 2r = 0

p(p−1)(2p−3)
2 , if r 6= 0 and 2r 6= 0.

(b) If S = R then

|e(ΓrS,R)| =



p(p−1)2(p+1)
2 , if r = 0

p(p−1)2(p+1)
2 , if r 6= 0 and 2r = 0

p(p−1)(p−2)(p+1)
2 , if r 6= 0 and 2r 6= 0.
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Proof. We have [S,R] = {ma + (p − m)b : 1 ≤ m ≤ p} and Z(S,R) = {0}. Therefore,

|[S,R]| = p and |Z(S,R)| = 1. Hence, the result follows from Theorems 7.4.2 and 7.4.3

noting that |Z(S)| = 1 if S = R.

The following corollaries of Theorem 7.4.1 give certain lower bounds and upper bounds

respectively for the number of edges in ΓrS,R, if r 6= 0.

Corollary 7.4.5. Let p be the smallest prime dividing |R| and r 6= 0. Then for a non-

commutative subring S of R we have the following lower bounds for |e(ΓrS,R)|.

(a) If 2r = 0 then

|e(ΓrS,R)| ≥


2(p−1)|R||S|+2|R||Z(S,R)|−p|S|2+6p|Z(S)|2−p|S|)

2p , if r ∈ S

2(p−1)|R||S|+2|R||Z(S,R)|−p|S|2−p|S|
2p , if r ∈ R \ S.

(b) If 2r 6= 0 then

|e(ΓrS,R)| ≥


2(p−2)|R||S|+4|R||Z(S,R)|−p|S|2+12p|Z(S)|2−p|S|)

2p , if r ∈ S

2(p−2)|R||S|+4|R||Z(S,R)|−p|S|2−p|S|
2p , if r ∈ R \ S.

Proof. By Result 1.3.13 we have

1− Prr(S,R) ≥ (p− 1)|S|+ |Z(S,R)|
p|S|

(7.4.2)

and

1−
∑

u=r,−r
Pru(S,R) ≥ (p− 2)|S|+ 2|Z(S,R)|

p|S|
. (7.4.3)

By Result 1.3.10 we have

Prr(S) ≥ 6|Z(S)|2

|S|2
. (7.4.4)

(a) We have 2r = 0. Therefore, if r ∈ S then, using Theorem 7.4.1(b) and equations (7.4.2)

and (7.4.4), we get

2|e(ΓrS,R)|+ |S|2 + |S| ≥ 2|S||R|
(

(p− 1)|S|+ |Z(S,R)|
p|S|

)
+ |S|2

(
6|Z(S)|2

|S|2

)
.

Hence the result follows.
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If r ∈ R \ S then, using Theorem 7.4.1(b) and equation (7.4.2), we get

2|e(ΓrS,R)|+ |S|2 + |S| ≥ 2|S||R|
(

(p− 1)|S|+ |Z(S,R)|
p|S|

)
.

Hence the result follows.

(b) We have 2r 6= 0. Therefore, if r ∈ S then, using Theorem 7.4.1(c) and equations (7.4.3)

and (7.4.4), we get

2|e(ΓrS,R)|+ |S|2 + |S| ≥ 2|S||R|
(

(p− 2)|S|+ 2|Z(S,R)|
p|S|

)
+ |S|2

(
12|Z(S)|2

|S|2

)
.

Hence the result follows.

If r ∈ R \ S then, using Theorem 7.4.1(c) and equation (7.4.3), we get

2|e(ΓrS,R)|+ |S|2 + |S| ≥ 2|S||R|
(

(p− 2)|S|+ 2|Z(S,R)|
p|S|

)
.

Hence the result follows.

Corollary 7.4.6. Let p be the smallest prime dividing |R| and Z(R,S) = {t ∈ R : ts =

st for all s ∈ S} for any non-commutative subring S of R. If r 6= 0, then we have the

following upper bounds for |e(ΓrS,R)|.

(a) If 2r = 0 then

|e(ΓrS,R)| ≤


2p|R||S|−4p|Z(S,R)||Z(R,S)|−(p−1)|S|2−|S||Z(S)|−p|S|

2p , if r ∈ S

2|R||S|−4|Z(S,R)||Z(R,S)|−|S|2−|S|
2p , if r ∈ R \ S.

(b) If 2r 6= 0 then

|e(ΓrS,R)| ≤


2p|R||S|−8p|Z(S,R)||Z(R,S)|−(p−2)|S|2−2|S||Z(S)|−p|S|

2p , if r ∈ S

2|R||S|−8|Z(S,R)||Z(R,S)|−|S|2−|S|
2p , if r ∈ R \ S.

