## Chapter 3

## Relative $g$-noncommuting graph of

## a finite group

Let $H$ be a subgroup of a finite group $G$ and $g \in G$. Fusing the concepts of relative noncommuting graph $\Gamma_{H, G}$ and $g$-noncommuting graph $\Gamma_{G}^{g}$, in this chapter, we introduce relative $g$-noncommuting graph of $G$. The relative $g$-noncommuting graph of $G$, denoted by $\Gamma_{H, G}^{g}$, is defined as the simple undirected graph whose vertex set is $G$ and two vertices $x$ and $y(x \neq y)$ are adjacent if $x \in H$ or $y \in H$ and $[x, y] \neq g$ and $g^{-1}$. Note that if $g=1$ then the induced subgraph of $\Gamma_{H, G}^{g}$ on $G \backslash Z(H, G)$ is the relative non-commuting graph $\Gamma_{H, G}$. Also, if $H=G$ then $\Gamma_{G, G}^{g}=\Gamma_{G}^{g}$. In Section 3.2, we obtain computing formula for degree of any vertex in $\Gamma_{H, G}^{g}$ and characterize whether $\Gamma_{H, G}^{g}$ is a tree, star graph, lollipop or a complete graph together with some properties of $\Gamma_{H, G}^{g}$ involving isomorphism of graphs. In Section 3.3. we obtain the number of edges in $\Gamma_{H, G}^{g}$ using $\operatorname{Pr}_{g}(H, G)$. We conclude this chapter with some bounds for the number of edges in $\Gamma_{H, G}^{g}$. This chapter is based on our paper [85] published in Electronic Journal of Graph Theory and Applications.

### 3.1 Preliminary observations

Let $\mathcal{G}_{1}+\mathcal{G}_{2}$ be the join of the graphs $\mathcal{G}_{1}$ and $\mathcal{G}_{2}$ and let $\overline{\mathcal{G}}$ be the complement of $\mathcal{G}$. Then we have the following observations, where $K_{n}$ is the complete graph on $n$ vertices.

Observation 3.1.1. Let $H \leq G$ and $g \in G$.
(a) If $g \notin K(H, G)$ then $\Gamma_{H, G}^{g}=\overline{K_{|G|-|H|}}+K_{|H|}$ and so

$$
\operatorname{deg}(x)= \begin{cases}|H|, & \text { if } x \in G \backslash H \\ |G|-1, & \text { if } x \in H\end{cases}
$$

(b) If $g=1$ and $K(H, G)=\{1\}$ then $\Gamma_{H, G}^{g}=\overline{K_{|G|}}$.

Observation 3.1.2. Let $H \leq G$ and $g \in G \backslash K(H, G)$. Then
(a) $\Gamma_{H, G}^{g}$ is a tree $\Longleftrightarrow H=\{1\}$ and $|H|=|G|=2$.
(b) $\Gamma_{H, G}^{g}$ is a star $\Longleftrightarrow H=\{1\}$.
(c) $\Gamma_{H, G}^{g}$ is a complete graph $\Longleftrightarrow H=G$.

Note that if $H=Z(H, G)$ or $G$ is abelian then $K(H, G)=\{1\}$. Therefore, in view of Observation 3.1.1, we consider $G$ to be non-abelian, $H \leq G$ such that $H \neq Z(H, G)$ and $g \in K(H, G)$ throughout this chapter.

### 3.2 Vertex degree and other properties

In this section we first obtain computing formula for $\operatorname{deg}(x)$ in terms of $|G|,|H|$ and the orders of the centralizers of $x$. We write $x \sim y$ if $x$ is conjugate to $y$.

Theorem 3.2.1. Let $x \in H$.
(a) For $g=1$ we have $\operatorname{deg}(x)=|G|-\left|C_{G}(x)\right|$.
(b) For $g \neq 1$ and $g^{2} \neq 1$ we have $\operatorname{deg}(x)=\left\{\begin{array}{l}|G|-\left|C_{G}(x)\right|-1, \text { if } x \sim x g \text { or } x g^{-1} \\ |G|-2\left|C_{G}(x)\right|-1, \text { if } x \sim x g \text { and } x g^{-1} \text {. }\end{array}\right.$
(c) For $g \neq 1$ and $g^{2}=1$ we have $\operatorname{deg}(x)=|G|-\left|C_{G}(x)\right|-1$, whenever $x \sim x g$.

Proof. (a) Let $g=1$. Then $\operatorname{deg}(x)$ is the number of $y \in G$ such that $y$ does not commute with $x$. Hence, $\operatorname{deg}(x)=|G|-\left|C_{G}(x)\right|$.
(b) Let $g \neq 1$ and $g^{2} \neq 1$. Then $g \neq g^{-1}$. Suppose that $x \sim x g$ or $x g^{-1}$ but not to both. Without any loss we assume that $x$ is conjugate to $x g$. Then there exits $y \in G$ such that $y^{-1} x y=x g$, that is $[x, y]=x^{-1} y^{-1} x y=g$. Therefore, the set $S_{g}:=\left\{y \in G: y^{-1} x y=x g\right\}$ is non-empty. Also, for any $\alpha \in S_{g}$ we have $[x, \alpha]=g$ which gives that $\alpha$ is not adjacent to $x$. Thus, $\alpha \in G$ is not adjacent to $x$ if and only if $\alpha=x$ or $\alpha \in S_{g}$. Therefore, the number of vertices not adjacent to $x$ is equal to $\left|S_{g}\right|+1$.

