Chapter 2

Various energies of non-commuting

graphs of finite groups

Spectral aspects of non-commuting graphs of finite groups have grabbed attention of nu-
merous mathematicians. In [46], Ghorbani et al. have calculated spectrum of I' for cer-
tain groups. The energy of the same has later been explored by Ghorbani and Gharavi-
Alkhansari in [45]. In [26], Dutta et al. have computed the Laplacian spectrum of I'g
following which Dutta and Nath [32] have worked on Laplacian energy of the same. Sign-
less Laplacian spectrum and energy of I'; have not yet computed. In [40] energy of I'; for
several classes of finite groups has also been computed and has verified Conjecture 1.1.5
for the non-commuting graphs of those groups. At present, [3] is the only paper where
Abdussakir et al. have investigated the Signless Laplacian spectrum of non-commuting
graphs of dihedral groups. However, various spectra and energies (including Signless
Laplacian spectrum and energy) of the complement of I', known as commuting graph of
G, have already been computed in [19, 28, 29, 31, 36, 40, 84].

In this chapter, we compute Signless Laplacian spectrum and energy of I' for var-
ious families of finite non-abelian groups and answer Questions 1.4.1-1.4.3 up to some
extent. We compare various energies of I'¢ and show that I'; satisfies Conjecture 1.1.5
for almost all the groups considered in this chapter. Using energies of I'; for various

classes of finite groups we determine whether they are hyperenergetic or hypoenergetic.
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Chapter 2. Various energies of non-commuting graphs of finite groups

We disprove Conjecture 1.1.7 by considering non-commuting graphs of finite groups (see
Theorem b)). We also determine finite groups such that their non-commuting graphs
are Q-hyperenergetic and L-hyperenergetic. This chapter is based on our paper [88] sub-

mitted for publication.

2.1 %G) is isomorphic to D,

Here, we primarily compute the Signless Laplacian spectrum and Signless Laplacian en-
ergy of ', where G is isomorphic to Dy, QDan, Ma,s, Qupn and Us,. Further, we compare
different energies of I'¢ and look into the hyper- and hypo-energetic properties of I'¢ for
each of the above-mentioned groups. The energy and Laplacian energy of I'g for each
of the aforementioned groups have already been determined and it is already noted in
Chapter 1.

2.1.1 The dihedral groups, Dy,

We consider Dy, := {a,b : a™ = b? = 1,bab~! = a~!), the dihedral groups of order 2m
(where m > 2). Results regarding different energies of non-commuting graphs of Dy, are

given below.

Theorem 2.1.1. Let G be isomorphic to Da,y,, where m is odd. Then
Q—Spec(I‘ng) = {(m)MQ, (2m _ 3)m71’ (4m—3+\/872n2—W+Q) ! ’ (4m—3—\/8;ng—m)l}

9 4+ /33, if m=3
and LE'(I'p,, )=

2m?10mP+12m=3 |\ /Qm2 —16m + 9, if m > 5.

Proof. 1f G = Day, and m is odd then [v(I'p,,, )| = 2m —1and I'p,,, = Ky;1,1.(m—1)- Using
Result 1.1.4(b), we have

2 2 2 .
Qrp, (2) :il_[l(x—(Qm—l)—l—pi)ai(pi1)}_[1(x—(2m—1)+2pi)ai (1 _Z:L'(szpzl)Jeri)

7=

=(z—(2m—2))°(z—m)™ 2 (z—2m+3)"(z—1) (1_35_2777;4_3_7;}__11)
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=(z —m)" %z — (2m — 3))" " H(2? — (4m — 3)z + 2m? — 2m).

1
)

Thus Q-spec(I'p,,,) = {(m)mz, (2m — 3)ym—1 <4m_3+\/82”2—w)

(4m737\/ m2716m+9> 1
5 )

Number of edges in I'p,, is W Thus, |e(Tp,,,)| = (2m-1)(@2m-1-1) _ m2—§m+2

2
_ 3m(m-1)
= ==5—. Now,

~2le(Cpy,)l| _ |[=m(m —2)| _ m(m —2)
‘m |v<rD2m>|} ‘ om—1 ‘ e

3 . N
QWab%Jw_'m2—&n+3’_ 5 if m=3

2m — 3 —

2
m~—5m+3 :
o, itm =5,

(4m —3+v8m? —16m + 9) _ 2e(T'p,,)| _‘ V8mZ —16m +9  4m? —8m + 6

2 [v(TDy,,)| 2 T T 2m -2
_V8m2 —16m+9 N 4m?* — 8m + 6
N 2 2(4m — 2)
and
(4m —3—V8m? —16m + 9) 2le(Tpyp)l| _|=VBm? —16m +9  4m* —8m +6
2 lv(Tp,, )| | 2 2(4m — 2)

_V8m2—16m+9 4m? —8m+6
B 2 2(4m — 2)

Therefore, for m = 3 we have LET(I'p,,,) = 2 4+ v/33. For m > 5 we have

—9 2 _
m(m )+(m_1)xm 5m + 3
2m —1 2m —1

1 3 3
_ 2_1 _ _
—|—2<\/8m 6m+9+m 2+4m—2>

LET(T'p,,) =(m —2) x

1 3 3
_ 2 _ _ —
+2<\/8m 16m +9 m+2 4m—2)

and the result follows on simplification.
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Theorem 2.1.2. Let G be isomorphic to Doy, where m is even. Then

Q-spec(I'p,,,) = {(2m —4)2  (m)™ 3, (2m —6)2 7L, (Qm -3+ V2m? —8m+ 9)1
(2m-3- \/2m2—8m+9>1}

miAm712 1 9\/2m2 — 8m + 9, if4<m<8

2m—

%+2 2m? —8m+9, if m > 10.

Proof. If G = Dayp, and m is even then [v(I'p,,, )| = 2m — 2 and I'p,,, = Km 51 (5-2)-

and LET(Tp,,) =

Using Result 1.1.4(b), we have

2 2
Qrp, . (x) :H(x—(2m—2)+pi>ai(prl)H( —(2m—2)+42p;)" <1 —Z lep; +2p>
i=1 i=1 i=1 ¢
=(z— (2m—4))2 (z— m)™ 3 (z— 2m+6) 2 (z— 2) (1— p— 2”;“_ 6 ZL_ 22>
=(z— (2m— 4))%(33— m)™3(z— (2m— 6)) Y22 = (4m— 6)z+ 2m? — 4m).

m m 1
Thus Q-spec(I'p,,,) = {(Qm 4)=2, (m)™3, (2m—6)2 1, (2m —3+v2m? —8m+ 9) ,
1
(2m - 3 v2m? = 8m +9) }

(2m—2)2m—2-1)  m2—4m+6

Number of edges in I'p,, is % and so |e(I'p,,, )| = 5 - 5
= 737'1(”21_2). Now
y oy 2eToy)l| [m=2)(m—4)|  (m—2)m -4
[0(T'D,,, )| 2m — 2 2m—2
Ae(Tpgy)l| _ | (=m? +4m)| _ (m? — 4m)
[o(Tp,, )l || 2m—2 2m —2 '

—m?2 — .
Cotoni?) g, < 8

2le(T'p,, )| ‘ B ’ (m? — 10m + 12)
|v(T'py,, )| 2m —2

‘2m—6—

(m2—-10m+12) .
T om—2 if m 2 10,
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2 (T 24 6
‘Qm 3+v2m? —8m+9 2y, )| ‘ ’ 2m2—8m+9+mm+‘

[v(T py,, )| 2m — 2
—4
am? —smg4 T Am+6
2m — 2
and
2|e(T 2 4m+6
’2m—3—\/2m2—8m+9—‘dl)2’”)':‘— 2m2—8m+9+mm+’
[v(I'Dy,, )| 2m — 2
24 6
—\/2m? —8m 49— A ED
2m — 2
Therefore, for 4 < m < 8, we have
m  (m—2)(m—4) (m? — 4m)
LEH(T = _ AL
(D2 ) =35 om—2 M
m —(m? — 10m + 12) m? —4m + 6
7—1) Vom2 —8m+ 94— 2
+<2 . om — 2 L L
2
—4
+V2m? —gm g _4m+0
2m — 2
and for m > 10, we have
m  (m—2)(m—4) (m? — 4m)
LET(T = — e T A
Tpa) =5 X =g +m=3)x 50—
m (m? — 10m + 12) m? —4m + 6
7_1) 2m2 — - - -
—|—<2 X o — 2 + m*—8m+ 9+ 5 — 9
2
—4
+ _8m+9_m—7n+6
2m — 2

The required expressions for LET(T'p, ) can be obtained on simplification.
Theorem 2.1.3. If G is isomorphic to Do, then
(a) E(Tp,,,) < LE™(Tp,, )< LE(Tp,,), equality holds if and only if G = Ds.
(b) T'p,,, is non-hypoenergetic as well as non-hyperenergetic.

(¢) T'py is L-hyperenergetic but not Q-hyperenergetic. I'p, is not L-hyperenergetic
and not Q-hyperenergetic. If m # 3,4 then I'p,, is Q-hyperenergetic and
L-hyperenergetic.
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Proof. (a) Case 1: m is odd

For m = 3, using Result 1.4.4 and Theorem we have E(Tpy) = 2 + 2V/7,
LE(Tp,;) = 2 and LET(I'p,) = 2 + v/33. Clearly, E(I'p,) < LET(T'p,) < LE(T p,).

For m > 5, using Result 1.4.4 and Theorem [2.1.1] we have

8mZ —10m + 3
2m — 1

LE(Tp,,) — LE"(Tp,,,) =

—V/8m2 — 16m + 9 (2.1.1)

and

_ 2m?*(m — 6) 4+ 15m — 4

—V/b5m?2 — 6m + 1. (2.1.2)

Since 8m? — 10m + 3 > 0, (2m — 1)vV/8m2 —16m+9 > 0 and (8m? — 10m + 3)? —
(\/8m2 —16m + 9)2 (2m — 1) = 32m3(m — 2) + 8m(5m — 1) > 0 we have 8m? — 10m +
3— (2m —1)v8m? —16m + 9 > 0. Therefore, by equation (2.1.1), (2m — 1)(LE(I'p,,,) —
LE*(Tp,,.)) > 0. Hence, LE(T'p,, ) > LEt(I'p, ).

Again, we have vV8m2 — 16m + 9 > 0,v5m2 — 6m + 1 > 0 and (\/8m2 —16m + 9)2

2
- (\/5m2 —6m + 1) —m(3m — 10) + 8>0. Thus, V&m2 — 16m + 9 > v5mZ — 6m + 1.
Since 2m?(m — 6) + 15m — 4 > 0 we have 2m2(m52)f115m74 + vV8m?2 — 16m + 9
—Vb5m? —6m +1 > 0. Therefore, by equation (2.1.2), LE*(I'p,,,) > E(Tp,, ). Hence,

Case 2: m is even

For 4 < m < 8, using Result 1.4.4 and Theorem [2.1.2] we have

3 —4m? +12m — 12
LE(Tp, )~ LE*(Tp, )= " ”; + 2m —2v/2m2 —8m + 9 (2.1.3)
m_

and

—4)(m* —2m — 2 I —

m—1

—/5m2 — 12m + 4. (2.1.4)

Since m? — 4m? + 12m — 12 > 0, 2(2m — 2)vV2m?2 —8m +9 > 0 and (m?® — 4m? +
2
12m — 12)% — (2\/2m2 —8m+ 9) 2m — 2)2 = m(m — 4)%(m — 2)(m% + 2m — 4) > 0
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(equality holds if and only if m = 4). It follows that m? — 4m? + 12m — 12 — 2(2m —
2)v2m2 — 8m + 9 > 0. Therefore, by equation (2.1.3)), (2m—2) (LE(Tp,,) — LET(I'p,,.))
> 0. Hence, LE(T'p,, ) > LE*(T'p,, ) equality holds if and only if G & Ds.

Again, we have 2v/2m2 —8m + 9 > 0,v/5m2 — 12m +4 > 0 and (2\/M)Q—

(\/5m2 —12m + 4)2 = (m—4)(3m —8) > 0. So, 2v2m?2 —8m +9 > Vbm2 — 12m + 4
(equality holds if and only if m = 4). Since (m — 4)(m? — 2m — 2) > 0 we have
(m74)(:nn27712m72) +2vV2m2 — 8m + 9 — VBbm2 — 12m + 4 > 0 (equality holds if and
only if m = 4). Therefore, by equation (2.1.4), LE*(I'p,,,) > E(I'p,,,). Hence, E(I'p,,,)
< LE*(Tp,, ) < LE(Tp,,,) equality holds if and only if G = Dsg.

For m > 10, using Result 1.4.4 and Theorem [2.1.2] we have

4m? — 10 6
LE(Tp, )= LE*(Tp, )= -~ 0" %0 o /om? —8m+9 (2.1.5)

m—1

and

3_9m2+19m —8
LE*(Up,,,) ~ B(Tp,,,) = " 2022 4 0\ /om? — 8 19

—V/5m2 — 12m + 4. (2.1.6)

Since 4m? — 10m 4+ 6 > 0, 2(m — 1)v2m2 —8m +9 > 0 and (4m? — 10m + 6)> —
(2\/m>2 (m—1)% = 8m3(m—4)+8m(5m—2) > 0 we have 4m?—10m~+6—2(m—
1)v2m? — 8m + 9 > 0. Therefore, by equation (2.1.5), (m—1)(LE(I'p,,,)—LE"(I'p,,.)) >
0. Hence, LE(T'p,, ) > LET(Tp,,).

Again, we have 2v/2mZ — 8 + 9 > 0,v/5m? — 12m § 4 > 0 and (2v2m% —8m +9)

2
(\/5m2 “12m+ 4) — m(3m —10) +8 > 0. So, 2v/2mZ —8m + 9 > V5m? — 12m 1 4.
Since m3 — 9m2 + 19m — 8 > 0 thus 22 =9m*+19m=8 | 9,/57 g 1 9
—v/5m?2 — 12m + 4 > 0. Therefore, by equation (2.1.6), LE*(T'p,,,) > E(T'p,,,). Hence,
E(FD277L) < LE+ (FD2'm) < LE(FDZNL)'

(b) Case 1: m is odd
Here, |v(T'p,,,)| = 2m — 1 and E(Klv(FDQm)I) = LE(K|v(FD2m)|) = LE+(K|v(FD2m)|) =
4m — 4. Using Result 1.4.4, we have

E(I'p,,) — [v(Tp,, )| =/ (m—1)(5m —1) —m (2.1.7)
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and
E(K|v(FD2m)|) — E(Tp,,) =3(m—1) —/(m —1)(5m — 1). (2.1.8)
2
Since \/(m — 1)(5m — 1) > 0, m > 0 and (\/(m— 1)(5m — 1)) —m?=4m?—6m+1>0
we have \/ 1)(5m — 1)—m > 0. Therefore, by equation (2.1.7), E(I'p,,,) > [v(I'p,,.)|.

Again, \/(m —1)(bm —1) >0, 3(m —1) > 0 and
(3(m —1))% — (\/(m “1)(5m — 1))2 =4(m>—3m+2) >0

and so 3(m — 1) — y/(m — 1)(5m — 1) > 0. Therefore, by equation (2.1.5), E(K|U(FD2 ")
> E(Fng)-

Case 2: m is even
Here, [0(I'p,,, )| = 2m — 2 and E(K|,rp, )|) = LE(Kjyrp, ) = LET(Kjyrp, ) =
4m — 6. Using Result 1.4.4, we have

E(Tp,,,) = [v(Tpy,, )| = V/(m = 2)(5m —2) —m (2.1.9)

and
E(K|v(FD2m)|) — E(Tp,, ) =3(m—2)+2—+/(m—2)(5m — 2). (2.1.10)
Since \/(m — 2)(5m — 2) > 0, m > 0 and <\/(m —2)(bm — 2))2—m2 = 4(m?—3m+1) > 0
we have \/ 2)(5m — 2)—m > 0. Therefore, by equation (2.1.9), E(T'p,,,) > [v(T'p,,,)|-

Again, \/(m —2)(5m —2) >0, 3(m —2) +2 >0 and

(3(m —2) +2)% — <\/(m— 2)(5m — 2))2 =4(m?> —=3m+3)>0

and 5o 3(m—2)+2—+/(m — 2)(5m — 2) > 0. Therefore, by equation (2.1.10), E(K|'U(FD2 ")
> E(FD2m>-

(c) Case 1: m is odd
For m = 3, using Result 1.4.4 and Theorem 1} LE(I'p,) = 2, LET(I'p,) = 2+/33
and LET (KW(FDG)\D = LE(K|U(FD6)|) = 8. Clearly,

LE™(Tpg) < LE™(Kjy(rp,)) = LE(Kjy(rp,))) < LE(T ).

For m > 5, using Theorem [2.1.1] we have

2m2(m — 9) +24m — 7
2m —1

LE*(Ip,,) — LE*(Kyry, ) = +/8m2 — 16m +9 > 0.
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Therefore, LE*(T'p,,,) > LE*(K)yr,, )) which implies I'p,,, is Q-hyperenergetic and

consequently part (a) implies I'p,,  is L-hyperenergetic.