Proof. By Result 1.3.9 we have

Prr(S) ≤ |S| − |Z(S)|
p|S|

. (7.4.5)
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By Result 1.3.14(b) we have

1− Prr(S,R) ≤ |S||R| − 2|Z(S,R)||Z(R,S)|
|S||R|

(7.4.6)

and

1−
∑

u=r,−r
Pru(S,R) ≤ |S||R| − 4|Z(S,R)||Z(R,S)|

|S||R|
. (7.4.7)

(a) We have 2r = 0. Therefore, if r ∈ S then, using Theorem 7.4.1(b) and equations (7.4.5)

and (7.4.6), we get

2|e(ΓrS,R)|+|S|2 + |S|

≤2|S||R|
(
|S||R| − 2|Z(S,R)||Z(R,S)|

|S||R|

)
+ |S|2

(
|S| − |Z(S)|

p|S|

)
.

Hence the result follows.

If r ∈ R \ S then, using Theorem 7.4.1(b) and equation (7.4.6), we get

2|e(ΓrS,R)|+ |S|2 + |S| ≤ 2|S||R|
(
|S||R| − 2|Z(S,R)||Z(R,S)|

|S||R|

)
.

Hence the result follows.

(b) We have 2r 6= 0. Therefore, if r ∈ S then, using Theorem 7.4.1(c) and equations (7.4.5)

and (7.4.7), we get

2|e(ΓrS,R)|+|S|2 + |S|

≤2|S||R|
(
|S||R| − 4|Z(S,R)||Z(R,S)|

|S||R|

)
+ 2|S|2

(
|S| − |Z(S)|

p|S|

)
.

Hence the result follows.

If r ∈ R \ S then, using Theorem 7.4.1(c) and equation (7.4.7), we get

2|e(ΓrS,R)|+ |S|2 + |S| ≤ 2|S||R|
(
|S||R| − 4|Z(S,R)||Z(R,S)|

|S||R|

)
.

Hence the result follows.

We conclude the section noting that if r = 0 then using Theorem 7.4.1(a) and various

bounds for Pr(S,R) and Pr(S), obtained in [22], we may derive various bounds for |e(ΓrS,R)|.
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7.5 An induced subgraph of ΓrS,R

In this section we consider the induced subgraph ∆r
S,R of ΓrS,R with vertex set R\Z(S,R) .

Theorem 7.5.1. Let x be any vertex in ∆r
S,R.

(a) If r = 0 then deg(x) =


|R| − |CR(x)|, if x ∈ S \ Z(S,R)

|S| − |CS(x)|, if x ∈ R \ S.

(b) If r 6= 0 and 2r = 0 then

deg(x) =


|R| − |Z(S,R)| − |CrR(x)| − 1, if x ∈ S \ Z(S,R)

|S| − |Z(S,R)| − |CrS(x)|, if x ∈ R \ S.

(c) If r 6= 0 and 2r 6= 0 then

deg(x) =


|R| − |Z(S,R)| − 2|CrR(x)| − 1, if x ∈ S \ Z(S,R)

|S| − |Z(S,R)| − 2|CrS(x)|, if x ∈ R \ S.

Proof. Let x be a vertex in ∆r
S,R. If x ∈ S \ Z(S,R) then deg(x) is the number of

y ∈ R\Z(S,R) such that xy 6= yx. Hence, deg(x) = |R|−|Z(S,R)|−(|CR(x)|−|Z(S,R)|) =

|R|− |CR(x)|. If x ∈ R \S then deg(x) is the number of s ∈ S \Z(S,R) such that sx 6= xs.

Hence, deg(x) = |S| − |Z(S,R)| − (|CS(x)| − |Z(S,R)|) = |S| − |CS(x)|. Hence, part (a)

follows.

The proofs of parts (b) and (c) follow from Theorem 7.2.1 (parts (b), (c)) noting that

the vertex set of ∆r
S,R is R \ Z(S,R).

By Lemma 7.2.2 and Theorem 7.5.1, we have the following two corollaries.

Corollary 7.5.2. Let x ∈ S be a vertex in ∆r
S,R.

(a) If r 6= 0 and 2r = 0 then

deg(x) =


|R| − |Z(S,R)| − |CR(x)| − 1, if CrR(x) 6= ∅

|R| − |Z(S,R)| − 1, otherwise.