Let $y_{1} \in S_{g}$ and $y_{2} \in C_{G}(x) y_{1}$. Then $y_{2}=u y_{1}$ for some $u \in C_{G}(x)$. We have

$$
y_{2}^{-1} x y_{2}=y_{1}^{-1} u^{-1} x u y_{1}=y_{1}^{-1} x y_{1}=x g .
$$

Therefore, $y_{2} \in S_{g}$ and so $C_{G}(x) y_{1} \subseteq S_{g}$. Suppose that $y_{3} \in S_{g}$. Then $y_{1}^{-1} x y_{1}=y_{3}^{-1} x y_{3}$ which implies $y_{3} y_{1}^{-1} \in C_{G}(x)$. Therefore, $y_{3} \in C_{G}(x) y_{1}$ and so $S_{g} \subseteq C_{G}(x) y_{1}$. Thus $S_{g}=C_{G}(x) y_{1}$ and so $\left|S_{g}\right|=\left|C_{G}(x)\right|$. Hence, the number of vertices not adjacent to $x$ is equal to $\left|C_{G}(x)\right|+1$ and so $\operatorname{deg}(x)=|G|-\left|C_{G}(x)\right|-1$.

If $x$ is conjugate to $x g$ and $x g^{-1}$ then $S_{g} \cap S_{g^{-1}}=\emptyset$, where $S_{g^{-1}}:=\left\{y \in G: y^{-1} x y=\right.$ $\left.x g^{-1}\right\}$ and $\left|S_{g^{-1}}\right|=\left|C_{G}(x)\right|$. In this case, $\alpha \in G$ is not adjacent to $x$ if and only if $\alpha=x$ or $\alpha \in S_{g} \cup S_{g^{-1}}$. Therefore, the number of vertices not adjacent to $x$ is equal to $\left|S_{g}\right|+\left|S_{g^{-1}}\right|+1=2\left|C_{G}(x)\right|+1$. Hence, $\operatorname{deg}(x)=|G|-2\left|C_{G}(x)\right|-1$.
(c) Let $g \neq 1$ and $g^{2}=1$. Then $g=g^{-1}$ and so $x g=x g^{-1}$. Now, if $x$ is conjugate to $x g$ then, as shown in the proof of part (b), we have $\operatorname{deg}(x)=|G|-\left|C_{G}(x)\right|-1$.

Theorem 3.2.2. Let $x \in G \backslash H$.
(a) For $g=1$ we have $\operatorname{deg}(x)=|H|-\left|C_{H}(x)\right|$.
(b) For $g \neq 1$ and $g^{2} \neq 1$ we have $\operatorname{deg}(x)= \begin{cases}|H|-\left|C_{H}(x)\right|, & \text { if } x \sim x g \text { or } x g^{-1} \text { for some element in } X . \\ |H|-2\left|C_{H}(x)\right|, & \text { if } x \sim x g \text { and } x g^{-1} \text { for some element in } H .\end{cases}$
(c) For $g \neq 1$ and $g^{2}=1$ we have $\operatorname{deg}(x)=|H|-\left|C_{H}(x)\right|$, whenever $x \sim x g$, for some element in $H$.

Proof. The proof is analogous to the proof of Theorem 3.2.1.
It is noteworthy that $g \notin K(H, G)$ if $x$ is not conjugate to $x g$ and $x g^{-1}$. Therefore, this case does not arise in Theorems 3.2.1 and 3.2.2. The degree of a vertex, in such case, is given by Observation 3.1.1.

Now, we present some properties of $\Gamma_{H, G}^{g}$. The following lemmas are useful in this regard.

Lemma 3.2.3. If $g \neq 1$ and $H$ has an element of order 3 then $\Gamma_{H, G}^{g}$ is not triangle free.
Proof. Let $x \in H$ having order 3. Then the vertices $1, x$ and $x^{-1}$ forms a triangle in $\Gamma_{H, G}^{g}$. Hence, the lemma follows.

Lemma 3.2.4. If $x \in Z(H, G)$ then $\operatorname{deg}(x)= \begin{cases}0, & \text { if } g=1 \\ |G|-1, & \text { if } g \neq 1 .\end{cases}$
Proof. By definition of $Z(H, G)$, it follows that $x \in H$ and $[x, y]=1$ for all $y \in G$ and so $C_{G}(x)=G$. Therefore, if $g=1$ then by Theorem 3.2.1 (a) we have $\operatorname{deg}(x)=0$. If $g \neq 1$ then all the elements of $G$ except $x$ are adjacent to $x$. Therefore, $\operatorname{deg}(x)=|G|-1$.