Case 2: m is even

For m = 4, using Result 1.4.4, we have LE(I'p,) = 8 and LE(K\U(FDS)\) = 10.
Clearly, LE(I'p,) < LE(K \v(FDs)l)' Therefore, I'p, is not L-hyperenergetic and not Q-
hyperenergetic.

Using Theorem for m = 6 and 8, we have

m?(m — 12) + 20m

+2v/2m2 —-8m+9>0
2m — 2

LE+(FD277L) - LEJ’_(KlU(FDQm)l) =
and for m > 10, we have
m2(m — 12) + 26m — 9 e
LE+(FD2m)_LE+(K‘U(FD2"L)|) = ( m)_l +2 2m2—8m+9>0

Therefore, LET(T'p,, ) > LE*‘(KW(FD2 y)) which implies I'p,,, is Q-hyperenergetic and

consequently part (a) implies I'p,,, is L-hyperenergetic. O

In Theorem we compare E(I'p,, ), LE(T'p,, ) and LE*(I'p,, ). However, in the

following figures, we show how close are they.

T

300 H
T T

13 g L
2l al

2 & 200
3 2
=] <

g 3 -
B B

g 2 100 -
=] ==

0 il

m— m —
Figure 2.1: Energies of I'p,,,, m is odd Figure 2.2: Energies of I'p,,, , m is even

2.1.2 The Quasidihedral groups, ) Dy~

We consider QDyn := (a,b : a2 = b2 = 1,bab~" = a" *~1), the quasidihedral groups
of order 2" (where n > 4). Results regarding different energies of non-commuting graphs

of QDgn are given below.
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Theorem 2.1.4. Let G be isomorphic to QDon. Then

Q-spec(lgpyn) = {(2” —4)2F (2 - 2n )23 (gn —6)2T

1 1
(2n — 34+ \/2271—1 — on+2 + 9) ’ (2n —_3_ \/2271—1 — 9n+2 + 9) }

1811273, ifn=4
and LEY(Top,.) =
23n72+2n+4_22n+2_12
272

+2y/22n=1 _9n+2 1 9 ifp > 5,

Proof. If G = QDan then [v(I'gp,.)| = 2" — 2 and I'gp,n = Kon-291 (2n-1_2). Using
Result 1.1.4(b), we have

2

2 2
QFQDW ) i:l(x ( ) ¢:1(x ( )+ 2pi) ( izlx—(Q”—2)+2pi

n—2

:<x_2n_'_4)2”*2(.%,_2n+2n—1)2"*1—3($_2n+6)2
2n71 2n71 )
x[1-— —
( T—2"+6 T —2 )

=(z— (2" =4) - (@ =2 P -2 —6)" !

(z —2)

% (x2 _ (2n+1 _ 6)1’ + 22n—1 _ 2n+1)_

Thus Q-spec(L'gp,n) = {(2” — 42 (2n =2 T (n -6

1 1
(27 -3+ V2 T—207249) (20 - 3— V2T =27 49)

Number of edges of Tgp,, is 22773 — 2" 4+ 3. Thus, |e(Tgp,.)| = w -

(22n=3 _ 2n 4 3) = 3(227=3 — 2n~1). Now,

8 4+2T2 3 x 2"

2" — 4 — :
2n — 2

2le(Tgp,n )| ' _ ‘8 +22n=2 3 x 2"
[0(TQD,n)| 2m —2

2n+1 _ 2277,—2
2n — 2

22n—2 o 2n+1
T oam—2

2n _ 277,71 _ 2‘6(FQD2")‘ ‘ —
[v(CQD,n )|
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2 e
2n_6_2|e(FQD2n)|‘:‘12+22n—2—5><2” T ifn=4
’v(FQDQn” 27’L - 2 12+22§ﬂ—i55x2n’ lf n Z 57
2n—2 +1
2”—3—1—\/22n—1_2n+2_|_9_M?DQ")”:'\/QQn—l_2n+2+9+2n —2" +6’
[v(PQDyn )] 2" =2
22n—2 o 2n+1 + 6
—+/922n—1 _ 9n+2 9
Vv O
and
2n—2 1
o 3 /221 _9n+2 1 g 2leTQD,n )| ‘ — ’_\/an—l —on+249 4 2 ot +6‘
[v(TQD,n )| 2n -2
227172 _ 2n+1 16
—+/22n—1 _ 9n+2 9_ .
i + T
Therefore, for n = 4 we have LET(Dgp,,) = 12 + 2/73.
For n > 5 we have
B 8 4 on 2n—2 -3 B 2n+1 2n—3 —1 B
LE*(Tgp,.) =(2"7%) x 2&_2 ) + (2" = 3) % 2(,1_2)"‘(2” 2-1)
12 + 2n(2n—2 o 5) 22n—2 o 2n+1 + 6
22n—1 _ 9n+2 9
8 9n 2 +V L T
22n—2 _ 2n+1 +6
22n—1 _ 9n+2 9 —
+V + 55
and the result follows on simplification. O

Theorem 2.1.5. If G is isomorphic to QDan then
(a) E(Tgpyn) < LET(Pgpyn) < LE(TQDyn )-
(b) T'gp,n is non-hypoenergetic as well as non-hyperenergetic.
(c) Tgpyn is Q-hyperenergetic and L-hyperenergetic.

Proof. (a) For n = 4, using Result 1.4.5 and Theorem we have E(I'gp,, ) = 6+2v/57,
LE(Tgp,,) = 2% and LET(Tgp,.) = 2% +2V/73. Clearly, E(Tgp,;) < LET(Dgp,,) <
LE(FQDle )-
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For n > 5, using Result 1.4.5 and Theorem [2.1.4] we have

12 22n+1 -5 2n+1
LE(Top,.) — LET(Tgp,.) = s XL 9y _gnt2 g (2.1.11)

22n=2(2n —18) +19 x 2" — 1
2n — 2

—2v/5x 2204 _ 3 x a1 4 1. (2.1.12)

6
and LEY(Dgp,.) — E(Tgp,n) = 2221 _gn+2 g

Since 12 + 22+ — 5 x 27+l > 0, 24/22n-1 — 2n+2 1 9(2" — 2) > 0 and

(12 + 2271 — 5 x gnt1)2 (2\/2%—1 —ognt2 4 9)2 (2" —2)% =

23+l (9n —8) 4 2"T3(5 x 2" —4) > 0

we have 124227+ 5 2ntl _2(2n —2),/22n—1 _ 9n+2 1 9 > (). Therefore, by equation
2.1.11, (2“ — 2)(LE(FQD2n) — LE+(FQD2n)) > 0. Hence, LE(FQD2n) > LE+(FQD2n).
Again, v22n=1 —2n+2 1 9 > 0,/5 x 22n=4 —3 x 2n=1 4 1 > 0 and

2 2
(\/2%—1 T 9) - <\/5 X 2Tt 3y gn1 | 1) — 274(3 x 27 — 40) + 8 > 0.

Therefore, we have /22n—1 —2n+2 1 9 — /5 x 22n—4 _3 x 2n-1 1 1 > (.
Since 22n2(2" — 18)+19x 2" — 16 > 0 we have 2218102216 4 o /52T —9ni2 179
—2v5 x 221 —3x 27141 > 0. Therefore, by equation [2.1.12), LE*(Tgp,.) >

E(FQDQn)- Hence, E(FQDQTL) < LE+(FQD2TL) < LE(FQDW).

(b) Here, [u(T'p,n )| = 2" =2 and B(Kjurgp,,)) = LE(Kjurgp,,)) = LET (Kjuwgp,, ) =
271 6. Using Result 1.4.5, we have

B(Tgp,n) = [v(Tapy)l =2 (VEX 2 2= D@2 = 1) - (2" = 2"7%))  (2.1.13)

and

E(Kjyrgp,,)1) = ETQDyn) =2 (3 x 22 =2 — /(5 x 22 —1)(2"2 — 1)) . (2.1.14)

Since /(5 x 2772 —1)(27=2 —1) > 0, 2"~} — 2772 > 0 and

(\/(5 x 2n=2 — 1)(2n—2 — 1))2 —(2r Tl —2n 22 =24 x 2772 —6) 41> 0

we have /(5 x 272 —1)(27=2 — 1) — (2"~ — 2"72) > (. Therefore, by equation (2.1.13),
E(FQD2") > |U(FQD27L)|‘
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Again, /(5 x 272 —1)(27"2 - 1) > 0,3 x 2" 2 -2 > 0 and
(3% 272 —2)2 — <\/(5 X 2n—2 —1)(272 — 1))2 — (22— 3)(4x 272 46)+21>0
and so 3 x 2772 —2 — /(5 x 27=2 —1)(2"=2 — 1) > 0. Therefore, by equation (2.1.14),
E(Kju(rgp,)l) > ET@Dy)-

(¢) For n = 4, using Theorem LE*(Tgpy) = LET(Kjyrgp,,)) = 2V73 = % > 0.
Therefore, LET(Lgp,,) > LE+(K|U(FQD16)|) which implies I'gp,, is Q-hyperenergetic and

consequently part (a) implies I'gp,, is L-hyperenergetic.

For n > 5, using Theorem [2.1.4]

LE*(Cpy.) = LE* (Kjy(rgp,,))) = g HEBI1) 9 /00=T —9n¥2 19 > 0,

Therefore, LE*(T'gp,,) > LE* (Kyr, DQW)‘) which implies I'gp,, is Q-hyperenergetic and
consequently part (a) implies I'gp,, is L-hyperenergetic. ]

In Theorem we compare E(gp,, ), LE(Tgp,.) and LET(gp,,). However, in

the following figures, we show how close are they.

Energies of I'g Dy, —

6

Figure 2.3: Energies of I'gp,n. Figure 2.4: A close up view of Figure 3

n —

2.1.3 The groups M,

We consider the groups Ma,.s := (a,b : a” = b** = 1,bab™! = a~1), of order 2rs (where
r > 3 and s > 1). Results regarding different energies of non-commuting graphs of Mo,

are given below.
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Theorem 2.1.6. Let G be isomorphic to Ms,.s, where v is odd. Then
1
r(s— r—1)s— r_ s(4r—3++/8r2—16r+9
Q-spec(I'rs,,..) = {(25(7" -1)) ( 1)’(7‘5)( Ds—1 ((2r —3)s) 1 < ( 5 )> ,

<3(4r3+\/m) ) ! }

2

Bsisl) | 54/33, ifr=3
and  LET(Tpp,.) =

s (ZUSRED  (9r —3) 4+ VEEZ—T6r +9), ifr > 5.

Proof. 1f G = My, where 1 is odd, then [v(L'ap,, )| = (2r —1)s and Uy, = Ky g1, ((r—1)s)-
Using Result 1.1.4(b), we have

2 2 2
= —(2rs— Nai(pi—1) —(2rs— 20.)% |1 — aip;
Qr,,,  (2) g(x (2rs—s)+pi) 21;[1(30 (2rs—s)+2p;) ( Z%—(QTS—S)—FQpi

i=

(2 —2s(r — 1)) (2 — rs) D57z — (27 — 3)s)"(x — s)

X (1 = (27«:_ 3)s (;_—13)8>

=(z—2s(r —1))"C D (z — rs) Vs (2 — (20 — 3)s)" !

x (2% — (4r — 3)sz + (2r* — 2r)s?).

Thus Q-spec(Tar,,.) = {<2s<r — 1)), ()DL (20— 8)s) Y,

)

P

Number of edges of Tyy,, . is (”2_’"+1)522_(2T_1)5, Thus, |e(Tag,.)| = (2T—1)2522—(27‘—1)s
e e o
(2r — 2)s — 2|€(FM2TS)| _ (r—1)(r—2)s _ (7“—1)(1”—2)5’
(T )| 2r —1 2% —1
2|€(FM2T5)| _T(r - 2)8 T(T — 2)3
rs — — _
’U(FM2r5)| 27‘ - 1 27" — 1 ’
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3s : _
‘(2T_3)3_2’6(FM2T5)‘ _ (r2_5r+3)8 o 5 1fr_3
o, )l || 20 =1 _
? 25 )s i > 5,
s 2le(Tas,,. )| s 3 3
—(4r —3+ /82— 16 9)—72”:f 8r2 — 167 + 9 -4+ —
2<r Ve dors (o) | [ (Vo g o
:f 2_1 _§ 3
2( 8r 6r+9+r 2+4r—2
and
s 2le(Tas,,., )| s 3 3
2 (43— Ve —16r+9) — T 12 (/B 16+ 94— S
2 (4 o (T, | |2 (R S R P
S \/2— 3 3
S 1 2 .
2( 8r 6r +9 r+2 4r—2)
Therefore, for r = 3, we have LET(T'py,,.) = w + 5v/33. For r > 5, we have
" o (r—=1)(r—2)s B B r(r—2)s
LE™(Tap,.,) =r(s—1) x 1 +((r—1)s—-1) x T
(r2—5r+3)s s 3 3
) x TS S 8 16 + 94— o
R B e R r e R
s (/o155 3 3
2 -1 _ B
—|—2< 8r 6r +9 1"—1—2 47"—2>
and the result follows on simplification. O

Theorem 2.1.7. Let G be isomorphic to Mo,s, where r is even. Then

Q-spec(Tas,.) z{(2s(r —2))57s (rs) S (2s(r — 3))2 7,

1 1
<4rs — 65+ 25V 2r2 — 8r + 9) , (47“8 — 65 — 25V 2r2 — 8r + 9) }

3o an2 _r 2_8r4+
s(r3s—6r s+87‘:_12 +4r°—8r+6) 25V2r2 —8r +9, if4<r<8
and LET(Ta,,,) =

s(r38767.25+,r8ﬁi72r2+87'76) + 28 2r2 _ 8T + 9’ ’Lf T Z 10.
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Proof. If G = Mays and 7 is even then [v(I'a,, )| = 2s(r—1) and Tag,,, = Kz (25) 1.((5-1)2s)-
Using Result 1.1.4(b), we have

2 2 2
Qi (2) =[[(e=20r5—)+p) " (w25 —5)+2p)" (1 —Zx_zwif’;mp)
i—1 1

=1 =1 1=

=(z —2s(r —2))" ) (z — rs)" 2Nz — 2s(r — 3))2 (z — 25)

TS rs — 28
x [ 1-— —
x—2s(r—3) x—2s

=(z—2s(r —2))" 2 (x —rs)"* "2 (& — 2s(r — 3)) 2!

x (22 — (47 — 6)sz 4+ rs*(2r — 4)).

Thus Q-spec(I'as,,.) = {(28(7” —2))57 2, (rs)" 2L (25(r — 3))2 7L,

<4rs — 6s + 23\/M)1 , (47”5 — 65 — 25m>1 }

T, r2—2r4+4)s?—2(r—1)s r—1)s(2(r—1)s—
Number of edges of I'yy,, . is (r"—2 +4)2 Ar=1s  Thys, le(Tas,,.)| = 2(r=1) (25 Ds=1) _

(r?2—r+1)s2—2(r—1)s __ 3r(r—2)s?
5 = 5 . Now,

s — 2y — Qe )I| _ [ =2)(r —4)s| _ (0= D(r— s
’v(FMzrs)’ 2r — 2 2 — 9 )
2le(Ta,, )| —r(r—4)s r(r—4)s
rs — — —
’U(FM2r5)| 27‘ - 2 2’[" — 2 ’
‘(27~ _gys - e, ’ _ | —10r +12)s| g H4<r<8
) e (=102 e S g

2r—2 ’

35 3
B % /22 —8r+9

2 2 2r — 2

3 3
:E_j+ i +5V2r2 =8 +9

2 2 2r — 2

2le(T
4drs — 6s + 2s 27“2—87‘—}-9—6(]\/[2””‘:

|U(FM2TS ) |

and
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3 3
B P /22— 8r 49

2 2 2r—2

3 3
=D 9 /2 8 0.

2 2 2r-2

2le(T°
4rs — 6s — 2s 2r2—8r—|—9—|dMQ“‘)|’:

|/U(FM2rs ) |

Therefore, for 4 < r < 8, we have

r (r—2)(r—4)s r(r—4)s
LET(T :< —7> - —25—1) x —
otz ) =(rs =5 ) x g F s =2 - 1) x ==
r (—r2+10r —12)s rs 3s 3s
,_1> - _ = U2
+<2 X 9 — 9 —1-2 2+2r_2+3\/r 8r+9
rs 3s 3s \/7
I— - A2
5 + 5 57— 9 + sV 2r 8r+9
and for » > 10, we have
r (r—2)(r—4)s r(r—4)s
LE+(FM2TS) = (TS - 5) X 27’ _ 2 + (7’3 - 28 - 1) X 72;,: — 2
r (r2—10r+12)s rs 3s 3s
,_1> — = A2 _
+(2 X 5 — 9 +2 2+2T_2+S\/7’ 8r+9
rs 3s 3s \/—
- - A2 .
5 + 5 "o _2 +s5v2r< -8 +9
Hence, the results follow on simplification. O

Theorem 2.1.8. If G is isomorphic to Ma,.s then

(a) E(Tap,,) < LEY(Tap,.) < LE(Tr,.), equality holds if and only if G = Mgs.
(b) Tar,,. is non-hypoenergetic as well as non-hyperenergetic.