184



Chapter 7. Relative r-noncommuting graphs of finite rings

(b) If r 6= 0 and 2r 6= 0 then

deg(x) =


|R| − |Z(S,R)| − 2|CR(x)| − 1, if CrR(x) 6= ∅

|R| − |Z(S,R)| − 1, otherwise.

Corollary 7.5.3. Let x ∈ R \ S be a vertex in ΓrS,R.

(a) If r 6= 0 and 2r = 0 then

deg(x) =


|S| − |Z(S,R)| − |CS(x)|, if CrS(x) 6= ∅

|S| − |Z(S,R)|, otherwise.

(b) If r 6= 0 and 2r 6= 0 then

deg(x) =


|S| − |Z(S,R)| − 2|CS(x)|, if CrS(x) 6= ∅

|S| − |Z(S,R)|, otherwise.

Theorem 7.5.4. Let S be a subring of a non-commutative ring R with unity 1 such that

|R| 6= 8 and 1 ∈ S. Then ∆r
S,R is not a tree.

Proof. Suppose that ∆r
S,R is a tree. Therefore, there exists x ∈ R\Z(S,R) such that

deg(x) = 1.

Case 1: r = 0

If x ∈ S \ Z(S,R) then, by Theorem 7.5.1(a), we have deg(x) = |R| − |CR(x)| = 1.

Therefore, |CR(x)| = 1, contradiction. If x ∈ R \ S then, by Theorem 7.5.1(a), we also

have deg(x) = |S| − |CS(x)| = 1. Therefore, |CS(x)| = 1, contradiction.

Case 2: r 6= 0 and 2r = 0

Subcase 2.1: Let x ∈ S \ Z(S,R). Then, by Corollary 7.5.2(a), we have deg(x) =

|R| − |Z(S,R)| − 1 = 1 or deg(x) = |R| − |Z(S,R)| − |CR(x)| − 1 = 1. That is,

|R| − |Z(S,R)| = 2 or (7.5.1)

|R| − |Z(S,R)| − |CR(x)| = 2. (7.5.2)
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Note that Z(S,R) is a subring ofR as well as CR(x) containing 0 and 1. Therefore, |Z(S,R)|
divides the left hand sides of the equations (7.5.1) and (7.5.2). It follows that |Z(S,R)| =
2. Thus equation (7.5.1) gives |R| = 4, which is a contradiction since there is no non-

commutative ring with unity having order 4. Again equation (7.5.2) gives |R|−|CR(x)| = 4

and so |CR(x)| = 4. Therefore, |R| = 8, which contradicts our assumption.

Subcase 2.2: Let x ∈ R \ S. Then, by Corollary 7.5.3(a), we have deg(x) = |S| −
|Z(S,R)| = 1 or deg(x) = |S| − |Z(S,R)| − |CS(x)| = 1. Note that Z(S,R) is a subring

of S as well as CS(x) containing 0 and 1. Therefore, |Z(S,R)| divides |S| − |Z(S,R)| and

|S| − |Z(S,R)| − |CS(x)|. It follows that |Z(S,R)| = 1, a contradiction.

Case 3: r 6= 0 and 2r 6= 0

Subcase 3.1: Let x ∈ S \ Z(S,R). Then, by Corollary 7.5.2(b), we have deg(x) =

|R| − |Z(S,R)| − 1 = 1 or deg(x) = |R| − |Z(S,R)| − 2|CR(x)| − 1 = 1. That is,

|R| − |Z(S,R)| = 2 or (7.5.3)

|R| − |Z(S,R)| − 2|CR(x)| = 2. (7.5.4)

Therefore, |Z(S,R)| = 2. Thus equation (7.5.3) leads to the same contradiction that we

get in the first part of Subcase 2.1. By equation (7.5.4) we have |R| − 2|CR(x)| = 4 and

so |CR(x)| = 4. Therefore, |R| = 12 and so R
Z(S,R) is cyclic. Hence, by Result 1.3.5, R is

commutative; a contradiction.

Subcase 3.2: Let x ∈ R \ S. Then, by Corollary 7.5.3(b), we have deg(x) = |S| −
|Z(S,R)| = 1 or deg(x) = |S| − |Z(S,R)| − 2|CS(x)| = 1. Therefore, |Z(S,R)| = 1, a

contradiction.

The proof of Theorem 7.5.4 also tells that there is no vertex in the graph ∆r
S,R having

degree 1 if R is a non-commutative ring with unity 1 such that |R| 6= 8 and S is any

subring of R with the same unity. We conclude this chapter by obtaining conditions such

that ∆r
S,R has no vertex having degree 2.