As a consequence of Lemma 3.2.4. we have that $\gamma\left(\Gamma_{H, G}^{g}\right)=1$ if $g \neq 1$ since $\{x\}$ is a dominating set for all $x \in Z(H, G)$, where $\gamma\left(\Gamma_{H, G}^{g}\right)$ is the domination number of $\Gamma_{H, G}^{g}$. If $g \in H$ having even order then it can be seen that $\{g\}$ is also a dominating set in $\Gamma_{H, G}^{g}$. If $g=1$ then $\gamma\left(\Gamma_{H, G}^{g}\right) \geq|Z(H, G)|+1$. This lower bound is sharp because $\gamma\left(\Gamma_{H, S_{3}}^{(1)}\right)$ is $2=\left|Z\left(H, S_{3}\right)\right|+1$, where $H$ is any subgroup of $S_{3}$ of order 2. If $g=1$ then, by Lemma 3.2.4 we also have that $\Gamma_{H, G}^{g}$ is disconnected. Hence, $\Gamma_{H, G}^{1}$ is not a tree and complete graph. Now we determine whether $\Gamma_{H, G}^{g}$ is a tree, star graph or complete graph if $g \neq 1$.

Theorem 3.2.5. Let $H \leq G$ and $|H| \neq 2$. Then $\Gamma_{H, G}^{g \neq 1}$ is not a tree.
Proof. Suppose for any $H \leq G, \Gamma_{H, G}^{g}$ is a tree, where $g \neq 1$. There exits a vertex $x$ in $\Gamma_{H, G}^{g}$ of degree one.
Case 1: $x \in H$
By Theorem 3.2.1, $\operatorname{deg}(x)=|G|-\left|C_{G}(x)\right|-1=1$ or $\operatorname{deg}(x)=|G|-2\left|C_{G}(x)\right|-1=1$.
That is, $|G|-\left|C_{G}(x)\right|=2$ or $|G|-2\left|C_{G}(x)\right|=2$. Therefore, $\left|C_{G}(x)\right|=2$ and $|G|=4,6$.

Since $G$ is non-abelian and $|H| \neq 1,2$, we must have $G \cong S_{3}$ and $H=A_{3}$ or $S_{3}$. Therefore, by Lemma 3.2.3, $\Gamma_{H, G}^{g}$ has a triangle which is a contradiction.
Case 2: $x \in G \backslash H$
By Theorem 3.2.2, $\operatorname{deg}(x)=|H|-\left|C_{H}(x)\right|=1$ or $\operatorname{deg}(x)=|H|-2\left|C_{H}(x)\right|=1$. Therefore, $\left|C_{H}(x)\right|=1$ and $|H|=2,3$. However, $|H| \neq 2$ (by assumption). If $|H|=3$ then, by Lemma 3.2.3, $\Gamma_{H, G}^{g}$ has a triangle which is a contradiction. Hence, the result follows.

The proof of Theorem 3.2.5 also gives the following result.
Theorem 3.2.6. Let $H \leq G$ and $|H| \neq 2,3$. Then $\Gamma_{H, G}^{g \neq 1}$ is not a lollipop. Further, if $|H| \neq 2,3,6$ then $\Gamma_{H, G}^{g \neq 1}$ has no vertex of degree 1.

As a consequence of Theorem 3.2.5 we have the following results.
Corollary 3.2.7. Let $H \leq G$ and $|H| \neq 2$. Then $\Gamma_{H, G}^{g \neq 1}$ is not a star graph.
Corollary 3.2.8. If $g \neq 1$ and $G$ is a group of odd order then $\Gamma_{H, G}^{g}$ is not a tree and hence not a star.

Theorem 3.2.9. If $g \neq 1$ then $\Gamma_{H, G}^{g}$ is a star $\Longleftrightarrow G \cong S_{3}$ and $|H|=2$.
Proof. By Lemma 3.2.4, $\operatorname{deg}(1)=|G|-1$. Suppose that $\Gamma_{H, G}^{g}$ is a star graph. Then $\operatorname{deg}(x)=1 \quad \forall \quad 1 \neq x \in G$. Since $g \in K(H, G)$ and $g \neq 1$ we have $H \neq\{1\}$. Suppose that $1 \neq y \in H$. If $g^{2}=1$, then by Theorem 3.2.1, we get $1=\operatorname{deg}(y)=|G|-\left|C_{G}(y)\right|-1$ which gives $|G|=4$, a contradiction since $G$ is non-abelian. If $g^{2} \neq 1$, then by Theorem 3.2.1. we get $1=\operatorname{deg}(y)=|G|-\left|C_{G}(y)\right|-1$ or $|G|-2\left|C_{G}(y)\right|-1$ which gives $|G|=6$. Therefore, $G \cong S_{3}, g=(123),(132)$ and $H=\{(1),(12)\},\{(1),(13)\},\{(1),(23)\}$ or $H=$ $\{(1),(123),(132)\}$. If $|H|=3$ then, by Lemma $3.2 .3, \Gamma_{H, S_{3}}^{g}$ is not a star. If $|H|=2$ then it is easy to see that $\Gamma_{H, S_{3}}^{g}$ is a star. This completes the proof.