(¢) T is L-hyperenergetic but not Q-hyperenergetic. Iy, is not L-hyperenergetic and
not Q-hyperenergetic. If 2rs # 6 and 8s then 'y, . is Q-hyperenergetic and
L-hyperenergetic.

Proof. (a) Case 1: r is odd

For r = 3, using Result 1.4.6 and Theorem we have LE(Tyy,,.) — LET(Tap,,) =
35 _ 5\/33> 0 and LET(Tap,,.,) — E(Tagy,,) = 222135 4 (v/33 — 24/T)s > 0.
For r > 5, using Result 1.4.6 and Theorem we have

2
—1
LET ) — LEY(Tap,.) = s(8r o _OI +3) Ve —16r 19 (2.1.15)
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(273 — 612 +4r)s% — 6r2s + 11rs — 4s
2r—1

+ 582 — 167 + 9 — sv/5r2 — 67 + 1. (2.1.16)

and LET(Ta,,) — E(Tagy,,) =

Since 8r% — 10r +3 > 0, (2r — 1)v/8r2 — 16r + 9 > 0 and
(8% — 107 +3)% — (2r — 1)%(87% — 16r + 9) = 32r* — 643 +40r2 — 87 > 0

we have 872 — 10r + 3 — (2r — 1)v/82 —16r +9 > 0. Therefore, by equation (2.1.15)),
(2r —1)(LE(Tp,,) — LET(Thp,.)) > 0. Hence, LE(Tyy,,.) > LET(Tay,,.)-
Again, we have v8r2 — 161 +9 > 0,v/5r2 — 6r + 1 > 0 and
(V8r2 — 167 +9)2 — (v/5r2 —6r + 1) = r(3r — 10) + 8 > 0.
Therefore, V872 — 167 +9 — /572 — 6 + 1 > 0. Since 2r3 — 612 + 4r > 6r2 — 117 + 4 we

have (2T376T2+42?fz6r2+1”74 +/8r2 — 161 + 9—/5r2 — 6r + 1 > 0. Therefore, by equation

@.1.16), LE*(Tag,,.) > E(Tag,.)- Hence, E(Typ,.) < LE(Ta,..) < LE(Tag,.).

Case 2: r is even
For 4 <r <8, using Result 1.4.6 and Theorem [2.1.7] we have
3

LE(Ty,.) — LE*(Tay,,.) = — (T—2r2+6r—6)—25\/2r2—8r+9 (2.1.17)

r—1\ 2

and
(r3 — 6r% + 8r)s? — ’"375 + 3r2s — 5rs + 4s
r—1

+25v/2r2 — 8r + 9 — sv/5r2 — 12r + 4. (2.1.18)

LE+(PM27‘G) - E(FMQTS) =

Since & — 22 4+ 61 — 6 > 0, 2(r — 1)v/2rZ — 8r + 9 > 0 and

2 9r2 4 6r—6)2 —dA(r — D222 — 8r +9) = 208 4 904 L 6,237 —8) 4321 >0
2 4

(equality holds if and only if r=4) we have § —2r2 4+6r — 6—2(r — 1)v/2r2 —8r + 9 >0.
Therefore, by equation (2.1.17), (r — 1)(LE(Tas,,) — LE* (Das,,,)) > 0. Hence, LE(T )
> LET(Tpy,.) equality holds if and only if G = Mgs.

Again, we have 2v2r2 —8r+9 > 0,v/5r2 —12r +4 > 0 and (2v/2r2 —8r +9)? —
(VBr2 —12r +4)? = (r — 4)(3r — 8) > 0 (equality holds if and only if » = 4). There-
fore, 2¢/2r2 — 8r + 9 — /512 — 12r + 4 > 0. Since % — 612 + 8r > § —3r24+5r—4
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we have (r376r2+8r)52;%+3r23757‘3+45 1252?81 9 - svEr2 —12r 1 4 > 0.
Therefore, by equation (2.1.18)), LE*(I'as,,,) > E(Tas,,,). Hence, E(Tap,,,) < LET(Ta,,)
< LE(T'ap,,,) equality holds if and only if G = Ms;.

For r > 10, using Result 1.4.6 and Theorem [2.1.7] we have

2r? —
LE(Ta,.) — LET(Tyy,.) = 25 <T5r+3 — V2 8 + 9) (2.1.19)

r—1

and

r3 — 612 4 8r)s? — 3r2s + 11rs — 8s
r—1

+25v/2r2 — 8r +9 — 5¢/5r2 — 12r + 4. (2.1.20)

LE*(a,,) — BTy, =

Since 2r2 —5r +3 > 0, (r — 1)v/2r2 — 87 +9 > 0 and
(2r® —5r +3) — (r—1)*(2r* = 8r +9) = 2r(r — 2)(r —1)> > 0

so we have 2r2 — 5r + 3 — (r — 1)v/2r2 — 8 +9 > 0. Therefore, by equation (2.1.19),
(r —1)(LE(Tp,,) — LET(Ta,,)) > 0. Hence, LE(Tyy,,,) > LE+(FM2T5).
Again, we have 2v/2r2 — 8r +9 > 0,v/5r2 — 12r +4 > 0 and

(2V2r2 —8r+9)? — (\/5r2 —12r +4)? = (r —4)(3r —8) > 0

. Therefore, 2v/2r2 — 8 + 9 — v/5r2 — 12r +4 > 0. Since r3 — 612 + 8r > 3r2 — 11 4+ 8 we

have (r376T2+8?i13T2+1”78 +2v2r2 — 8 +9—+/5r2 — 127 + 4 > 0. Therefore, by equation

2.1.20), LE*(Tag,,.) > E(Tag,.)- Hence, E(Typ,.) < LE+(Ta,,.) < LE(Tag,.).

(b) Case 1: r is odd
Here? ‘Q}(FMQTS)‘ = 27.8 - S and E(K|U(FM2TS)I) = LE(K"”(FAIZTS)') = LEJF(K"U(FI\/IQTS)l) =
4drs — 2s — 2. Using Result 1.4.6, we have

E(My,,) = 0Ty, )| = s(v/(r = 1)(5r = 1) =) (2.1.21)
and

E(Kjyry,, ) = ECa,,) =3rs —s =2 —sy/(r —1)(5r — 1). (2.1.22)
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2
Since y/(r —1)(5r — 1) > 0, r > 0 and ( (r—1)(5r — 1)) —(r)?=2r(2r—3)+1 >0 we
have /(r — 1)(5r — 1) —r > 0. Therefore, by equation (2.1.21), E(T'ay,,.) > [v(Tas,,.,)|-
Again, we have s\/(r —1)(5r —1) > 0, 3rs —s — 2 > 0 and

(3rs — s — 2)? — (s (r—1)(5r — 1))2 =drs(rs—3)+4(s+1) >0

and so 3rs—s—2—sy/(r — 1)(5r — 1) > 0. Therefore, by equation (2.1.22)), E(K|U(F1V12 " >
E(FM2TS)'

Case 2: r is even

Here, ’U(FM2T5)| = 2rs—12s and E(KW(FMQTS”) = LE(KW(FM%S”) = LEJ’_(K"‘)(FJ\/IQTS)') =
4rs — 4s — 2. Using Result 1.4.6, we have

E(Cn,,,) = [0(Casy, )| = s(/ (1 = 2)(57 = 2) = 7) (2.1.23)

and

E(Kjyry,, ) = E(Can,,) = 3rs —25 =2 — s/ (r — 2)(5r — 2). (2.1.24)

2
Since /(r — 2)(5r —2) > 0, r > 0 and (\/(7“ —2)(5r — 2)) 7?2 =4(r(r—3)+1) >0 we
have /(r —2)(5r — 2) —r > 0. Therefore, by equation (2.1.23), E(T'as,,.) > [v(Tas,.,)|-
Again, we have s\/(r —2)(5r —2) > 0, 3rs —2s —2 > 0 and

2
(3rs — 25 — 2)% — (s (r—2)(5r — 2)) =4rs(rs —3)+4(2s+1) >0

and so 3rs—2s—2—sy/(r — 2)(5r — 2) > 0. Therefore, by equation (2.1.24), E(Kjyr,,, ))
> E(FM2TS)'

(c) Case 1: ris odd
For r = 3, using Theorem [2.1.6] we have

1252 — 53s

LE+(FM27-S) - LE+(K|U(FMQTS)|) = 5

+245v33>0 for all s # 1.

Therefore, for r = 3 and s # 1, LE*(T'ag,,) > LE*(Kjy(r,, )) Which implies Ty, is
Q-hyperenergetic and consequently part (a) implies I'yy, . is L-hyperenergetic. If r = 3
and s = 1, then G = Dg so result follows from Theorem [2.1.3{c).
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For r» > 5, using Theorem [2.1.6] we have
LE+(FM2TS)_LE+(K\1](FM2 )|) _ (2r—6r°+4r)s® (12T2716r+5)5+3 82 161 £ 94250

2r—1 2r—1
Therefore, LET(Tyy,,.) > LET (K (s, ) Which implies T'ap,,, is Q-hyperenergetic and

consequently part (a) implies I'yy, . is L-hyperenergetic.

Case 2: r is even

For r = 4 and s # 1, using Result 1.4.6, we have LE(K|,r,, )|) — LE(Tnm,,,) =
% — 2 > 0. Therefore, I'yy,, is not L-hyperenergetic and consequently part (a) implies
that it is not Q-hyperenergetic. If r = 4 and s = 1, then G = Dg so result follows from

Theorem c).
Using Theorem for 4 < r <8, we get

r3_Gr2 2_(r3_
LE*(Cay,.,) — LET (Kjy(ryy, ) = (roOr8n)s 05200 | 9522 —8r 1942 > 0,

Therefore, LE*(Tyy,,.) > LET (K lo(Tar, y|) which implies 'y, is Q-hyperenergetic and
consequently part (a) implies I'yy,,, is L-hyperenergetic.
Using Theorem for r > 10, we get

LE+(FM2T5) _ LE+(K|U(FMQTS)\) _ (r3_6r2+87~)si:§67~2_16r+10)s 125V —8r £ 942> 0.

Therefore, LE™(Tas,,,) > LET (Kjy(r,,, )) Which implies T'yz,,, is Q-hyperenergetic and

consequently part (a) implies I'yy,, . is L-hyperenergetic. O

In Theorem we compare F(T'y,,.), LE(Tap,.) and LET (T, ). However, in the

following figures, we show how close are they.

T T I I T T
3,000 || = =
B 4,000 || LB |
T —s— gt T —s— gt
1S
£ 2,000 — & X :
&
= 5
3 = i L
2 g 2,000| |
= o0
¥ 1,000 . 5
iz = i |
0 0 ‘ ‘
15 5 10 15
r— r—
Figure 2.5: Energies of I" g, Figure 2.6: Energies of I'az,,.
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2.1.4 The dicyclic groups, Q4,

We consider Qyu,, := (z,y : 22" = 1,2" = ¢,y toy = 27 1), the dicyclic groups of order 4n
(where n > 2). Results regarding different energies of non-commuting graphs of Q4,, are
given below.

Theorem 2.1.9. Let G be isomorphic to Q4. Then
Q-spec(T'g,,) = {(471 —4)", (2n)?=3, (4n — 6)" 71, (4n — 3 + V/8n2 — 16n + 9)!,

1
(4n 3-8 —16n+ 9) }

dn®=8n’+6 | 9\ /02 — 160 + 9, ifn <4
and LE*(Tg,,) =

W*gg#+2 8n? —16n+9, ifn>5.

Proof. If G = Qup then |v(I'q,, )| =4n—2and I'g,, = K, 21.(2n—2). Using Result 1.1.4(b),

we have

2
Qr,, (@) :H(:U—(4n—2)+pi)ai(Pi—1)H( —(4n—2)+2p;)" ( Zx 4nlp§ +2p>

=1 =1 =1

(2 — (4n — 4))" (& — 20)2" 3 (2 — dn + 6)" (z — 2) (1 2n 2n—2>

r—4n+6 -2
=(x — (4n — 4))"(x — 2n)*"3(z — (4n — 6))" "1 (2? — (8n — 6)z + 8n? — 8n).

1
Thus Q-spec(I'g,,) = {(4n — 4", (2n)?" 73, (4n — 6)" 1, (4n — 3+ V8n% —16n + 9) ,

(4n_3_¢m)1}.

Number of edges of T',, is 2n? —4n + 3. Thus, |e(T'g,,)| = W — (2n2
—4n +3) = 6n(n —1). Now,

- Tel| - |Cr gm0 < Cr D,
'2 B 2!6(%4”)\‘ _ ‘—27%(”— 2)' _2n(n-2)
(T, n—1 1
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—2(n?—5n+3)
2’6(TQ4R)\H2(n2—5n+3)‘ L) ifn <4

[0(TQu, )] 2n—1

‘4n—6

2_ .
Al Bntd) g g

2le(I’ 3 3
dn — 3+ v/8n2 — 16n + —W‘:‘ 8n2 —16n+9+n— = + ‘

U(FQ4TL)‘ 2 4n_2
= 8n2—16n+9+n—§+ ;
- 2 4n-—2
and
2le(T 3 3
471—3—\/8712—1671—1—9—M =|—V8n?2—-16n+9+n— -+
[0(TQu, )| 2 4dn—2
3 3
=v/8n% — 16 9 — - — .
n n+ n+2 1 — 2
Therefore, for n < 4 we have
2n —4)(n — 1) 2n(n — 2) —2(n? —5n +3)
LET(T o ¢ om — el 74 1
TQu) =nx = 93—+ @n=3) x 5~ + - x ——"—
+ 8n2—16n+9+n—§+ i + 8n2—16n+9—n+§— 3
2 4n—2 2 4n—2
and for n > 5 we have
2n —4)(n — 1) 2n(n — 2) 2(n? — 5n + 3)
LET(T = ( 2n — T )X ——=
+ 8n2—16n+9+n—§+ 3 + 8n2—16n+9—n+§— 3
2 4n -2 2 4n -2
Hence, the results follow on simplification. O

Theorem 2.1.10. If G is isomorphic to Q4y then
(a) E(Tq,,) < LE*(Tq,,) < LE(Lq,,), equality holds if and only if G = Qs.
(b) T'q,, tis non-hypoenergetic as well as non-hyperenergetic.

(c) Tgg ts not L-hyperenergetic and not Q-hyperenergetic. If n # 2 then I'g,, is
-hyperenergetic and L-hyperenergetic.
yp ) yp )
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Proof. (a) For n < 4, using Result 1.4.7 and Theorem we have

2n3 — 4n? -
LE(To, ) — LE'(Tg,,) =2 ( nioAnm O =3 R Ten + 9) (2.1.25)

2n —1

and

2(n —2)(2n® —2n—1
LE*(Dq,,) — E(Tq,,) = (n = 2)@n” — 2n )+2 8n2 —16n + 9

2n —1

—2v/5n2 — 6n + 1. (2.1.26)

Since 2n3 —4n? 4+ 6n —3 > 0, (2n — 1)v/8n2 —16n +9 > 0 and (2n3 — 4n? 4 6n — 3)% —
(mf (2n—1)% = 8n°(n—4) +16n* +24n2(3n—4) +32n > 0 (equality holds if
and only if n = 2) we have 2n> —4n? +6n —3 — (2n — 1)v/8n2 — 16n + 9 > 0. Therefore, by
equation (2.1.25)), (2n — 1)(LE(Tg,,) — LE*(Tg,,)) > 0. Hence, LE(Tq,,) > LET(Lg,,)
equality holds if and only if G = Qs.

2
Again, we have v8nZ — 160 +9 > 0,v5n2 — 61 + 1 > 0 and <\/8n2 “16n + 9)

- (m)2 — n(3n — 10) + 8 > 0 (equality holds if and only if n = 2). There-
fore, V8n2 —16n+9 — v/5n2 —6n+1 > 0. Since (n — 2)(2n? — 2n — 1) > 0 we have
20=2C2n1) 49\ /8n? —16n + 9 — 2V/5n2 — 6n + 1 > 0 (equality holds if and only if
n = 2). Therefore, by equation (2.1.26), LET(Ig,,) > E(Ig,,). Hence, E(I'g,,) <
LE*(Tg,,) < LE(Tq,,) equality holds if and only if G = Q.