Theorem 7.5.5. Let S be a non-commutative subring of a ring R with unity 1 such that

1 ∈ S. Then ∆r
S,R has no vertex having degree 2 if |R| 6= 12 and |S| 6= 8.

Proof. Suppose that ∆r
S,R has a vertex x such that deg(x) = 2.
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Case 1: r = 0

If x ∈ S \ Z(S,R) then, by Theorem 7.5.1(a), we have deg(x) = |R| − |CR(x)| = 2.

Therefore, |CR(x)| = 2, contradiction. If x ∈ R \ S then, by Theorem 7.5.1(a), we also

have deg(x) = |S| − |CS(x)| = 2. Therefore, |CS(x)| = 2 and so |S| = 4, a contradiction

since there is no non-commutative ring with unity having order 4.

Case 2: r 6= 0 and 2r = 0

Subcase 2.1: Let x ∈ S \ Z(S,R). Then, by Corollary 7.5.2(a), we have deg(x) =

|R| − |Z(S,R)| − 1 = 2 or deg(x) = |R| − |Z(S,R)| − |CR(x)| − 1 = 2. That is,

|R| − |Z(S,R)| = 3 or (7.5.5)

|R| − |Z(S,R)| − |CR(x)| = 3. (7.5.6)

Therefore, |Z(S,R)| = 3. Thus equation (7.5.5) gives |R| = 6, which is a contradiction since

R is non-commutative. Again equation (7.5.6) gives |R| − |CR(x)| = 6 and so |CR(x)| = 6

since |CR(x)| 6= 3. Therefore |R| = 12, which contradicts our assumption.

Subcase 2.2: Let x ∈ R \ S. Then, by Corollary 7.5.3(a), we have deg(x) = |S| −
|Z(S,R)| = 2 or deg(x) = |S| − |Z(S,R)| − |CS(x)| = 2. Therefore, |Z(S,R)| = 2 and so

|S| − |CS(x)| = 4 since |S| 6= 4. We have |CS(x)| = 4 since |CS(x)| 6= 2. Therefore |S| = 8

which contradicts our assumption.

Case 3: r 6= 0 and 2r 6= 0

Subcase 3.1: Let x ∈ S \ Z(S,R). Then, by Corollary 7.5.2(b), we have deg(x) =

|R| − |Z(S,R)| − 1 = 2 or deg(x) = |R| − |Z(S,R)| − 2|CR(x)| − 1 = 2. That is,

|R| − |Z(S,R)| = 3 or (7.5.7)

|R| − |Z(S,R)| − 2|CR(x)| = 3. (7.5.8)

Therefore, |Z(S,R)| = 3. Thus equation (7.5.7) leads to the same contradiction that we

get in the first part of Subcase 2.1. By equation (7.5.8) we have |R| − 2|CR(x)| = 6 and

so |CR(x)| = 6 since |CR(x)| 6= 3. Therefore |R| = 18 and so R
Z(S,R) is cyclic. Hence, by

Result 1.3.5, R is commutative; a contradiction.

Subcase 3.2: Let x ∈ R \ S. Then, by Corollary 7.5.3(b), we have deg(x) = |S| −
|Z(S,R)| = 2 or deg(x) = |S| − |Z(S,R)| − 2|CS(x)| = 2. Therefore, |Z(S,R)| = 2 and so

187



Chapter 7. Relative r-noncommuting graphs of finite rings

|S| − 2|CS(x)| = 4 since |S| 6= 4. Therefore, |CS(x)| = 4. Therefore |S| = 12 and so S
Z(S,R)

is cyclic. Hence, by Result 1.3.5, S is commutative; a contradiction.

7.6 Conclusion

In this chapter, we have introduced relative r-noncommuting graph of a finite ring R rela-

tive to a subring S of R and obtained results analogous to the results obtained in Chapter

3. We have determined degree of any vertex in ΓrS,R and studied certain graph theoretical

properties of ΓrS,R. We have shown that ΓrS1,R1
is isomorphic to Γ

ψ(r)
S2,R2

if (φ, ψ) is an iso-

clinism between the pairs of finite rings (S1, R1), (S2, R2) and |Z(S1, R1)| = |Z(S2, R2)|.
Furthermore, we have established connections between the number of edges in ΓrS,R and

various generalized commuting probabilities of R. Finally, we have studied a subgraph

of ΓrS,R induced on R \ Z(S,R).
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