Theorem 3.2.10. If $g \neq 1$ then $\Gamma_{H, G}^{g}$ is not complete.
Proof. Let $\Gamma_{H, G}^{g}$ be complete graph where $g \neq 1$. Then $\operatorname{deg}(x)=|G|-1 \quad \forall x \in G$. Since $g \in K(H, G)$ and $g \neq 1$ we have $H \neq\{1\}$. Suppose that $1 \neq y \in H$. Then by Theorem 3.2.1, we get $|G|-1=\operatorname{deg}(y)=|G|-\left|C_{G}(y)\right|-1$ or $|G|-1=\operatorname{deg}(y)=|G|-2\left|C_{G}(y)\right|-1$. Therefore, $\left|C_{G}(y)\right|=0$, a contradiction. Hence, $\Gamma_{H, G}^{g}$ is not complete.

Theorem 3.2.11. Let $H \unlhd G$ and $g \sim h$. Then $\Gamma_{H, G}^{g} \cong \Gamma_{H, G}^{h}$.
Proof. Let $h=g^{x}:=x^{-1} g x$ for some $x \in G$. Then for any two elements $a_{1}, a_{2} \in G$, we have

$$
\begin{equation*}
\left[a_{1}^{x}, a_{2}^{x}\right]=h \text { or } h^{-1} \text { if and only if }\left[a_{1}, a_{2}\right]=g \text { or } g^{-1} . \tag{3.2.1}
\end{equation*}
$$

Consider the bijection $\phi: v\left(\Gamma_{H, G}^{g}\right) \rightarrow v\left(\Gamma_{H, G}^{h}\right)$ given by $\phi(a)=a^{x}$ for all $a \in G$. We show that $\phi$ preserves adjacency.

Suppose that $a_{1}, a_{2} \in v\left(\Gamma_{H, G}^{h}\right)$. If $a_{1}$ and $a_{2}$ are not adjacent in $\Gamma_{H, G}^{g}$ then $\left[a_{1}, a_{2}\right]=g$ or $g^{-1}$. Therefore, by equation (3.2.1), it follows that $\phi\left(a_{1}\right)$ and $\phi\left(a_{2}\right)$ are not adjacent in $\Gamma_{H, G}^{h}$. If $a_{1}$ and $a_{2}$ are adjacent then atleast one of $a_{1}$ and $a_{2}$ must belong to $H$ and $\left[a_{1}, a_{2}\right] \neq g, g^{-1}$. Without any loss assume that $a_{1} \in H$. Since $H \unlhd G$ we have $\phi\left(a_{1}\right) \in H$. by equation (3.2.1), we have $\left[\phi\left(a_{1}\right), \phi\left(a_{2}\right)\right] \neq h, h^{-1}$. Thus $\phi\left(a_{1}\right)$ and $\phi\left(a_{2}\right)$ are adjacent in $\Gamma_{H, G}^{h}$. Hence, the result follows.

In Result 1.4.21, it has been shown that $\Gamma_{H_{1}, G_{1}}$ is isomorphic to $\Gamma_{H_{2}, G_{2}}$ if $\left(H_{1}, G_{1}\right)$ and $\left(H_{2}, G_{2}\right)$ are relative isoclinic satisfying certain conditions. Tolue et al. in Result 1.4.22, also proved that $\Gamma_{G_{1}}^{g}$ is isomorphic to $\Gamma_{G_{2}}^{\psi(g)}$ if $G_{1}$ and $G_{2}$ are isoclinic such that $\left|Z\left(G_{1}\right)\right|=\left|Z\left(G_{2}\right)\right|$. We conclude Section 3.2 with Theorem3.2.12 which generalizes Result 1.4.22.

Theorem 3.2.12. Let $(\phi, \psi)$ be a relative isoclinism between the pairs of groups $\left(H_{1}, G_{1}\right)$ and $\left(H_{2}, G_{2}\right)$. If $\left|Z\left(H_{1}, G_{1}\right)\right|=\left|Z\left(H_{2}, G_{2}\right)\right|$ then $\Gamma_{H_{1}, G_{1}}^{g}$ is isomorphic to $\Gamma_{H_{2}, G_{2}}^{\psi(g)}$.