For n > 5, using Result 1.4.7 and Theorem [2.1.9] we have

8n2—10n+3_

LE(Tq,,)— LE*(Tg,,) =2 ( 51 8n2 — 16n + 9) (2.1.27)
n J—

and

2(2n?%(4n — 19n — 4
LE*(T,,) - E(Tq,,) = "W DI =) 4y er 1o 1 0

—2v/5n2 — 6n + 1. (2.1.28)

Since 8n? — 10n +3 > 0, (2n — 1)v/8n2 — 16n.+ 9 > 0 and (8n? — 10n + 3)% —
(\/sm)z (2n—1)2 = 32n3(n— 2) + 8n(5n — 1) > 0 we have 8n2 — 10n +3 — (2n —
1)v/8n% — 16n + 9 > 0. Therefore, by equation (2.1.27), (2n—1)(LE(Tg,,)—LET (Tg,,)) >
0. Hence, LE(Tq,.) > LE*(Ig,, ).
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2
Again, we have v8nZ —16m + 9 > 0,512 —6n + 1 > 0 and (\/8n2 “16n+ 9) _

(mf — n(3n — 10) + 8 > 0. Therefore, V812 — 1601 9 — V502 —6n + 1 >
0. Since 2n%(4n — 9) + 19n — 4 > 0 we have 2<2n2(47§:‘3)1+19"74) +2v/8n2 —16n +9 —
2v/5n2 —6n +1 > 0. Therefore, by equation ([2:1.28), LET(I'g,,) > E(Ig,,). Hence,
E(Tg,,) < LE*(Tq,,) < LE(Tq,,)-

(b) Here, [v(Tqy,)| = 4n — 2 and E(Kjyrq, j)) = LE(Kjyrg, )) = LET(Kjurg, )) =
8n — 6. Using Result 1.4.7,

B(Tq,,) — [v(Tq,,)| = 2(v/(n = 1)(5n — 1) — n) (2.1.29)

and

E(Kjyro, ) =~ BTQu) =2@(n - 1) +1—-/(n—1)(5n - 1)). (2.1.30)

Since /(n —1)(5n —1) > 0, n > 0 and <\/(n— 1)(5n — 1))2 —n?=2n2n—-3)+1>0

we have \/(n — 1)(5n — 1) —n > 0. Therefore, by equation (2.1.29), E(I'q,,) > [v(Lg,,)|-
Again, we have \/(n —1)(5n — 1) > 0,3(n — 1) +1 >0 and (3(n — 1) +1)? —

(\/(n “1)(n— 1)) —2n(2n—3)+3>0andso3(n—1)+1—/(n—1)(Bn—1) > 0.

Therefore, by equation ([2.1.30), E(Kjyrg, 1) > E(TQu,)-

(c) For n = 2, using Result 1.4.7, LE(I'q,) = 8 and LE(Kjyry,)) = 10. Clearly,
LE(T'g,) < LE(K, |U(FQ8)|)' Therefore, I'g, is not L-hyperenergetic and consequently part

(a) implies that I'g, is not Q-hyperenergetic.
Using Theorem [2.1.9] for 2 < n < 4,

dn(n —1)(n —
LE*(Tq,,) — LE*(Kjyrg, ))) = nin o z(? %) | o\/3n7 —16n+9 > 0.

Also, for n > 5, LET(Tq,,) — LE*(Kjur,, )) = Snf(n=6)+52n=12 | 5 /B2 — 16n + 9 > 0.
Therefore, LE™(Tq,,) > LE*(K),r,, )) which implies I'q,, is Q-hyperenergetic and

consequently part (a) implies that I'g,,, is L-hyperenergetic. Hence, the result holds. [

2.1.5 The groups Uy,

We consider the groups Ug,, := (z,y : 22" = 3> = 1,27 lyx = y~1), of order 6n. Results

regarding different energies of non-commuting graphs of Us,, are given below.
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Theorem 2.1.11. Let G be isomorphic to Ug,. Then

9+m)n)1 ((9—@)71)1
2 ’ 2

Q-spec(I'y,,, ) = (3n)27 L (4n)3n=3, <(

12n? — 3
and LE*(Ty,, ) = % +/33n.

Proof. If G = Usy, then |v(I'y,, )| = 5n and T'y,, = Ki2n,3n. Using Result 1.1.4(b), we

have

2 2 2
_ Nai(pi—1 @i @iPi
R | ) | o e v

i=1 i=1 i=1

= (2 —3n)*"" (2 — 4n)"" (2 — n)(x — 3n)° <1 - x2—nn oz in3n>

= (z — 3n)?" "z — 4n)3" 3 (22 — 9nzx + 12n?).

1 1
Thus, Q-spec(T'y,,) = {(311)2"“, (4n)3n—3, (“”ég)") , ((wéﬁm) }

- - 2_ — 2_ 2
Number of edges of Ty, is =722, Thus, |e(I'y,, )| = 5n(5;l L _ o 5o = 18- Now,

2
2le(Ty, )\‘ ’—Sn 3n ’ 2le(Ty, )|’ 2n|  2n
3n — bn = = —, 4n—7°”:—:—,
‘ [v(Tug, )] 5 5 [v(Tug, )] 5 5
(9+v33)n  2leTy, )| |(9+5V33)n|  (9+5vV33)n
5 [v(Cu, )| | 10 a 10
and
(9—v33)n  2le(Ty,,)l| _ |(9=5V33)n| _ (5v33 - 9)n
5 (T ) | 10 B 10 ‘

Therefore, LE*(T'y,,) = (2n+ 1) x 32 4 (3n — 3) x 2 + (9+51¢0§)n n (5@0—”" and the

result follows on simplification. O
Theorem 2.1.12. If G is isomorphic to Ug, then
(a) E(Ty,,) < LET(Ty,,) < LE(Tys,).

(b) 'y, is non-hypoenergetic as well as non-hyperenergetic.
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(¢) Tws, is Q-hyperenergetic and L-hyperenergetic.
Proof. (a) Using Result 1.4.8 and Theorem [2.1.11] we have

LE(Ty,, ) — LE*(Ty,,) = 3‘%” —V/33n >0 (2.1.31)
and )
12n2 — 13
LE*(Ty,,) — E(Ty,,) = % + (V33— 2V7)n > 0. (2.1.32)

Thus, the conclusion is drawn from equations (2.1.31)) and (2.1.32)).

(b) Here, "U(FUM” = 5n and E(K|U(FU6,1)|) = LE(K\U(FUGn)|) = LE+(K|U(FU6n)|) = 10n—2.
Using Result 1.4.8, we have

E(Ty,,) — [v(Tue, )| = (2VT = 3)n > 0 (2.1.33)

and
E(Kjyry, ) — E(Tug,) = 8 = 2VT)n — 2> 0. (2.1.34)

Thus, the conclusion is drawn from equations (2.1.33)) and ([2.1.34]).

(c) Using Theorem 2.1.11} we have LE*(I'y,) — LE* (Kjy(r,, ) = 22=30510 4 /33 >
0. Therefore, LET(T'y,,) > LEJF(KMFU6 y)) which implies T'yy, is Q-hyperenergetic and

consequently part (a) implies I'y,, is L-hyperenergetic. ]

In Theorems 2.1.10{and 2.1.12} we compare E(I'¢), LE(I'¢) and LET () if G = Qup,

and Ug,, respectively. However, in the following figures, we show how close are they for

both the groups.

1,500 T T
E 400
LE 7
—s— gt
1,000 H —

200

Energiesof ', . —
o
=)
S
T T
|
Energies of L'y, —

5 10 15 20

n— n —

Figure 2.7: Energies of I'g,,, Figure 2.8: Energies of 'y,
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It can be seen that if G is isomorphic to Doy, QDan, Mays, Qap o1 Usy, then the central
quotient of G is also isomorphic to some dihedral group. Therefore, we conclude this
section with the following theorems for the non-commuting graphs of the groups G such

G ~
that m - DQm.

Theorem 2.1.13. Let % be isomorphic to Doy, (m > 3) and |Z(G)| =n. Then

Q-spec(T'g) —{ ((2m — 2)n)™=Y (mp) (D=L (9 — 3)p)™ L,

(n(4m—3—|—\/8m2— 16m—|—9))1 (n(4m—3— V8m?2 — 16m+9))1}
2 ’ 2

12n25—3n 1 nv/33, if m=3
and LE+(Fg) = { 48n*-29n + nV/73, ifm=4

7

(2m3_6m2+4n"§)n722_—1(4m2—8m+3)n + n\/8m2 —16m +9, me > 5.

Proof. If % = Doy, then [v(I'g)| = (2m — 1)n and T'g = Ky 1. ((m—1)n)- Using Result

1.1.4(b), we have

2 2 2
Qra (@) =[Jw—@m—1n+p) P [ [ (= 2m—1)n-+2p)" (1 ‘Zx-@mipfmp)

i=1 =1 i=

=(z — (2m — 2)n)™ " V(2 — mn) ™" (2 — (2m — 3)n)™(z — n)

8 (1_ z— (27::"7— n (W;:gn>

=(z — (2m — 2)n)™ " V(2 — mn) ™z — (2m — 3)n)™ !

x (22 — (4m — 3)nx + (2m? — 2m)n?).

Thus Q-spec(I'g) = {((Qm — 2)n)m(”_1), (mn)(m_l)”_l, ((2m — 3)n)™ 4

I

o1



Chapter 2. Various energies of non-commuting graphs of finite groups

(m2—m+1)n%—(2m—1)n

Number of edges of T'g is 5 . Therefore,
’€<FG')’ _ (Qm — 1)2n2 — (2m - 1)71 . (m2 —-m + 1)n2 _ (2m — 1)n _ Sm(m _ 1)n2
Now,
o 2y 2T | | (m = 1 =20 _ (m = 1on —2)n
lv(Te)| 2m —1 2m — 1
~2le(Te)l| _ [=m(m =2)n| _ m(m—2)n
lw(Ta)| | 2m —1  2m—1
(Em?4+5m=3)n
‘(2m_3)n_2’€(FG)”_'(m2—5m+3)n B m—1 , ifm<4
(T B o2m — 1
()] e s
n 2le(T'g)|
Z 4m—3+\/8m2—16m+9)—7
2< lv(lq)|
n 3 3
== 8m?2 — 16 9 — =
2<\/m mesm 2+4m—2>|
:E 2_1 _§ 3
2(\/8m 6m+9+m— 5+
and
n 2le(Tg)|
= 4m—3—\/8m2—16m+9>_7
2( v(Te)l
n 3 3
2( \/8m 6m+9+m 2+4m—2>‘
:E 2_1 _ %_ 3
2(\/8m 6m+9 m+2 s
Therefore, for m < 4 we have
— 1)(m—2)n m(m — 2)n
LET(Te) =m(n — 1) x " 1) x Mm = 2)n
(o) =mn = 1) x = ooy Fm= ==
(—m?+5m—3n n 5 3 3
+(m—1)x CT— +2 \/8m 16m+9+m 2+4m_2
—i—ﬁ \/8m2—16m+9—m+§— 3
2 2 4m—2
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and for m > 5 we have

(m—1)(m—2)n m(m — 2)n

LET(Tg) =m(n —1) x +((m—-1n—-1)x

2m —1 2m —1
(m?>—=5m+3)n n 3 3
-1 — 2_1 i
Hm-D) g 4 g (Ve - 1m0k m - S+
(B om0 —m+o - 2 ).
2 2 4m -2
Hence, the results follow on simplification. O

Theorem 2.1.14. If % is isomorphic to Doy, (m > 3) and |Z(G)| = n then
(a) E(T'g) < LET(Tg) < LE(Tg).
(b) T'¢ is non-hypoenergetic as well as non-hyperenergetic.

(¢) Tg is L-hyperenergetic but not Q-hyperenergetic if m = 3 and |Z(G)| = 1. For
m = 3,4 and |Z(G)| # 1 or m > 5 and |Z(G)| > 1, T'q is Q-hyperenergetic and
L-hyperenergetic.

Proof. (a) For m = 3, using Result 1.4.9 and Theorem[2.1.13] we have LE(T'¢)—LE*(I'g) =
3B n\/33> 0 and LET(Ig) — E(Tg) = 202130 4 (\/33 — 2\/T)n > 0.

For m = 4, using Result 1.4.9 and Theorem we have LE(T'¢) — LET(Tg) =
81 _py/73 > 0 and LET(Tg) — E(Tg) = 8022500 4 (/73 — \/5T)n > 0.

For m > 5, using Result 1.4.9 and Theorem [2.1.13] we have

n(8m? — 10m + 3

) 2
- —1 2.1.
ST nv/8m? — 16m + 9 (2.1.35)

LE(Tg) — LE*(Tg) =

and

2m3 — 6m? + 4m)n? — 6m3n + 11lmn — 4n
2m —1

+nv8m2 —16m +9 — n\/5m? — 6m + 1. (2.1.36)

Since 8m? — 10m +3 > 0, (2m — 1)v/8m2 — 16m + 9 > 0 and

LE*(Tg) — E(Tq) _

(8m?* — 10m + 3)2 — (2m — 1)3(8m? — 16m + 9) = 32m* — 64m> + 40m? — 8m > 0
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we have 8m? — 10m + 3 — (2m — 1)v/8m?2 — 16m + 9 > 0. Therefore, by equation (2.1.35)),
(2m — 1)(LE(T) — LE*(T'g)) > 0. Hence, LE(T¢) > LE*(Tc).
Again, we have v/8m2 — 16m + 9 > 0,v/5m2 — 6m + 1 > 0 and

(vV8m?2 — 16m + 9)% — (v/bm? — 6m + 1)> = m(3m — 10) + 8 > 0.

Thus, vV8m2 — 16m + 9 — v/5m2 — 6m + 1 > 0. Since 2m? — 6m? + 4m > 6m? — 11m + 4
we have (2m376m2+42n;;2ﬁ16m2+11m74 +/8m2 —16m + 9 — vV5m2 — 6m + 1 > 0. Therefore,

by equation (2.1.36), LET (') > E(Ig). Hence, E(T'¢) < LET(I'g) < LE(Lg).

(b) Here, ’U(Fgﬂ = 2mn —n and E(K|v(l"c)|) = LE(K"U(FGH) = LE+(K|v(FG)|) = 4mn —
2n — 2. Using Result 1.4.9, we have

E(Ta) - [o(Te)| = n(y/(m — D(Em —1) - m) (2.1.37)
and
E(Kjyrg)) — ETq) =3mn —n—2—ny/(m —1)(5m — 1). (2.1.38)
Since \/(m — 1)(5m — 1) > 0,m > 0 and (y/(m — 1)(5m — 1))2—=m? = 2m(2m—3)+1 > 0
we have y/(m — 1)(5m — 1) — m > 0. Therefore, by equation [2:1.37), E(I'¢) > [v(Tg)|.
Again, we have ny/(m —1)(5m — 1) > 0, 3mn —n — 2 > 0 and (3mn — n — 2)?

2
- (n\/( - )(5m—1)) = 4dmn(mn — 3) + 4(n + 1) > 0 and thus 3mn —n — 2
—ny/(m —1)(5m — 1) > 0. Therefore, by equation (2.1.38), E(Kyry)) > E(Tq).

(c) Using Theorem for m = 3, we have LE*(I'g) — LE™ (K|y(ry)|) = 12”2%53" +2+
nv/33 > 0 for all n # 1. Thus, for m = 3 and n # 1, LET(Ug) > LE"(Kyr,)) which
implies ' is Q-hyperenergetic and consequently part (a) implies FG is L-hyperenergetic.
If m =3 and n = 1, then G = Dg so result follows from Theorem ( ). Using Theorem
for m = 4, we have LE*(T'¢) — LE*(Kyre)|) = w +24n/73 > 0 for
all n 75 1. Therefore, for m = 4 and n # 1, LE*(P'¢) > LE™ (K)y)) which implies T'g
is Q-hyperenergetic and consequently part (a) implies I'¢ is L-hyperenergetic. The case
m =4 and n = 1 does not arise since |Z(Dg)| = 2.

For m > 5, using Theorem 2.1.13, we have LE™ (I'¢)—LE™ (K y(ry)|) = (2m8 —6m? - dim)n?

2m—1

m”ﬂ%—}—n\/&rﬂ —16m 4 942 > 0. Therefore, LE*(I'g) > LE™ (Kjy(r,,)|) Which

implies I is Q-hyperenergetic, following which part (a) implies ' is L-hyperenergetic. [
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In Theorem we compare E(I'¢), LE(Tg) and LE'(I'¢). However, in the fol-

lowing figures, we show how close are they.

[ I
= 3,000 |
1,500 H LE —
- . E+ |
1 | LE i 1
0] v 2,000
) 1,000 |- e =
[=] [=)
3 2 [
£ | N &
2 g 1,000 |
s 500 |- | ks
0 | 1 | | 0
5 10 15
m —> m —
. . : G ~ : . i G o
Figure 2.9: Energies of ['q, Vil > Dom, Figure 2.10: Energies of ', Yol Y Dom,
1Z(G)[ =3 1Z(G)| =4

2.2 % is isomorphic to Z, x Z,

We compute the Signless Laplacian spectrum and Signless Laplacian energy of I' con-
sidering the group G whose central quotient is isomorphic to Z, x Z,, where p is a prime.
Further, we compare energy, Laplacian energy and Signless Laplacian energy of I' and

look into the hyper- and hypo-properties of I'¢;.

Theorem 2.2.1. Let %G) be isomorphic to Zy X Zy,. Then

Q-spec(Ta) = { (pn(p — )W~V (n(p = 1)%)”, (2pn(p — 1))' |, where |Z(G)] =n

and LE*(Tg) = 2p(p — 1)|Z(G)|. In particular, if G is non-abelian and |G| = p* then
LEH(Tg) = 2p%(p — 1).

Proof. If % = 7y X Ly then [v(Dg)| = (p? = 1)n and Tg = K(p41).(p—1)n, where |Z(G)| =

n. Using Result 1.1.4(b), we have
Qre(z) =(x — (P — Dn+ (p— V) PFOE=Dn=D g (p2 _ 1)n 4 2(p — 1)n)P*t

(p* —)n
- <1‘ x—<p2—1>n+2<p—1>n>

=(z —pn(p— 1)@ —a(p — 1)?)P(x ~ 2pn(p ~ 1)).
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Thus, Q-spec(L'a) = { (pn(p — 1))@~ D"=0HD, (n(p — 1)2)", (2pn(p — 1) }.

(p*—1)(pn—n—1)
2

Number of edges of T'g is * . Therefore,

n2(p2—1)2 —n(p2— n(p?— e — 2 2_1)p2
le(Tg)| = (p 1)2 (P*-1) _ n(p 1)(2;; D _ (@ p)(g n?-

Now,
2’€(FG)’ 2
B ] Sl CVA Y —1) = (p? = =
pn(p —1) ()] lpn(p — 1) — (p* —p)n| =0,
2le(T'q)|
S Vet e Sl 74 | [y P — pn —
n(p—1) o(To)] In—pn|=pn—n
and
2le(I’
‘2pn(p— 1) - M = [p*n — pn| = p*n —pn.

Therefore, LET(I'g) = ((p?> = 1)n — (p+1)) x 0+ p x (pn —n) + p?>n — pn = 2pn(p — 1).
In particular, if G is non-abelian and |G| = p3 then n = p. Therefore, LET(Tg) =
2p2(p — 1). O

Theorem 2.2.2. If % = Zp X Ly then
(a) E(I'g) = LE(Tg) = LET(I'g).

(b) T'g is non-hypoenergetic, non-hyperenergetic, not L-hyperenergetic as well as not

Q-hyperenergetic.

In particular, if G is non-abelian and |G| = p3 then E(Ug) = LE(T¢) = LE*(Tg) and T'g
is non-hyperenergetic, non-hypoenergetic, not L-hyperenergetic as well as not

Q-hyperenergetic.

Proof. (a) For % = Zp X Ly, from Result 1.4.10 and Theorem we have E(T'g) =
LE(Tg) = LE*(Tg) = 2p*™(p" — 1).

(b) Here, ”U(Fg)‘ = (p2 - 1)‘Z(G)‘ Thus, E(K|v(Fg)\) = LE<K\U(FC,~)|) = LE+(K|’U(FG)I) =
2p(p — 1)|Z(G)| + 2(p — 1)|Z(G)| — 2. Therefore, by Result 1.4.10 and Theorem [2.2.1]
we have E(KI’U(Fg)l) - E(Fg) = LE(K"U(FGN) - LE(Fg) = LE+(K\U(FG)|) - LE+(Fg) =
2(p —1)|Z(G)| —2 > 0. Also, E(I'g) — |[v(I'g)| = (p — 1)?|Z(G)| > 0. Hence, the results
follow.

In particular, if G is non-abelian and |G| = p?, then |Z(G)| = p in the above cases so
the results hold. O
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2.3 % is isomorphic to Sz(2)

We compute spectrum, energy, Signless Laplacian Spectrum and Signless Laplacian en-
ergy of I'¢ considering the group G whose central quotient is isomorphic to the Suzuki
group of order 20 denoted by Sz(2). Further, we compare energy, Laplacian energy and

Signless Laplacian energy of I'c and look into the hyper- and hypo-properties of I'¢;.

Theorem 2.3.1. Let % = Sz(2). Then

(a) Spec(Tg) = {(0)97, (=3n)", (21 (3 +2v6))", (20 (3~ 2v/6)) '} and
E(Tg) = 4n(3 + 2V6), where n = | Z(G)|.

1 1
(b) Q-spec(Tg) = {(16n)l5”5, (15n)4=1 (13n)4, (n(43+2\/@)> ; <n(43_2\/@)> } and

LET(Tg) = 120”21# + v/409n, where n = |Z(G)|.

Proof. If % =~ S2(2) and |Z(G)| = n then I'¢ = K5.3n,1.4n and it is a complete 6-partite
graph with 19n vertices.
(a) Using Result 1.1.4(a), the characteristic polynomial of I'¢; is

Pr.(z) = 2" 52 + 3n)*(2? — 12nz — 60n?).

Therefore, Spec(L'c) = {(0)19”—6, (=3n)4, (2n (3+2v6))", (2n (3 — 2\@))1} and E(Tq) =
4n (3 +2V/6).
(b) Using Result 1.1.4(b), we have

2 9 9
Qre(@) =] [z — 190+ p) =@V [ (@ — 190 + 2p;) (1 - Zap)

1=

= (z— 197+ 3n)°C" V(2= 19n + 4n)*" (z —19n + 2 x 3n)°(z— 19n + 2 x 4n)"

< (1 5 X 3n 4dn
=19 +2x3n x—-19n+2 x4dn
= (z — 16n)" 5 (z — 15n)*" 1 (z — 13n)*(2? — 43nz + 360n2).

1 1
Thus, Q-spec(Tg) = {(1671)15"5, (15n)4n=1, (13n)4, (n(43+2\/@)> : (n(4372\/@)> }
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Number of edges of I'g is 61”2%19”. Thus, le(T'q)| = 19n(1§n_1) - 61”22_19” = 150n2.
Now,
1o 2| _[ 40| _an | 2le(Te)]| _|~15n| _15n
lv(Cq)| 19 19 lv(Cq)| 19 19
2 _
13n — le(T'q)| _ | =B3n| 53711,

lo(Cc)] 19 19

(43 +vA09)n  2le(Te)l| | (@17 +19vA00)n| (217 + 19v/409)n

2 lv(Ca)| | 38 B 38

and

(217 — 19/409)n
38

(43 — v/409)n ~ 2le(Te)|
2 Elexel

Therefore, LET(T¢) = (15n—5) x 42 4 (4n— 1) x 137 1 4 530 CITHIOVAD)n | (19VA409-217)n

and the result follows on simplification. O

(19v/409 — 217)n
38 ‘

Theorem 2.3.2. If % is isomorphic to Sz(2) and n = |Z(G)| then
(a) E(Tg) < LET(T'¢) < LE(Tq).
(b) T'¢ is non-hypoenergetic as well as non-hyperenergetic.

(c) Ts.2) is not Q-hyperenergetic but is L-hyperenergetic. If G 2 Sz(2) then I'g is
Q-hyperenergetic and L-hyperenergetic.

Proof. (a) Using Theorem [2.3.1(b) and Result 1.4.11, we have LE(I'¢) — LE*(T'¢) =
(2% — V/409) n > 0. Using Theorem we have LET(I'g) — E(Tg) = %2_17) +
4091 — 8nv6 > 0. Hence, the result follows.

(b) Here, [v(T'g)| = 19n and E(K|yry)) = LE(Kyry)) = LET(Kyry)) = 38n — 2.
Using Theorem a), we have E(Tg) — [v(T'g)| = (8v/6 — 7)n > 0 and also we have
E(Kjyrg)) — E(Tg) =2(13 — 44/6)n — 2 > 0. Hence, the result follows.
(c) For n = 1, by Result 1.4.17(c), we have LE(I'g,(2)) = 89 > 36 = LE(Kjy(rg,,)) and
by Theorem [2.3.1|b), we have LE*(I's.(2)) = 2 +v409 < 36 = LE*(K|y(r,_,))- Hence,
for n = 1, I'¢ is L-hyperenergetic but not Q-hyperenergetic.

For n > 1, using Theorem [2.3.1[b), we have LE*(Tg) —~ LE (Kjy(rg))) = T2n 71000438
+4/409n > 0. Therefore, LET(T'g) > LE*(K\yr)) which implies I'g is Q-hyperenergetic
and consequently part (a) implies I is L-hyperenergetic. O
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For % = Sz(2), the following figures also demonstrate that among the three en-

Z
ergies, E(I') is the least and the fact that although LE™(I'¢) < LE(I'g) but these two

energies are very close to each other.

1,000

800 H
"
i~ 600
k]
% 400
&

200 |

ol | | |
4 6 8 10
- 4

Figure 2.11: Energies of I'¢ where % >~ S52(2) Figure 2.12: A close up view of Figure 11

2.4 Some more classes of groups

In this section we discuss results on energy, Laplacian energy and Signless Laplacian en-

ergy of non-commuting graph of certain well-known classes of finite groups.

2.4.1 The Hanaki groups

We consider the Hanaki groups

1 0 0
An V)= U(a,b)=|a 1 0 |:a,beGF2"); (n>2),
b V(a) 1

under matrix multiplication given by U(a,b)U(a’,t’) = U(a + da/,b+ V' + a’'V(a)) (here V
be the Frobenius automorphism of GF(2"), i.e., V(x) = 2? for all z € GF(2")) and

1 0 O
A(n,p) =< V(a,b,c)=|a 1 0 | :abceGF(p") p (pisany prime)
b ¢ 1
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under matrix multiplication V(a,b,c)V(a',V/,) = V(a4 a’,b+ b + cd’,c + ). In this
section, we compute Signless Laplacian spectrum and Signless Laplacian energy of non-
commuting graph of the groups A(n,V) and A(n, p). Further, we compare Signless Lapla-
cian energy of I'¢ with its predetermined energy, Laplacian energy and look into the

hyper- and hypo-properties of I'; if G is isomorphic to A(n, V) and A(n, p).

Theorem 2.4.1. If G is isomorphic to the Hanaki group A(n,V) then Q-spec(I'g) =
{(22n_2n+1)22"—2"+1+1’ (2271_3)( 2n)2"—2’ (22n+1 _2n+2)1} and LE+(FG) — 92n+l _on+2

Proof. If G is isomorphic to the Hanaki group A(n,V) then [v(I'g)| = 2" — 2" and ' =
Kn_1).2n. Using Result 1.1.4(b), we have

Qre () =(x — (227 —27) 4 2M)@" =D =D _ (920 _ 9y 4 2 x 97)(2"—1)

(1o (2" —1).2
r— (220 —2n) 42 x 27

— (1‘ . (22n _ 2n+1))(2"71)2($ o (2271 —3x 2n))2"72(w_ . (22n+1 o 2n+2))‘

Thus, Q—spec(f‘g) _ {(22n B 2n+1)22n_2n+1+1’ (22n —3x 2n)2"—27 (22n+1 o 2n+2)1}'
Number of edges of T'g is 2772(22" — 27+1 4 1), Thus, |e(Tg)| = (22"_271)(3%_2"_1) -
2n72(22n _ 2n+1 + 1) — 24n71 —3x 231171 4 22n' NOW,

22n o 2TL+1 o 2|6(FG)| — 23n+1 B 23n+1 — 0
[v(Ta)] 22 —2n ’
22n_3x2n_ 2’€(Fg)’ _ 92n _ 93n _ 93n _ 92n
W) | |22 —2n | 2 —on

and

24n —_3x 23n + 22n+1
22n _ 9n

24n _3x 2371, + 22n+1

92n+l _ gn+2 _ 2le(T'g)|
22n _ 9n

lv(Ta)|

Therefore, LE+(Tg) = (227 — 271 1) x 0+ (27 — 2) x Zpm2ot 4 208500t o e

result follows on simplification. O
Theorem 2.4.2. If G is isomorphic to the Hanaki group A(n,V) then
(a) E(T'g) = LE(Tg) = LET(Tg).
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(b) T is non-hypoenergetic, non-hyperenergetic, not L-hyperenergetic and
not Q-hyperenergetic.

Proof. (a) Using Result 1.4.12 and Theorem 2.4.1} we have E(T') = LE(I'¢) = LE™(T')
27+1(2" — 2) and hence the result follows.

(b) Here, |U(Fg)‘ = 2“(2” — 1) and E(K\v(l"gﬂ) = LE(K\U(FG)O = LE+(K|U(FG)\) =
27+1(2" —1)—2. Therefore, by Result 1.4.12 and Theorem we have E(T'q)—|v(Tq)| =
2n(2n_3) >0, forn > 1 and E(K|U(FG)|)—E(Fg) = LE(K‘U(FG”)—LE(Fg) = LE+(K‘U(FG)|)
— LET(Tg) =2(2" — 1) > 0. Hence, the results follow. O

Theorem 2.4.3. If G is isomorphic to the Hanaki group A(n,p) then
Q-spec(I') = {(p3” — p) D@ g gptn et (2pn — 2p2")1}
and LE*(Tg) = 2p*(p" — 1).

Proof. If G is isomorphic to the Hanaki group A(n,p) then |[v(I'g)| = p*" — p" and I'g =
Kpni1).(p2n—pry- Using Result 1.1.4(b), we have

Qrg (z) =(x— (p3" —p") + (an — p”))(ﬁn+1)(P2”*p"*1)(x_ (p3n ")+ 2(p2n o pn))(p"+1)

3n _ .n
< (1— p p
T — (p?m _ n) + 2(p2n _ pn)

= (z — (p°" — p?) @ EDET D) (g (P op0 )T (1 — (29 — 2p77)).

Thus, Q-spec(Tg) = {(p3” L e N ) AN ) 2p2”)1}'

Number of edges of I is (psnfpn)(gznfpnfl). Thus, |e(T'g)| = (psnfpn)(gsnfpnfl) —
(p3n7pn)(52n7pnil) _ p6n_p5n;p4n+p3n‘ NOW,
3n _ . 2n _ 2|6(FG)“ — 0 —
lv(T'a)| pr—pr|
p3n_2p2n+pn_ 2’€(FG)| _ '_p5n +p4n +p3n_p2n _ p5n _p4n_p3n +p2n
lv(Ta)l pin —p" pin —p"
and
‘ngn B 2p2n B Q‘B(Fg)’ B p6n _ p5n _p4n +p3n _ pﬁn _p5n _ p4n +p3n
lv(Ta)l pin —p" pin —p"
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Therefore, LE*(T'g) = (p" + 1)(p?" —p" — 1) x 0+ p" x psn_p;lgzil;3:+p2n + p6n_1§321]§7+p3n

and the result follows on simplification. O
Theorem 2.4.4. If G is isomorphic to the Hanaki group A(n,p) then
(a) E(Tg) = LE(Tg) = LE*(T'q).

(b) T'g is non-hypoenergetic, non-hyperenergetic, not L-hyperenergetic and

not Q-hyperenergetic.
Proof. (a) Using Result 1.4.13 and Theorem [2.4.3|we have F(I'¢) = LE(T'¢) = LET(T¢) =

2p?"(p"™ — 1) and hence the result follows.

(b) Here, [v(Tg)| = p**—p" and E(K y(r)) = LE(K|yre)) = LET (Kjyre)) = 200" (p"—
1)+p**—p"—1). Therefore, by Result 1.4.13 and Theorem we have E(I'g)—|v(T'q)| =
p*(p" —1)* > 0 and E(Kjyrg)) — E(Te) = LE(Kjurg)) — LE(Tq) = LET (Kjyrg)) —
LET(Tg) =2(p"(p™ — 1) — 1) > 0. Hence, the results follow. O

2.4.2 The semi-dihedral groups, SDsg,

We consider SDg,, := (a,b : a’ = b? = 1,bab~! = a?"7!), the semi-dihedral groups of
order 8n (where n > 1). Results regarding different energies of non-commuting graph of

SDg,, are given below.

Theorem 2.4.5. Let G be isomorphic to SDsg,, where n is odd. Then
1
Q-spec(Tspy, ) = {(Sn — 8)3" (4n)*"75 (8n — 12)" 1, (Sn — 6+ 2v/8n2 — 16n + 9) ,
1
<8n—6—2 8n2—16n+9) }

36 + 4/33, ifn=3
and LET(Tsp,,) =

32n3—11227?i—1&-96n—12 +4v8n2 —16n+9, ifn > 5.
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Proof. If G = SDs, and n is odd then |[v(I'spy,)| = 8n — 4 and U'spy, = Ky 4.1, (4n—a)-
Using Result 1.1.4(b), we have

2
a;p;
— (8n—4)+p;) P —(8n—4)+2 :
1:1 p ]-_[1 pl ;w 8n 4 +2pz

4an dn—4
3n dn—5 n
(z—8n+8)""(x— 4n) (2= 8n+12)"(z—4) < r—8n+12 x—4 >

::]m

QFSD&’L

=(z— (8n—8))*"(z— 4n)* 5 (z— (8n— 12))" 1 (2® — (16n— 12)z+ 32n* — 32n).

1
Thus Q-spec(I'spy,) = {(Sn— 8)3m, (4n)4"5 (8n— 12)" L, (8n— 6 +2v8n? — 16n + 9) ,

1
(87— 6 — 2v8n? =160+ 9) }
Number of edges of T'sp,, is 872 — 12n + 10. Therefore,
(8n — 4)(8n — 4 — 1)

le(Tspg, )| = 5 — (8n? —12n + 10) = 24n(n — 1).
Now,
o1 g 2espy)l| _ |40 =D —2)|] _ 40— 1)(n—2)
[v(Tspsg, )] 2n —1 2n —1 ’
4 2le(T'spy,, )| 4n(2—n)| 4n(n—2)
n — pry pr
[v(Tspg, )| 2n — 1 2n—1 "~
4(—n2+5n-3) .
‘8 1 2le<rspsn>|‘ _ ’4<n2 - 5n+3>’ ) s
[v(T'sDs, )| 2n—1

2_ .
74(%”3?_3), if n>25,

2le(T
8n — 6 + 2v/8n2 — 16n + —‘SDS")”—'Q 8n? — 16+ 9+ (21— 3) + 1‘
n_

3
8n? — 16 9 2n — 3
n n+9+ (2n )+2n—1
and
2le(I'sp )\‘ ’
8n—6—2v8n2 —16n+9 — ———228 1 —|_2+/8n2 —16n+ 9+ (2n — 3) +
[0(TsDs, )] (2n=3)+ 5.3
3
8n2716n+97(2n73)72n_1.