Proof. Since $\phi: \frac{G_{1}}{Z\left(H_{1}, G_{1}\right)} \rightarrow \frac{G_{2}}{Z\left(H_{2}, G_{2}\right)}$ is an isomorphism such that $\phi\left(\frac{H_{1}}{Z\left(H_{1}, G_{1}\right)}\right)=\frac{H_{2}}{Z\left(H_{2}, G_{2}\right)}$. So we have $\left|\frac{H_{1}}{Z\left(H_{1}, G_{1}\right)}\right|=\left|\frac{H_{2}}{Z\left(H_{2}, G_{2}\right)}\right|$ and $\left|\frac{G_{1}}{Z\left(H_{1}, G_{1}\right)}\right|=\left|\frac{G_{2}}{Z\left(H_{2}, G_{2}\right)}\right|$. Let $\left|\frac{H_{1}}{Z\left(H_{1}, G_{1}\right)}\right|=\left|\frac{H_{2}}{Z\left(H_{2}, G_{2}\right)}\right|=$ $m$ and $\left|\frac{G_{1}}{Z\left(H_{1}, G_{1}\right)}\right|=\left|\frac{G_{2}}{Z\left(H_{2}, G_{2}\right)}\right|=n$. Given $\left|Z\left(H_{1}, G_{1}\right)\right|=\left|Z\left(H_{2}, G_{2}\right)\right|$, so $\exists$ a bijection $\theta: Z\left(H_{1}, G_{1}\right) \rightarrow Z\left(H_{2}, G_{2}\right)$. Let $\left\{h_{1}, h_{2}, \ldots, h_{m}, g_{m+1}, \ldots, g_{n}\right\}$ and $\left\{h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{m}^{\prime}, g_{m+1}^{\prime}\right.$, $\left.\ldots, g_{n}^{\prime}\right\}$ be two trans-versals of $\frac{G_{1}}{Z\left(H_{1}, G_{1}\right)}$ and $\frac{G_{2}}{Z\left(H_{2}, G_{2}\right)}$ respectively where $\left\{h_{1}, h_{2}, \ldots, h_{m}\right\}$ and $\left\{h_{1}^{\prime}, h_{2}^{\prime}, \ldots, h_{m}^{\prime}\right\}$ are transversals of $\frac{H_{1}}{Z\left(H_{1}, G_{1}\right)}$ and $\frac{H_{2}}{Z\left(H_{2}, G_{2}\right)}$ respectively. Let us define $\phi$ as $\phi\left(h_{i} Z\left(H_{1}, G_{1}\right)\right)=h_{i}^{\prime} Z\left(H_{2}, G_{2}\right)$ and $\phi\left(g_{j} Z\left(H_{1}, G_{1}\right)\right)=g_{j}^{\prime} Z\left(H_{2}, G_{2}\right)$ for $1 \leq i \leq m$ and $m+1 \leq j \leq n$.

Let $\mu: G_{1} \rightarrow G_{2}$ be a map such that $\mu\left(h_{i} z\right)=h_{i}^{\prime} \theta(z), \mu\left(g_{j} z\right)=g_{j}^{\prime} \theta(z)$ for $z \in$ $Z\left(H_{1}, G_{1}\right), 1 \leq i \leq m$ and $m+1 \leq j \leq n$. Clearly $\mu$ is a bijection. Suppose two vertices
$x$ and $y$ in $\Gamma_{H_{1}, G_{1}}^{g}$ are adjacent. Then $x \in H_{1}$ or $y \in H_{1}$ and $[x, y] \neq g, g^{-1}$. Without any loss of generality, let us assume that $x \in H_{1}$. Then $x=h_{i} z_{1}$ for $1 \leq i \leq m$ and $y=k z_{2}$ where $z_{1}, z_{2} \in Z\left(H_{1}, G_{1}\right), k \in\left\{h_{1}, h_{2}, \ldots, h_{m}, g_{m+1}, \ldots, g_{n}\right\}$. Therefore, for some $k^{\prime} \in\left\{h_{1}^{\prime}, \ldots, h_{m}^{\prime}, g_{m+1}^{\prime}, \ldots, g_{n}^{\prime}\right\}$, we have

$$
\begin{align*}
\psi\left(\left[h_{i} z_{1}, k z_{2}\right]\right) & =\psi\left(\left[h_{i}, k\right]\right)=\psi \circ a_{\left(H_{1}, G_{1}\right)}\left(\left(h_{i} Z\left(H_{1}, G_{1}\right), k Z\left(H_{1}, G_{1}\right)\right)\right) \\
& =a_{\left(H_{2}, G_{2}\right)} \circ(\phi \times \phi)\left(\left(h_{i} Z\left(H_{1}, G_{1}\right), k Z\left(H_{1}, G_{1}\right)\right)\right) \\
& =a_{\left(H_{2}, G_{2}\right)}\left(\left(h_{i}^{\prime} Z\left(H_{2}, G_{2}\right), k^{\prime} Z\left(H_{2}, G_{2}\right)\right)\right) \\
& =\left[h_{i}^{\prime}, k^{\prime}\right]=\left[h_{i}^{\prime} z_{1}^{\prime}, k^{\prime} z_{2}^{\prime}\right], \tag{3.2.2}
\end{align*}
$$

where $z_{1}^{\prime}, z_{2}^{\prime} \in Z\left(H_{2}, G_{2}\right)$. Also,

$$
\begin{aligned}
& {\left[h_{i} z_{1}, k z_{2}\right] \neq g, g^{-1} } \\
\Rightarrow & \psi\left(\left[h_{i} z_{1}, k z_{2}\right]\right) \neq \psi(g), \psi\left(g^{-1}\right) \\
\Rightarrow & {\left[h_{i}^{\prime} z_{1}^{\prime}, k^{\prime} z_{2}^{\prime}\right] \neq \psi(g), \psi^{-1}(g) \text { (using equation (3.2.2) ) } } \\
\Rightarrow & {\left[h_{i}^{\prime} \theta\left(z_{1}\right), k^{\prime} \theta\left(z_{2}\right)\right] \neq \psi(g), \psi^{-1}(g) } \\
\Rightarrow & {\left[\mu\left(h_{i} z_{1}\right), \mu\left(k z_{2}\right)\right] \neq \psi(g), \psi^{-1}(g) } \\
\Rightarrow & {[\mu(x), \mu(y)] \neq \psi(g), \psi^{-1}(g) . }
\end{aligned}
$$