Therefore, for n = 3 we have LET (I'sp,,) = 36 + 4v/33.
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For n > 5 we have

4(n—1)(n—2) 4dn(n —2) 4(n? — 5n + 3)
+ — _ _
LE™(T'sp,,) = 3nx o — 1 +(4n—>5) x o — 1 +(n—1)x 51
3
+2v/8n? —16n+9 —2n — 3+ +2v/8n2 —16n+9+2n+3 —
2n —1 2n —1
and the result follows on simplification. O

Theorem 2.4.6. Let G be isomorphic to SDsg,, where n is even. Then

1
Q-spec(T'spy, ) = {(Sn —4) (4n)*"73 (8n — 6)" 7L, <8n —3+1/32n2 — 32n + 9) ,

1
<8n—3— /3202 —32n+9> }

181 4 2y/73, ifn =2
and LET(Tsp,,) =

64,13_1‘212,1_214_6471—6 + 2\/32”2 —32n +9, @'f n > 4.

Proof. 1f G = SDsgy, and n is even then |[v(['spy,)| = 8n—2 and I'spy, = Kop21.(4n—2)-
Using Result 1.1.4(b), we have

2 5 ,
Qrsp,, (%) :H(QC_(871—2)-1-1%)%(”_1)1_[(%—(8n—2)—|—2pi)ai (1 _Za:—( a;p; )

i=1 i=1 i=1 8n—2)+2p;
4n 4dn — 2)

(z — 8n + 4)*"(x—4n)1"3(x—8n+6)*" (2 —2) (1— T8t 6 22

=(z—(8n — 4))*(z—4n)"3(z—(8n — 6))*" 1 (2> — (16n — 6)z+32n>—16n).

1
Thus Q-spec(I'spy,) = {(Sn —4)2 (4n)47=3 (8n — 6)2 1, (8n — 34 V32n2 — 32n + 9) )

1
(Sn 332 —32n+ 9)

(8n—2)(8n—2-1)

Number of edges of ['sp,, is 8n% — 8n + 3. Therefore, |e(Tsp,, )| = 5

— (8n? —8n +3) = 12n(2n — 1). Now,

‘Sn 4 2e(Cspy,)| ‘ _ ’(sm —4)(n — 1)‘ _ (Bn—4)(n-1)

~ Jo(Tspyg,)| an —1 An—1
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4n_2|e(F5D8n)| | -8n(n—-1)|  8n(n—1)
lv(Cspg,)| | | 4n—1 |  4n—1"
2 : _
8n — 6 2|6(FSD8n)|‘ ’(8n2—20n+6)' 7 ifn =2
n—>06-— = =
|U(FSD8n)| et (8n241;L2£);L+6)7 if n > 47
2le(T 3 3
8n—3+\/32n2—32n+9—M =[V32n2 —32n+9+2n— 2+
[v(T'sps, )| 2" 8n—2
3 3
—/32n2 —32n+9+2n—°
\/ n n—+9+2n 2+8n—2
and
92le(T 3 3
8n—3—\/32n2—32n+9—w =|—V32n2 —32n + 9+ 2n— > +
3 3
—/32n2 — 32 —oam 4 — .
\/3n 32n+9 n+2 Fy—

Therefore, for n = 2, we have LET(I'sp,,) = 122 + 2/73. For n > 4, we have

(8n —4)(n—1) 8n(n —1) (8n% — 20n + 6)

LET(T =2 4n — 2n —1
(Tspg,) =2n x ——pmg——+ (In =3) x ===+ (2n = ) x =
3 3 3 3
2 _ 2 _ _ -
+1/32n2 — 32n + 9+ 2n 2+8n_2+\/32n 32 +9 -2+ 5 — oty
and the result follows on simplification. O

Theorem 2.4.7. If G is isomorphic to SDsg,, then
(a) E(Tgpy,) < LET(Tgp,,) < LE(Tspy, )-
(b) T'spy, is non-hypoenergetic as well as non-hyperenergetic.
(¢) T'spg, is Q-hyperenergetic and L-hyperenergetic.

Proof. (a) Case 1: n is odd

For n = 3, using Result 1.4.14 and Theorem we have E(T'sp,,) = 8 + 87,
LE(Tsp,,) = 222 and LET(Isp,,) = 36 + 4v/33. Clearly, E(T'sp,,) < LET(Tsp,,) <
LE(Tsp,,)-
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For n > 5, using Result 1.4.14 and Theorem [2.4.5] we have

2n? — 4 12
LE(Tsny,.) — LE*(Tsp,, ) = 22" . 071* —4/BrZ —16n 49 (2.4.1)
n_

and

2n3 — 116n2 + 102n — 14
LE™(Tspy,) — E(Tsps,) = 2 ;Sn +1 02n +4v/8n% — 16n + 9
n_

—4\/5n2 —6n+1.  (24.2)

Since 32n% — 40n + 12 > 0, 4(2n — 1)v/8n2 —16n+9 > 0 and (32n? — 40n + 12)? —
2
(4\/8112 —16n + 9) (2n —1)% = 51203 (n — 2) + 128n(5n — 1) > 0 we have

32n% — 40n + 12 — 4(2n — 1)y/8n2 — 16n 4+ 9 > 0.

Therefore, by equation (2.4.1)), (2n—1)(LE(Lsp,,)—LE T (Tsp,,)) > 0. Hence, LE(T'gp,, )
> LE*(Tspy,).
2
Again, we have v8nZ — 161 + 9 > 0,v5n% — 61 + 1 > 0 and (\/8712 16+ 9)

- (mf = n(3n—10)48 > 0. Therefore, v3nZ — 161 + 9—v/51% — 6n + 1 > 0.
Since 32n® — 116n% + 102n — 14 > 0 we have 320°=110n*+102014 4 4 /82765 1 9 —
4v/5n2 —6n+ 1 > 0. Therefore, by equation (2:4.2), LE*(I'sp,,) > E(I'sp,,). Hence,
E(Tspy,) < LE*(Dsps,) < LE(Tsp,,)-

Case 2: n is even

For n = 2, using Result 1.4.14 and Theorem we have E(I'sp,,) = 6 + 257,
LE(Tsp,,) = 2% and LE*(Tsp,,) = % +2v/73. Clearly, E(T'sp,;) < LEt(Tsp,;) <
LE(FSDMS)'

For n > 4, using Result 1.4.14 and Theorem we have

64n2 — 40n + 6
4dn — 1

LE(Tsp,,) — LET(Tsp,,) = —2v/32n2 —32n.49 (2.4.3)

and

16n%(4n — 9) + 76mn — 8
4n —1

LE*(Tsp,,) — E(Tspy,) = +2v/32n2 — 32n + 9

—2V/20n2 —12n+1.  (2.4.4)
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Since 64n? — 40n + 6 > 0, 2(4n — 1)v/32n2 — 32n +9 > 0 and

(64n — 40n + 6)% — (21/32n2 — 32n + 9)%(4n — 1)> = 2048n3(n — 1) + 64n(10n — 1) > 0

we have 64n% — 40n + 6 — 2(4n — 1)1/32n2 — 32n + 9 > 0. Therefore, by equation (2.4.3)),
(4n — 1)(LE+(FSD8n) — LE(T'spg,)) > 0. Hence, LE(TI'sp,,) > LE+(FSDSR)-
2
Again, we have v/32n2 —32n+9 > 0,4/20n2 — 12n + 1 > 0 and (\/32712 —32n + 9)

2
- (\/20712 “1on 1 1) = 4n(3n—5)+8 > 0. Thus, v/32n2 — 32n + 9— 202 — 12n + 1 >
0. Since 16n%(4n — 9) + 76n — 8 > 0 we have 16n2(4712;9_)1+76n_8 +2v32n2 —32n + 9 —
2v/20n% — 12n + 1 > 0. Therefore, by equation (2.4.4), LET(Tsp,,) > E(T'sp,, ). Hence,

E(Tsps,) < LET(I'spy,) < LE(Tsps, )-

(b) Case 1: n is odd
Here |U(F3D8n)’ =8n —4 and E(KW(FSDgn)\) = LE(K|U(FSD8n)|) = LE+(K\U(FSD8n)|) =
16n — 10. Using Result 1.4.14, we have

E(T'sps,) — [v(Tsps, )| = 4/ (n — 1)(5n — 1) — 4n (2.4.5)

and

E(Kjyrsp, ))) — E(Tspg,) =120 — 6 — 4y/(n — 1)(5n — 1. (2.4.6)

Since 4\/(n — 1)(5n — 1) > 0, 4n > 0 and (4\/(71 “1)(6n — 1))2 — (4n)? = 16(4n? — 6n +
1) > 0 we have 4y/(n — 1)(5n — 1) — 4n > 0. Therefore, by equation (2.4.5), E(T'sp,,) >
[v(T'sDs,, )| )

Again, 4y/(n = 1)(5n — 1) > 0,120~ 6 > 0 and (120~ 6)° — (4y/(n— )(Bn— 1)) =
4(16n% — 12n +5) > 0 and so 12n — 6 — 4,/(n — 1)(5n — 1) > 0. Therefore, by equation
-4.6), E(K)yrgp, ) > E(Cspg,)-

Case 2: n is even
Here |'U(FSDgn)| =8n — 2 and E(KW(FSDsn)\) = LE(K|U(FSD8n)|) = LEJF(K\U(FSDSnN) =
16n — 6. Using Result 1.4.14, we have

E(Tspy,) = [v(Tspy, )| = 2 (v/(2n = 1)(100 — 1) - 2n) (2.4.7)
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and

E(Kjy(rsp, ) — E(Cspg,) = 2 (3(2n 1) 41— /(2n—1)(10n — 1)) . (2.4.8)

Since \/(2n — 1)(10n — 1) > 0, 2n > 0 and (\/(Qn ~1)(10n — 1))2 —(2n)? = 4n(dn—3) +
1> 0 we have \/(2n — 1)(10n — 1) — 2n > 0. Therefore, by equation (2.4.7), E(T'spy,) >
[v(Ts D, )|-

Again, we have \/(2n — 1)(10n — 1) > 0, 3(2n — 1) + 1 > 0 and (3(2n — 1) + 1)?
- <\/(2n “T1)(10n — 1))2 = 4n(4n—3)+3 > 0 and s0 3(2n—1)+1—+/(2n — 1)(10n — 1) >
0. Therefore, by equation (2.4.8)), E(Ky(rspg, ) > E(LsD,)-

(c) Case 1: n is odd
Using Theorem for n = 3 we have LE™ (T'gp,,) = 36 + 4v/33 and
LET (Kt ) = 38. Also, for n > 5 we have
| ( SD24)‘

2(8n2(2n — 9) + 66n — 11 ——
LE+(FSD8n) - LE+(K\U(FSD87L)|) - ( : ( : 2n )—+1 : ) AV — 149 > 0.

Therefore, LE*(T'spy,) > LE*(Kjy(rgp, )) Which implies I'sp,, is Q-hyperenergetic and

consequently part (a) implies I'sp,, is L-hyperenergetic.

Case 2: n is even

For n = 2 we have LE™(K,rg,, ))) = 16 and using Theorem LE*(Tsp,) =
% +24/73. Therefore, I'sp,, is Q-hyperenergetic and consequently part (a) implies I'sp,
is L-hyperenergetic.

For n > 4, using Theorem [2.4.6] we have

64n2(n — 3) + 144n — 2
LE* (Cspy,) = LE* (Kpu(rgp, ) = 1

2
+92v/32n2 — 320 + 9 > 0.

Therefore, LE*(T'sps,) > LE*(K|y(rgp, )) which implies I'sp,, is Q-hyperenergetic and

consequently part (a) implies I'gp,, is L-hyperenergetic. O

In Theorem we compare F(Tsp,, ), LE(Tsps,) and LE1(Tsp,, ). However, in

the following figures, we show how close are they.
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r I I T ™ I
1,500 | |
+ 4 2,000
3 <
0 0
q q H
@ 1,000|- %
~ =
k) K}
2 5 2 1,000 [
2 B
g 500 |- g
= =] [
0, 0
n — n —
Figure 2.13: Energies of I'spy,, , Figure 2.14: Energies of I'spy,, ,
where n is odd where n is even
2.4.3 The groups, Vg,
We consider the groups Vg, := (a,b : a®® = b* = 1,b7tab™! = bab = a~'), of order

8n (where n > 1). We compute Signless Laplacian spectrum, Signless Laplacian energy,
Laplacian spectrum, Laplacian energy and spectrum and energy of I'y;, (n is even). En-
ergy and Laplacian energy of I'y,, (n is odd) are already known (see Result 1.4.15), the

following theorem gives its Signless Laplacian spectrum and Signless Laplacian energy.

Theorem 2.4.8. Let G be isomorphic to Vg, where n is odd. Then

1
Q-spec(Ty,, ) = {(Sn —4)2 (4n)4n3 (8n — 6)27L, (8n — 343202 — 320 + 9) ,

1
<8n—3— V/32n2 —32n+9) }

and LE*(Dy,,) = Sn°=1280°464n=6 | 9, /3952 — 320 + 9.

Proof. If G = Vg, and n is odd then [v(I'y,,)| = 8n — 2 and 'y, = Kyy,.21.(4n—2)- Using
Result 1.1.4(b), we have
2 2

2
Qr, () [T~ (n =249 0 D[~ (80-2)+20)° ( P +2p>

i=1 i=1 i=1
4n 4dn — 2
r—8n+6 T —2

=(z —8n+ 4 (z — 4n)*" 3 (x — 8n + 6)*"(z — 2) (1 -

=(z — (8n—4))*(z— 4n)"3(x — (8n— 6))* 1 (2? — (16n— 6)z 4 32n> — 16n).
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1
Thus, Q-spec(I'y,, ) = {(Sn —4)2 (4n)"=3 (8n — 6)2n L <8n —3+32n2 - 32n + 9) ,

(8n 332 — 3+ 9)1

Number of edges of T'y,, is 802 —8n + 3. Therefore, |e(T, )| = (8"_2)(5% —(8n? —
8n 4+ 3) = 12n(2n — 1). Now,

2le(T'ys, )| ‘ _ l(gn —4)(n— 1)‘ _ (n—4)(n-1)

‘8n—4—

[v(Tvg, ) 4n —1 dn —1 ’
A — 2le(Tvg, )] B —8n(n —1) B 8n(n —1)
vy )| | 4n—-1 |  4n—-1"
8 e(TCvg,)l | _ | (8n® —20n+6)| _ 8n® —20n+6
\v Ty, )| 4n —1  dn-1
2le(T 3 3
8n—3+\/32n2—32n+9—|(¢ V32n2 —32n+9+2n — = +
[v(Tvg,) 2 8n—2
3 3
—\/32n2—32n+9+2n—7+
& —2
and
2le(T 3 3
8n—3—\/32n2—32n+9—‘dv8”)|‘ ‘ \/32n2—32n+9+2n—7+ ‘
[v(Tvs,)| 8n —2
—\/32n2—32n+9—2n+§— 3
N 2 8n-—2
Therefore, for n > 3, we have
8n —4)(n—1) 8n(n —1) 8n2 —20n + 6
LE*(T'y. ) =2n x ¢ 4n — = i n-1)x —— 7
(Thg,) =2n x =g+ (n=3) x = == + @n = 1) x ——
3 3 3 3
V3202 — 32n+9+2n — o+ +/32n2 —32n+9—2n+ > —
&n — 2 2 8n-—2
and the result follows on simplification. O

Theorem 2.4.9. Let G be isomorphic to Vg, where n is even. Then

1
Q-spec(Ty,, ) = {(8n — 8)3" (4n)*"75 (8n — 12)" 71, (8n —6+2v/8n2 — 16n + 9) :
1
<8n —6—2v8n2 — 160+ 9) } ,
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L-spec(T'vy,) = {0, (4n)*"=5 (8n — 8)3", (8n — 4)"} and

Spec(Ty,,) = {o7n—5, (~4)"%, (200 = 1)+ 2¢/(n = 1) (B — 1))1 ,

(2(n 1) +2y/(n—1)(n— 1))1} .

Further
2 —6An® L3 12 4 4\ /B2 — 16n 49, ifn<4
LE+(FV8n) =
32n3—11227711 £96n=12 | 4\/8p2 — 160+ 9, ifn > 6,
LE(y, ) = 8”(4";1__101" =7 and BTy, ) = 4(n— 1) + 4/ = D (Bn = 1.
Proof. If G = Vg, and n is even then |v(I'y,,)| = 8n — 4 and 'y, = K, 41.(4n—s)- Using

Result 1.1.4(b), we have

2 2

2
Qry, (@) [ (sn—4) )"0 [ (o= (sn—4) +20)° ( P +2p>

i=1 i=1 i=1

=(z —8n +8)""(x — 4n)" " (z — 8n + 12)"(x — 4) <1 o in = 4)

r—8n+12 x—4
=(z — (8n—8))3"(x — 4n)*"®(z — (8n— 12))" }(a? — (16n— 12)z + 32n% — 32n).