Thus $\mu(x)$ is adjacent to $\mu(y)$ in $\Gamma_{H_{2}, G_{2}}^{\psi(g)}$ since $\mu(x) \in H_{2}$. Hence, the graphs $\Gamma_{H_{1}, G_{1}}^{g}$ and $\Gamma_{H_{2}, G_{2}}^{\psi(g)}$ are isomorphic under the map $\mu$.

### 3.3 Relation between $\Gamma_{H, G}^{g}$ and $\operatorname{Pr}_{g}(H, G)$

In [93], Tolue and Erfanian have established some relations between $\operatorname{Pr}_{1}(H, G)$ and relative non-commuting graphs of finite groups. In [94], Tolue et al. have also established relations between $\Gamma_{G}^{g}$ and $\operatorname{Pr}_{g}(G)$. Their results stimulate us to obtain relations between $\Gamma_{H, G}^{g}$ and $\operatorname{Pr}_{g}(H, G)$. We obtain the number of edges in $\Gamma_{H, G}^{g}$, denoted by $\left|e\left(\Gamma_{H, G}^{g}\right)\right|$, in terms of $\operatorname{Pr}_{g}(H, G)$. Clearly, if $g \notin K(H, G)$ then from Observation 3.1.1, we get

$$
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2|H||G|-|H|^{2}-|H| .
$$

The following theorem expresses $\left|e\left(\Gamma_{H, G}^{g}\right)\right|$ in terms of $\operatorname{Pr}_{g}(H, G)$, where $g \in K(H, G)$.
Theorem 3.3.1. Let $\{1\} \neq H \leq G$ and $g \in K(H, G)$. Let $\operatorname{Pr}_{x \neq g}(H, G):=1-\operatorname{Pr}_{g}(H, G)$.
(a) If $g=1$ then $2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2|H||G| \operatorname{Pr}_{x \neq g}(H, G)-|H|^{2}\left(1-\operatorname{Pr}_{g}(H)\right)$.
(b) If $g \neq 1$ and $g^{2}=1$ then

$$
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|= \begin{cases}2|H||G| \operatorname{Pr}_{x \neq g}(H, G)-|H|^{2}\left(1-\operatorname{Pr}_{g}(H)\right)-|H|, & \text { if } g \in H \\ 2|H||G| \operatorname{Pr}_{x \neq g}(H, G)-|H|^{2}-|H|, & \text { if } g \in G \backslash H .\end{cases}
$$

(c) If $g \neq 1$ and $g^{2} \neq 1$ then

$$
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|= \begin{cases}2|H||G|\left(1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H, G)\right) & \\ \quad-|H|^{2}\left(1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H)\right)-|H|, & \text { if } g \in H \\ 2|H||G|\left(1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H, G)\right)-|H|^{2}-|H|, & \text { if } g \in G \backslash H .\end{cases}
$$

Proof. Let $E_{1}=\left\{(z, w) \in H \times G: z \neq w,[z, w] \neq g\right.$ and $\left.[z, w] \neq g^{-1}\right\}$ and $E_{2}=\{(z, w) \in$ $G \times H: z \neq w,[z, w] \neq g$ and $\left.[z, w] \neq g^{-1}\right\}$. Clearly we have a bijection from $E_{1}$ to $E_{2}$ defined by $(z, w) \mapsto(w, z)$. So $\left|E_{1}\right|=\left|E_{2}\right|$. It is easy to see that $\left|e\left(\Gamma_{H, G}^{g}\right)\right|$ is equal to half of $\left|E_{1} \cup E_{2}\right|$. Therefore,

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2\left|E_{1}\right|-\left|E_{1} \cap E_{2}\right|, \tag{3.3.1}
\end{equation*}
$$

where $E_{1} \cap E_{2}=\left\{(z, w) \in H \times H: z \neq w,[z, w] \neq g\right.$ and $\left.[z, w] \neq g^{-1}\right\}$.
(a) If $g=1$ then we have

$$
\begin{aligned}
\left|E_{1}\right| & =|\{(z, w) \in H \times G:[z, w] \neq 1\}| \\
& =|H||G|-|\{(z, w) \in H \times G:[z, w]=1\}|=|H||G|\left(1-\operatorname{Pr}_{g}(H, G)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left|E_{1} \cap E_{2}\right| & =|\{(z, w) \in H \times H:[z, w] \neq 1\}| \\
& =|H|^{2}-|\{(z, w) \in H \times H:[z, w]=1\}|=|H|^{2}\left(1-\operatorname{Pr}_{g}(H)\right)
\end{aligned}
$$