1
Thus Q-spec(Ty,, ) = {(Sn — 83 (4n)*n5, (8n — 12)7 1, (8n — 6+ 2v8n% — 160 1 9) :
1
<8n —6—2v8n% — 160 1 9) }

Number of edges of T'y,, is 8n? — 12n + 10 and so |e(T'y, )| = w — (8n? —

12n + 10) = 24n(n — 1). Now,

gan g 2le@u )l [4n—1)(r—=2)  4n—1)(n—-2)
[v(Tyg,) 2n — 1 2n —1 ’
i 2e@v)l| _[4n2 = n)| _ 4n(n - 2)
vy, )| | 2n—1 |  2n—1"
4(—n2+5n-3) .
8n— 12 2re<rV8n>|‘ _ ‘4<n2 - 5n+3>‘ )T s
Y e Awobnts) g > 6,

2n—1 ’
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2le(T 3
8n — 6+ 2v/8n% — 16n + —|V8"|’:‘2 8n2 — 16n + 9 + (2n — 3) + ‘

3
8n?2 — 16 9 2n—3
n n+9+ (2n )+2n—1
and
2|e(T'y, )\‘ ’
8 —6—2v/8n2 —16n +9 — ——2| =|-2v/8n2 —16n+ 9+ (2n — 3) +
o(Tvs,) SRR T
3
8n?2 — 16 9—-(2n—-3) — .
n n+ (2n —3) T
Therefore, for n < 4, we have
4(n—1)(n—2) 4dn(n —2) 4(—n? +5n — 3)
LET(Ty,,) = 4n — — = -1
(P, ) =3n x —— =7 —— + (4n 5)X o1 T X T
3
8n2 —16n+9 — 2n—3+ +2 8n2 —16n +9 +2n—|—3—2 —
For n > 6, we have
4(n—1)(n —2) dn(n —2) 4(n? — 5n + 3)
LET(T = 4n — o S -1 _ -
(T,) =8 x = 2 —— +ln =8 x 5 ==+ (n =D x ===

2\/8n2—16n+9—2n—3+2 5

Thus we get the required expressions for LET(I'y,, ) on simplification.

3
1+2\/8n2—16n+9+2n+3—2

-1
Since I'vy, = nKy U K4y,—4, using Result 1.1.3, we have

2

ba(ma-1) o himi-1) o D i
L_SpeC(PVS = (Zl mg;— m?) ) (Zlimi—TTM) ) <Zl,m,> i=1 ,
i=1

i=1

where 1 = n,lo =1, m1 =4 and my = 4n — 4. Therefore
L-spec(T'yg,) :{(0)1, (n.4 +4n — 4 — 4n + )10 (n 4 4 4p — 4 — 4)"G-D)]
(nA+4n — 4)"+1—1}

—{(0)", (4n)*" =, (80 — 8)"", (80— 4)" }.
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Now,
0_ 2le(Ty,, )| _ —12n(n —1) _ 12n(n — 1)
[v(Tyg, )| 2n —1 2n—1
4 2le(Tyvg,)| 4n(2 —n) 4dn(n — 2)
n — = =
[v(Tyg, )| 2n —1 2n—1 "~
o g 2l |40 1) =2)| _ 4n—1)(n—2)
|v(Tys,)| 2n —1 2n —1
and
oy 2ol (At )] A2 -0t 1)
n — — = = .
[v(Tyg,, )| 2n —1 2n —1
Therefore, LE(Ty;,) = 1 x 22021 4 (45— 5) x 40=2) 4 3, o An-Dn=2) | A7)

and we get the required expression for LE(T'y,) on simplification.
Since I'y,, is a complete (n+1)-partite graph with 8n—4 vertices and I'y;,, = K41, (4n—1)-

Therefore, using Result 1.1.4(a), the characteristic polynomial of I'y;  is

Pr, (z)= 2B =) (L N 4 dn — ) (2 — (4n — 4)x — 160 — 16n)

= 2™ (x4 4" (2 — (4n — D)z — 16n% — 16n).

Thus Spec(T'y, ) = {(0)7”_5, (—4)"1, (2(n —1+2y/(n—-1)(5n— 1))1 ,

(2(n — 1+ 2y - 1D)(n— 1))1} .

Therefore, E(Ty, ) = (Tn—5)x|0|+(n—1)x|—4|+|2(n—1)+2/(n — 1)(5n — 1)|+|2(n—1)—
24/(n —1)(5n — 1)| and we get the required expression for F(I'y, ) on simplification. [

Theorem 2.4.10. If G is isomorphic to Vg, then
(a) E(lv,) < LE*(Tv,,) < LE(Tvy,); equality holds if and only if G = Vig.
(b) 'y, is non-hypoenergetic as well as non-hyperenergetic.

(¢) T'vys is not L-hyperenergetic and not Q-hyperenergetic. If n # 2 then 'y, is
Q-hyperenergetic and L-hyperenergetic.
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Proof. (a) Case 1: n is odd
Using Result 1.4.15 and Theorem we have

64n2 — 40n + 6
4dn — 1

LETy,,)— LEt(Ty,) = —2/32n2 —32n.+ 9 (2.4.9)

and

16n%(4n — 9) + 76n — 8

1+2v/32n2 — 320+ 9

—2v/20n2 — 12n + 1. (2.4.10)

Since 64n2 — 40n +6 > 0, 2(4n — 1)v/32n2 —32n +9 > 0 and

(64n2 — 40n + 6)% — (21/32n2 — 32n + 9)%(4n — 1)> = 2048n3(n — 1) + 64n(10n — 1) > 0

we have 64n% — 40n + 6 — 2(4n — 1)1/32n2 — 32n + 9 > 0. Therefore, by equation (2.4.9)),
2
Again, we have v/32n% — 320 + 9 > 0,v/20n2 — 127+ 1 > 0 and (\/32712 3o+ 9)

2
- (\/20712 “1on+ 1) — 4n(3n—5)+8 > 0. Thus, V32nZ — 321 + 9— 2002 — 120 + 1 >

0. Since 16n2(4n — 9) + 76n — 8 > 0 we have U078 | o /59,539, 19 —
2v/20n2 —12n +1 > 0. Therefore, by equation (2.4.10), LET(T,,) > E(T,). Hence,

Case 2: n is even
Using Result 1.4.15 and Theorem for n < 4, we have

8n3 — 1612 + 24n — 12
LE(Ty,) — LE*(Ty,,) = 2° 2” +1 B 4/8n? —16n+ 9 (2.4.11)
—

and
4(n —2)(6n% —6n —1
LE*(Ty,) — E(Tw,) = (n );n : n )+4 8n2 — 16n + 9
n_
—44/5n2 — 6n + 1. (2.4.12)

Since 8n® — 16n2 + 24n — 12 > 0, 4(2n — 1)v/8n2 — 16n + 9 > 0 and

2
(83 — 1602 +24n—12)% — (4\/8112 —16n + 9) (2n—1)% = 64n(n—2)2(n—1)(n2+n—1) > 0
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(equality holds if and only if n = 2) we have 8n3—16n2+24n—12—4(2n—1)v/8n2? — 16n + 9
0. Therefore, by equation (2.4.11)), (2n—1)(LE(Tv4,)—LE" (T, )) > 0. Hence, LE(I'y,,)
LET(T'y,) equality holds if and only if G = Vi;.

Again, we have VB 161+ 9> 0,v5nZ —Gn 1> 0 and (VB2 — 1601 9)

2
- (\/5712 By 1) — n(3n — 10) + 8 > 0 (equality holds if and only if n = 2). There-
fore, vV/8n2 —16n +9 — vbn2 —6n+1 > 0. Since 4(n — 2)(6n® — 6n — 1) > 0 we have
An=2)(0n® 6n=1) | 4\/8n? — 16n + 9—4v/5n% — 6n + 1 > 0. Therefore, by equation (2.4.12),
LET(Ty,) > E(T'y,). Hence, E(Ty,,) < LE*t(Ty,,) < LE(Ty,) equality holds if and
only if G = Vig.

Using Result 1.4.15 and Theorem for n > 6, we have

2n2 — 4 12
LE(Ty,) — LE*(Ty,,) = 22" . 07; /B2 —16n 19 (2.4.13)
—

>
>

and

32n3 — 116n2 + 102n — 14
LE*(Tv,,) = B(Ty,,) = “———" *1 ne M R —16n+9
n_

— 4502 —6n+ 1. (2.4.14)

Since 32n? — 40n 4 12 > 0, 4(2n — 1)v/8n2 —16n+9 > 0 and (32n% — 40n + 12)% —
(4\/M)2 (2n — 1)2 = 512n3(n — 2) + 128n(5n — 1) > 0 we have 32n% — 40n +
12 — 4(2n — 1)v/8n2 — 16n + 9 > 0. Therefore, by equation ([2.4.13)), (2n — 1)(LE(T'v,,) —
LET(Ty,)) > 0. Hence, LE(Ty,,) > LET(Ty,).

Again, we have V2~ 16119 > 0.v5n7 —6n+ 1 > 0 and (V&2 160 19) —

(m)2 =n(3n—10)+8 > 0. Therefore, v/8n2 — 16n + 9—/5n2 — 6n + 1 > 0.
Since 32n® — 116n% + 102n — 14 > 0 we have 320°=116n*+102014 4 4 /82 6p 1 9 —
4v/5m2 —6n+1 > 0. Therefore, by equation (2:4.14), LE*(T'y,,) > E(T'y,). Hence,
E(I'y,) < LE*(T'y,,) < LE(T'y, ).

(b) Case 1: n is odd

Here |'U(FV8n)| = 8n — 2 and E(KW(FVgn)‘) = LE(K|U(FV8R)|) = LE+(K|U(FV8R)|) =
16n — 6.
Using Result 1.4.15, we have

E(Ty,) — [v(Tw,)| = 2 <\/(2n —1)(10n —1) — 2n> (2.4.15)
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and

E(Kjyry, ) — E(Tw,) =2 (3(2n —1)+1-+/(2n—1)(10n — 1)) . (2.4.16)

Since \/(2n — 1)(10n — 1) > 0, 2n. > 0 and (\/(2n “1)(10n — 1))2 —(2n)? = dn(4n—3) +
1 > 0 we have \/(2n — 1)(10n — 1) — 2n > 0. Therefore, by equation (2.4.15)), E(I'y,,) >
[v(vg,)l-

Again, we have \/(272— 1)(10n—1) >0,3(2n — 1) +1 >0 and (3(2n — 1) + 1)?
- (\/(271 ~1)(10n — 1)) — 4n(4n—3)+3 > 0 and so 3(2n—1)+1—+/(Zn — 1)(10n — 1) >
0. Therefore, by equation (2.4.16)), E(Ky(ry,, ) > E(Tvg,)-

Case 2: n is even
Here |U(FV87L)| = 8n — 4 and E(Kw(pvsn)‘) = LE(K|U(FV8H)|) = LE+(K|’U(FV8H)|) =
16n — 10. Using Result 1.4.15, we have

E(Tv,) — vy, )| =4/ (n —1)(5n — 1) — 4n (2.4.17)

and

E(Kjyry, ) — E(Tvy,) = 120 — 6 — 4y/(n — 1)(5n — 1). (2.4.18)

Since 41/(n —1)(5n — 1) > 0, 4n > 0 and

(4\/(n “1)(5n — 1))2 — (4n)? = 16(4n® — 6n+1) > 0

we have 4./(n — 1)(5n — 1) —4n > 0. Therefore, by equation ([2.4.17), E(Tv4,) > |[v(Tv4, )|-
Again, 41/(n — 1)(5n — 1) > 0, 12n — 6 > 0 and

(12n — 6)2 — <4\/(n —1)(5n — 1))2 = 4(16n2 — 12n+5) > 0

we have 12n—6—4,/(n — 1)(5n — 1) > 0. Therefore, by equation (2-4.15), E(K\U(FVS " >

(c) Case 1: n is odd

Using Theorem [2.4.8] we have

64n?(n — 3) + 144n — 22
4n —1

LE"(Tv,) — LET Ky, ) = +2v/32n2 — 320+ 9 > 0.
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Therefore, LET(T'y,, ) > LET(K [(Tvg y1) which implies T'y;, is Q-hyperenergetic and con-

sequently part (a) implies I'y;, is L-hyperenergetic.

Case 2: n is even
Using Theorem for n = 2, we have LE(T'y,,) = 16 and LE(K|U(FV8 ) = 22.

Clearly, LE(FVgn) < LE(K|’U(FV8 )‘) For n <4,
4(6n*(n —4) +20n — 1
LE*(Tyy,) — LE* (K, ) = 0n( > ) +1 " 4E 161950
n n —
for all n # 2. Therefore, for all n # 2, LE* (', ) > LE*(Kjy(ry, )) which implies Ty, is
Q-hyperenergetic and consequently part (a) implies I'y;, is L-hyperenergetic. For n > 6,

2(8n2(2n — 9) + 66n — 11
LE*(Tv,) — LE"(Kjyry,, ) = (B (2n 5 )_+1 ") s~ 169> 0.

Hence, the result holds. ]

In Theorem [2.4.10, we compare E(T'y,, ), LE(Ty,) and LE*(T'y,, ). However, in the

following figures, we show how close are they.

2,000 —————— — 2,000
+ 1,500 + 1,500
% I % I
2 2
~ =
S 1,000 < 1,000
2 2
] 3
£ L £ L
g 2
& 500 [ iz 500 [
0 0
2
n — n —
Figure 2.15: Energies of I'v;,,, Figure 2.16: Energies of I'yg,,,
where n is odd where n is even

2.4.4 The Frobenious groups of order pq

We consider F), ;, := (a,b: a? = b? =1, b~lab = a*), the Frobenious groups of order pq,
where p and ¢ are two primes such that ¢|(p — 1) and  is an integer such that u € Z, \ {0}
having order ¢. The following theorem gives the Signless Laplacian spectrum and Signless

Laplacian energy of non-commuting graph of the group £}, ,.
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Theorem 2.4.11. Let G be isomorphic to Fy,,. Then

1 1
Q-spec(T'g) = {(Pq = p)"7% (pa — @, (pg — 2 + 1)V, <§> ’ (§> } 7

where A =3pg—2p —2q+ 1+ /papg —2) +4(p —q)(pg —p—q+1) +1 and
B=3pq—2p—2¢+1—+/palpg—2)+4(p—a)(pg —p—q+1) +1 and

:2p3q - p2q2 - 2pq2 — 6pq — 4p3 + 6p2 +2q—1
pg—1

+palpg —2) +4(p—q)(pg —p—q+ 1) + L.

LE*(Tq)

Proof. 1If G = Fp, then [v(T'g)| = pg—1and I'¢ = Kj (1) p.(¢—1)- Using Result 1.1.4(b),
we have

2

2 2
Qrg (@) ZH(x—(pq -1) +pi)ai(Pi*1)H(x—(pq — 1)+ 2p;)* (1—23:'3 —~ a;pj )

i=1 i=1 i=1 pq —1) +2p;

=(z —pq + p)" *(x — pg+ )P (x — pq + 2p — 1)(z — pq + 2¢ — 1)°
" (1 3 p—1 _ pg-—p >
r—pg+2p—1 x—pg+2¢—1
=(z — (pg — p))* 2(z — (pg — q))P" % (z — (pg — 2q + 1))

x (22 — (3pg — 2p — 2q + 1)z + 2p*¢* — 4p*q + 2pq — 2pg® + 2p® — 2p +2q — 1).

Thus, Q-spec(T'g) = {(pq — )P (pg — 9P, (pg — 2 + V)P, (4)" (g)l}'

—_ . 2 2_
Number of edges of ¢ is Z=32 +2+gq 309120 Therefore,

(T = PA—Dpa=2) P’ —3p+2+pg® —3pg+2p _ (p*—p)¢ —1)

2 2 2

Now, , ,
2le(Ta)l| _ [(@—=D(pg—p*)|  (¢—1)(»° —pq)
’pq‘p_ (T H pa—1 | pa—1

2@l _ |e=adp=D]_(p-a-1
‘pq T e ‘ pg—1 ‘ pg—1
‘pq—2q+1—2|e(FG)|‘:‘(pQJFQQ)—(quJFPJrl)):—(p2+2Q)+_(pq2+p+1)’

lv(Tq)| pg—1 pg—1
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'A_ 2le(Ta)|| _ [p*a® +2p* +p+ 2q — 2p°q — 2pg — 1 N C‘
v(Ta)| 2(pg — 1) 2
PP+ +p+20-2p¢—2pg—1 C
a 2(pg — 1) 2
and
‘B 2le(Ta)l| _ |pP* +20° +p+2¢ 2% —2pg —1 C'
v(lg)l 2(pg — 1) 2
_ e A p 2 -9l -2pq 1) C
2(pg — 1) 2’

where C = /pq(pq — 2) + 4(p — q)(pg — p — ¢ + 1) + 1. Therefore,

LE*(Tg) =(p—2) % 1=V =pg) (pg — 2p) X p-de-1)

pqg—1 pqg—1
2 2 2 92 2 2
1) — 2 2 2q — 2 —2pg —1
—|—(p—1)><(pq +p+1) (P+Q)+pQ+p+p+q D-q — 2pq
pg—1 2(pg — 1)
Lo PP +2p* +p+2q—2p°q —2pg — 1 L C
2 2(pg — 1) 2
and the result follows on simplification. O

2.5 Some implications of the preceding findings

It has been shown in [26] that the non-commuting graphs of the groups considered in this
chapter are L-integral. Also, in [40, Chapter 4], several conditions have been obtained
such that the non-commuting graphs of these groups are integral. In view of Theorems
|2.1.11|and |2.3.1F it follows that I'g is not Q-integral if G = Us,, or % =~ Sz(2). However,
I is Q-integral if G = A(n, V), A(n,p) or % = 7, X Zy (follows from Theoremsm
2.4.1] and [2.4.3). As a consequence of our results we also have the following theorem

related to Question 1.4.1.