Hence, the result follows from equation (3.3.1).
(b) If $g \neq 1$ and $g^{2}=1$ then we have

$$
\begin{aligned}
\left|E_{1}\right| & =|\{(z, w) \in H \times G: z \neq w,[z, w] \neq g\}| \\
& =|H||G|-|\{(z, w) \in H \times G:[z, w]=g\}|-|\{(z, w) \in H \times G: z=w\}| \\
& =|H||G|\left(1-\operatorname{Pr}_{g}(H, G)\right)-|H| .
\end{aligned}
$$

Now, if $g \in H$ then

$$
\begin{aligned}
& \left|E_{1} \cap E_{2}\right|=|\{(z, w) \in H \times H: z \neq w,[z, w] \neq g\}| \\
& \quad=|H|^{2}-|\{(z, w) \in H \times H:[z, w]=g\}|-|\{(z, w) \in H \times H: z=w\}| \\
& \quad=|H|^{2}\left(1-\operatorname{Pr}_{g}(H)\right)-|H| .
\end{aligned}
$$

If $g \in G \backslash H$ then $\left|E_{1} \cap E_{2}\right|=|H|^{2}-|H|$. Hence, the result follows from equation (3.3.1).
(c) If $g \neq 1$ and $g^{2} \neq 1$ then we have

$$
\begin{aligned}
\left|E_{1}\right|= & \mid\left\{(z, w) \in H \times G: z \neq w,[z, w] \neq g \text { and }[z, w] \neq g^{-1}\right\} \mid \\
= & |H||G|-|\{(z, w) \in H \times G:[z, w]=g\}| \\
& \quad-\left|\left\{(z, w) \in H \times G:[z, w]=g^{-1}\right\}\right|-|\{(z, w) \in H \times H: z=w\}| \\
& =|H||G|\left(1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H, G)\right)-|H| .
\end{aligned}
$$

Now, if $g \in H$ then

$$
\begin{aligned}
\left|E_{1} \cap E_{2}\right|= & \mid\left\{(z, w) \in H \times H: z \neq w,[z, w] \neq g \text { and }[z, w] \neq g^{-1}\right\} \mid \\
= & |H|^{2}-|\{(z, w) \in H \times H:[z, w]=g\}| \\
& -\left|\left\{(z, w) \in H \times H:[z, w]=g^{-1}\right\}\right|-|\{(z, w) \in H \times H: z=w\}| \\
= & |H|^{2}\left(1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H)\right)-|H| .
\end{aligned}
$$

If $g \in G \backslash H$ then $\left|E_{1} \cap E_{2}\right|=|H|^{2}-|H|$. Hence, the result follows from equation (3.3.1).
For an abelian group $H$ we have

$$
\operatorname{Pr}_{g}(H)= \begin{cases}1, & \text { if } g=1 \\ 0, & \text { if } g \neq 1\end{cases}
$$

Using these values in Theorem 3.3.1 we get Corollary 3.3.2.
Corollary 3.3.2. Let $g \in K(H, G)$ where $\{1\} \neq H \leq G$ is abelian.
(a) If $g=1$ then $\left|e\left(\Gamma_{H, G}^{g}\right)\right|=|H||G|\left(1-\operatorname{Pr}_{g}(H, G)\right)$.
(b) If $g \neq 1$ and $g^{2}=1$ then

$$
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2|H||G|\left(1-\operatorname{Pr}_{g}(H, G)\right)-|H|^{2}-|H| .
$$

(c) If $g \neq 1$ and $g^{2} \neq 1$ then

$$
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2|H||G|\left(1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H, G)\right)-|H|^{2}-|H| .
$$

Theorem 3.3.3. Let $H \leq G$ and $g \in K(H, G)$. Let $|[H, G]|=p$, the smallest prime dividing $|G|$.
(a) If $g=1$ then

$$
2 p\left|e\left(\Gamma_{H, G}^{g}\right)\right|=(p-1)[2|G|(|H|-|Z(H, G)|)-|H|(|H|-|Z(H)|)] .
$$

(b) If $g \neq 1$ and $g^{2}=1$ then

$$
2 p\left|e\left(\Gamma_{H, G}^{g}\right)\right|= \begin{cases}2|G|((p-1)|H|+|Z(H, G)|) & \\ -|H|((p-1)|H|+|Z(H)|+p), & \text { if } g \in H \\ 2|G|((p-1)|H|+|Z(H, G)|) & \\ -p|H|(|H|+1), & \text { if } g \in G \backslash H .\end{cases}
$$

(c) If $g \neq 1$ and $g^{2} \neq 1$ then

$$
2 p\left|e\left(\Gamma_{H, G}^{g}\right)\right|= \begin{cases}2|G|((p-2)|H|+2|Z(H, G)|) & \\ \quad-|H|((p-2)|H|+2|Z(H)|+p), & \text { if } g \in H \\ 2|G|((p-2)|H|+2|Z(H, G)|) & \\ -p|H|(|H|+1), & \text { if } g \in G \backslash H .\end{cases}
$$

Proof. By Result 1.2.8, we have

$$
\operatorname{Pr}_{g}(H, G)= \begin{cases}\frac{1}{p}\left(1+\frac{p-1}{|H: Z(H, G)|}\right), & \text { if } g=1 \\ \frac{1}{p}\left(1-\frac{1}{|H: Z(H, G)|}\right), & \text { if } g \neq 1\end{cases}
$$

Hence, the result follows from Theorem 3.3.1.
It is worth mentioning that, in view of Result 1.2.7, the conclusion of Theorem 3.3.3 also holds if $G$ is nilpotent such that $|[H, G]|=p$, where $p$ is not necessarily the smallest prime. We also have the following corollary.