Theorem 2.5.1. I'g is Q-integral if
(a) G =2 Da,., Moy or SDg,, v is odd and 8r* — 167 +9 is a perfect square.

(b) G = Vg, n is even and 8n® — 16n + 9 is a perfect square.
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(¢) G = Qun or G~ Dy and 8n? —16n+9 is a perfect square.

(d) G =2 Dy, or Moy, 7 is even and 2r® — 8r + 9 is a perfect square.

Z(G) —

(e) G = Vg, n is odd and 32n? — 32n + 9 is a perfect square.

(f) G = SDgy, n is even and 32n% — 32n + 9 is a perfect square.

(g) G=QDyn and 2271 — 272 19 is a perfect square.

In the following table we give some positive integers n such that 8n? — 16n + 9, 2n? —

8n+9 and 32n? — 32n + 9 are perfect squares. It may be interesting to obtain general terms

of such sequences of positive integers.
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n 8nZ —16n + 9 n V2n?2 —8n +9 n 32n2 —32n + 9
1 1 2 1 1 3
2 3 4 3 18 99
7 17 14 17 595 3363
36 99 72 99 20196 114243
205 577 410 577 686053 3880899
1190 3363 2380 3363 23305590 131836323
6931 19601 13862 19601
40392 114243 80784 114243
235417 665857 470834 665857
1372106 3880899 2744212 3880899
7997215 22619537 15994430 22619537
46611180 131836323 93222360 131836323
271669861 768398401 543339722 | 768398401
Table 2.1
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As consequences of our results we also have the following theorems related to Ques-
tions 1.4.2 and 1.4.3.

Theorem 2.5.2. Let G be a finite non-abelian group. Then

(a)

(b)

E(T¢) = LE(Tg) = LET(Tg) if G & Ds,Qs, Mss, A(n, V), A(n,p), Vig. Also, if
% & Zy X Ly, where p is a prime, then E(I'g) = LE(L'g) = LET(T'q).

E(Tg) < LET(Tg) < LE(TG) if G = Dop(m # 4), QDan, Moys(r # 4), Qun(n # 2),
Uén, SDsy, and Vg, (n #2). Also, if % > Dom(m > 3) and Sz(2) then E(Tg) <
LE*(Tg) < LE(Tg).

['q is non-hypoenergetic as well as non-hyperenergetic if G =2 Doy, QDan, Moys, Qun,
Usn, A(n,V) , A(n,p), SDsy, and Vg,. Also, zf% & Dom, Ly X Ly and Sz(2), where

m > 3 and p is a prime, then I'g is non-hypoenergetic as well as non-hyperenergetic.
¢ is L-hyperenergetic but not Q-hyperenergetic if G = Dg, Mg and Sz(2).

¢ is neither L-hyperenergetic nor Q-hyperenergetic if G = Dg, Msq, Qs, A(n, V),
A(n,p),Vig. Also, if % & Zyp X Ly then I'g is neither L-hyperenergetic nor Q-

hyperenergetic.

L is L-hyperenergetic as well as Q-hyperenergetic if G = Dap(m # 3,4), QDan,
Mo,s(2rs # 6,8s), Qun(n # 2), Usp, SDsy, and Vsp(n # 2). Also, if % >~ 52(2)
(G 2 S2(2)) and Doy, (m =3,4 and |Z(G)|#1 orm >5 and |Z(G)| > 1) then T'g

is L-hyperenergetic as well as Q-hyperenergetic.

In the following theorem we get an example of a graph (non-commuting graph of the

symmetric group of degree 4) disproving Conjecture 1.1.7.

Theorem 2.5.3. Let the commuting graph of a finite group G be planar. Then

(a)

FG 18 Q—integml lfG = Dg, Qg, Zg X Dg,ZQ X Qg,MlG,Z4 X Z4, Dg *Z4 or SG(lG, 3),

otherwise not Q-integral.

(b) T¢ is non-hypoenergetic.
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(¢) T'q is hyperenergetic if G = Sy, otherwise non-hyperenergetic.

(d) T'g is Q-hyperenergetic if G = Do, D12, Q12, A4, A5, S4 or SL(2,3), otherwise not
Q-hyperenergetic.

(e) I'g is L-hyperenergetic if G = Dg, D1, D12, Q12, A4, As, Sa, SL(2,3) or Sz(2),

otherwise not L-hyperenergetic.

Proof. If the commuting graph of G is planar then, by Result 1.4.19, G = Dg, Dg, D19, D12,
Qs, Q12,22 x Dg, 7o X Qg, Mig, 24 X Ly, Dg x Zy, SG(16,3), Ay, A5, S4,SL(2,3),Sz(2).
By Theorems 2.1.1] 2.1.2] and R.1.9] ' is Q-integral if G = Dg, Qg and not Q-integral
if G =2 Dg, Dy, D12,Q12. If G = Dg, then from Theorem ' is non-hypoenergetic,
non-hyperenergetic, not Q-hyperenergetic but is L-hyperenergetic. If G = Dyg, D12, then

from Theorem I'¢ is non-hypoenergetic, non-hyperenergetic but is Q-hyperenergetic
and L-hyperenergetic. If G = Dg, then from Theorem [2.1.3] I'¢; is non-hypoenergetic,
non-hyperenergetic, not Q-hyperenergetic and not L-hyperenergetic.

If G = Qg, then from Theorem I'¢ is non-hypoenergetic, non-hyperenergetic,
not Q-hyperenergetic and not L-hyperenergetic. If G = @12, then from Theorem [2.1.10] I'¢
is non-hypoenergetic, non-hyperenergetic but is Q-hyperenergetic and L—hyperenergetic.

If G = Zo x Dg,Za x Qg, Mig,Zy X L4, Dg x Z4,SG(16,3), then ﬁ Y Zo X Zo.
Using Theorems and for p = 2, we get ' is Q-integral but not hypoenergetic,
hyperenergetic, Q-hyperenergetic as well as L-hyperenergetic.

If G = Ay, then by Result 1.4.17(a), we have E(I'4,) = 6 4+ 2v/33 and LE(T 4,) = 2.
Now, [v(T'a,)| = 11 so E(Kjyr,,)) = LET (Kjyr,,)) = LE(Kyr,,)) = 20. Here, FA4 =
K423 so using Result 1.1.4(b) we get

1 1
23 + \/145> <23 _ \/145>
2 ’ 2

Q—SpeC(FA4) = (9)47 (8)27 (7)37 <

It follows that I'4, is not Q-integral. We have |e(I'4,)] = 48 and so 2ella)l _ 96

\U(FA4)\ 11°
Therefore, |9 — | = , |8— =5 [7-8 =1 B -8 = G+ 5P and
23—V14 96 | __ 61 \/
‘f - ﬁ‘ = -9 + 5. Thus,
3 8 19 61 145 61 /145 85
LET(TA)=4Xx —+2x — +3x — 4 4 T = = 4 V145 > 20.
(Ca) =dx g +2x 43X gttt T >
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Hence, I'4, is non-hypoenergetic, non-hyperenergetic but is Q-hyperenergetic as well as
L-hyperenergetic.

If G = As, then by Result 1.4.17(b), we have E(I'4,) ~ 111.89 and LE(I'4,)
— S0 Now, [o(Ta,)| = 59 50 E(Kju(r ) = LE (Kjur, ) = LE(Kjyr,, ) = 116.
Here, I'4, = K5310.2,6.4 s0 using Result 1.1.4(b) we get

Q—spec(FAS) = {(56)107 (57)107 (55)277 (53)47 (51)5a (xl)la (.21?2)1, (.212‘3)1},

where z1 ~ 52.03252, x5 &~ 54.05266 and x3 =~ 111.91482 are the roots of the polynomial
321822 +14685x—314760. It follows that I 4 is not Q-integral. We have le(T"'4,)| = 1650

2le(Pag)l _ 3300 3300 _ 63 3300 _ 3300| _ 55
and so Ta)] = 59 - Therefore, }57 =25, |96 — %57 | = 59, 55 — 57| = 25,
‘5 _3300 _ 173 ‘5 _3300 — 201 \/ 5’ ’1,1_3?80 = (a1 — 3280 ), ‘ 3300‘ _
3300 3300 3300
—(z2 — %5) and |25 — 2290| = 23 — 2330, Thus
7602
LET(Ty,) = g~ %1~ @2+ a3 > 116,

Hence, I'4, is non-hypoenergetic, non-hyperenergetic but is Q-hyperenergetic as well as
L-hyperenergetic.

If G = Sy, then by Result 1.4.17(e), we have E(T's,) ~ 35.866 + 4v/5 and LE(T's,) =
192 + 4V13. Now, |v(Ts,)| = 23 s0 E(Kjyrg,)) = LET(Kjyrg,)) = LE(Kjyrg,)) = 44.
Usmg GAP [102], the characteristic polynomial of Q(I'g,) is

Qr, (z) = x(z 4+ 20)*(z + 21)"(z + 23)" (2? + 40z + 394)*
and so

Q-spec(Ts,) = {(0)1, (=20)%, (=217, (-28)7, (—20+ %)2 (20 \/6)2} .

It follows that I'g, is not Q—integral We have |e (FS4)| — 228 and so 29l _ 456 pepe.

wTs, )l — 23°
456 | __ 456 20 — 456 _ |2 _4& _ 27

456 456
fore, |0 — 53| = 33, 237 = 33> — 23 237}_20+\[ ‘—

%—J@and‘—m—\f—@ :916—1—\[ Thus,

456 4 27 73 916 916 4836
LEt(Tg,) = — +4x +7><+7><+2><<— 6>+2><< \f> .

23 23 23 23 23 23

Hence, I'g, is hyperenergetic, Q-hyperenergetic as well as L-hyperenergetic but is non-

hypoenergetic.
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If G = SL(2,3), then by Result 1.4.17(d), we have E(T'gr23) = 16 + 8v/7 and

LE(Ts123)) = 2. Now, [v(Tsr2,3)))| = 22 so E(Kjy(rgy o) = LET(Kjy(rs, o0)) =
LE(KMFSL(2 3))‘) = 42. Here, I'gy(2,3) = K3.24.4 so using Result 1.1.4(b) we get

1 1
Q-spec(Tszz) = § (20)°,(18), (14)% (W) | (M@)

2
It follows that FSL(273) is not Q-integral. We have [e(I'gr(2,3))| = 204 and so ﬁ%m =
%. Therefore, — & = %, — & = 11, |14 — 204| = 11, 754+2V 420 _ %’ =
9 4 VI ]54—;42 oy Lg? . Thus,
16 6 50 93 /420 93 /420 282
LET(T =3x —+14x —+3x e = T V4900.
(Tss) 1 IR TR TR 2" 2 1

Hence, I'gr(2,3) is non-hypoenergetic, non-hyperenergetic but is Q-hyperenergetic as well
as L-hyperenergetic.

If G = Sz(2) then, by Theorem we have I'g is not Q-integral. Also, Theorem
2.3.2| gives that ' is non-hypoenergetic, non-hyperenergetic, not Q-hyperenergetic but is
L-hyperenergetic. O

Theorem 2.5.4. Let G be a finite group and the commuting graph of G is toroidal. Then
(a) T'q is Q-integral if G = D14 or A4 X Za, otherwise not Q-integral.

(b) T'g is non-hypoenergetic, non-hyperenergetic but is Q-hyperenergetic and

L-hyperenergetic.

Proof. If commuting graph of G is toroidal then, by Result 1.4.20, G = D14, D1g, Q16, @ D16,
Zi7 X L3, Dg x Z3, Ay X Zg. By Theorems [2.1.1, 2.T.4 and 2.1.9] ' is Q-integral if G = D4
and not Q-integral if G = Dy¢, Q16 or QD16. If G = D1y, D1, then from Theorem[2.1.3] T

is non-hypoenergetic, non-hyperenergetic but is Q-hyperenergetic and L-hyperenergetic. If

G = @16, then from Theorem [2.1.10, I'¢ is non-hypoenergetic, non-hyperenergetic but is
Q-hyperenergetic and L-hyperenergetic. If G = (D¢, then from Theorem T'g is

non-hypoenergetic, non-hyperenergetic but is Q-hyperenergetic and L-hyperenergetic.
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If G & Z7 % Z3 then, by Theorem we have
1 1
Q-spec(Tc) = {(14)5, (18)7, (16)°, (22 + 2@) : (22 - 2\/37) } .

Thus T'¢ is not Q-integral. By Result 1.4.16, we also have E(I'g) = 12 + 41/30 and
LE(I'g) = 32 and from Theorem 2.4.11| we have LE™ (') = £2 +41/37. Now, [v(I'¢)| =
20 so E(Ky(ry)) = LET (Kjyrg)) = LE(Kjyry)) = 38. Hence, ' is non-hypoenergetic,
non-hyperenergetic but is Q-hyperenergetic and L-hyperenergetic.

If G = Dg x Z3, then by Result 1.4.17(f), we have E(I'g) = 6 + 61/7 and LE(Tg) =
5. Now, |v(Tg)| = 15 so E(Kjyrg)) = LET(Kjyry)) = LE(Kjyry)) = 28. Here,
I'c = K336 so using Result 1.1.4(b) we get

27+\/2977>1 (27—@)1

Q-spec(I'e) = ¢ (12)%,(9)7, ( 9 2

It follows that FG is not Q—integral. We have |e(I'¢)| = 81 and so 2elle)] 182 Therefore,

[v(Te)]
12 — 162 27+2\/297 162‘ =8y \/29 and ‘27 V145 _ 162] _ _8l 4
V29 . Thus,

-12-3

)

15

18 189 81 V297 81 297 99
LET(Tg) =6 x — I S G S I VTN
(Fa)=6x o +Tx g+ o+ 5= — 55+ — = T3v33

Hence, I'¢ is non-hypoenergetic, non-hyperenergetic but is Q-hyperenergetic as well as
L-hyperenergetic.

If G = A4 X Zs, then by Result 1.4.17(g), we have E(I'¢) =12+ 4v33 and LE(I'g) =
%. NOW, "U(FG)‘ = 22 so E<K\U(Fg)|) = LE+(K|U(FG)|) = LE(K\U(FGN) = 42. Here,
I'¢ = K4.4,1.6 so using Result 1.1.4(b) we get

Q-spec(Tg) = {(18)"%,(16)°, (14)°, (36)", (10)" }.

Clearly, I'¢ is Q-integral. We have |e(I'¢)| = 192 and so 2le ((FG))H = 22 Therefore,

E
192 = 208 and |10 - 12| = &2

192 192 192
‘18_7 :117 16 — 77 :11> ‘14_7 = 11
Thus,
6 16 38 204 82 552
LET(Tg) =12 x — — b il
(Te) gttt gttt T 1

Hence, I'¢ is non-hypoenergetic, non-hyperenergetic but is Q-hyperenergetic as well as

L-hyperenergetic. O
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If non-commuting graph of G is planar then, by Result 1.4.18, G = Dg, Ds, Qs. There-

fore, we have the following theorem to conclude this chapter.
Theorem 2.5.5. Let G be a finite group whose non-commuting graph is planar. Then
(a) T'q is non-hypoenergetic, non-hyperenergetic and not Q-hyperenergetic.

(b) T is not L-hyperenergetic but Q-integral if G 2 Dg.

2.6 Conclusion

In this chapter, we have computed Signless Laplacian spectrum and Signless Laplacian
energy of non-commuting graphs of dihedral group, quasidihedral group, dicyclic group,
semidihedral group along with several other classes of groups and obtained conditions
such that the non-commuting graphs of these groups are Q-integral. In addition, we have
characterized certain finite non-abelian groups such that their non-commuting graphs are
hypoenergetic, hyperenergetic, L-hyperenergetic and Q-hyperenergetic. In this process,
we have produced a new counter example for Conjecture 1.1.7 posed by Gutman [48].
Further, we have compared Signless Laplacian energy with energy and Laplacian energy
of non-commuting graphs of these groups and found that E(I') = LE(T'¢) = LET(T')
or B(T¢) < LET(T¢) < LE(Tg).
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