Corollary 3.3.4. Let $H \leq G$ where $H$ is abelian and $G$ is nilpotent. Let $|[H, G]|=p$ be any prime and $g \in K(H, G)$.
(a) If $g=1$ then $p\left|e\left(\Gamma_{H, G}^{g}\right)\right|=(p-1)|G|(|H|-|Z(H, G)|)$.
(b) If $g \neq 1$ and $g^{2}=1$ then

$$
2 p\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2|G|(|Z(H, G)|+(p-1)|H|)-p|H|(1+|H|) .
$$

(c) If $g \neq 1$ and $g^{2} \neq 1$ then

$$
2 p\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2|G|(2|Z(H, G)|+(p-2)|H|)-p|H|(1+|H|) .
$$

In Result 1.4.23, Toule et al. have obtained a relation between $\left|e\left(\Gamma_{G}^{g}\right)\right|$ and $\operatorname{Pr}_{g}(G)$. It is noteworthy that their result can also be obtained from the next theorem considering $H=G$, where $k(H)$ denotes the number of conjugacy classes in $H$.

Theorem 3.3.5. Let $\{1\} \neq H \unlhd G$ and $g \in K(H, G)$.
(a) If $g=1$ then $2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=(2|G|-|H|)(|H|-k(H))$.
(b) If $g \neq 1$ and $g^{2}=1$ then

$$
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2|H||G|\left(1-\operatorname{Pr}_{g}(H, G)\right)-|H|^{2}\left(1-\operatorname{Pr}_{g}(H)\right)-|H| .
$$

(c) If $g \neq 1$ and $g^{2} \neq 1$ then

$$
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2|H||G|\left(1-2 \operatorname{Pr}_{g}(H, G)\right)-|H|^{2}\left(1-2 \operatorname{Pr}_{g}(H)\right)-|H| .
$$

Proof. If $g=1$ then by Result 1.2.2 we have

$$
\operatorname{Pr}_{g}(H, G)=\operatorname{Pr}_{g}(H)=\frac{k(H)}{|H|}
$$

Hence, part (a) follows from Theorem 3.3.1. Parts (b) and (c) also follow from Theorem 3.3.1 noting that the case $g \in G \backslash H$ does not arise (since $g \in H$ if $H$ is normal) and $\operatorname{Pr}_{g}(H, G)=\operatorname{Pr}_{g^{-1}}(H, G)$ (as shown in Result 1.2.3).

By the expression of Result 1.2.6 for $\operatorname{Pr}_{g}(H, G)$ and Theorem 3.3.5 we get the following character theoretic formula for $\left|e\left(\Gamma_{H, G}^{g}\right)\right|$.

Corollary 3.3.6. Let $\{1\} \neq H \unlhd G$ and $g \in K(H, G)$.
(a) If $g=1$ then $2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=(|H|-|\operatorname{Irr}(H)|)(2|G|-|H|)$.
(b) If $g \neq 1$ and $g^{2}=1$ then

$$
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2|H|\left(|G|-\sum_{\phi \in \operatorname{Irr}(G)}\left\langle\phi_{H}, \phi_{H}\right\rangle \frac{\phi(g)}{\phi(1)}\right)-|H|\left(|H|-\sum_{\phi \in \operatorname{Irr}(H)} \frac{\phi(g)}{\phi(1)}\right)-|H| .
$$

(c) If $g \neq 1$ and $g^{2} \neq 1$ then

$$
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|=2|H|\left(|G|-2 \sum_{\phi \in \operatorname{Irr}(G)}\left\langle\phi_{H}, \phi_{H}\right\rangle \frac{\phi(g)}{\phi(1)}\right)-|H|\left(|H|-2 \sum_{\phi \in \operatorname{Irr}(H)} \frac{\phi(g)}{\phi(1)}\right)-|H| .
$$

Corollary 3.3.7. Let $g \in K(G)$.
(a) For $g=1$ we have $2\left|e\left(\Gamma_{G}^{g}\right)\right|=|G|(|G|-|\operatorname{Irr}(G)|)$.
(b) If $g \neq 1$ then

$$
2\left|e\left(\Gamma_{G}^{g}\right)\right|= \begin{cases}|G|\left(|G|-1-\sum_{\phi \in \operatorname{Irr}(G)} \frac{\phi(g)}{\phi(1)}\right), & \text { if } g^{2}=1 \\ |G|\left(|G|-1-2 \sum_{\phi \in \operatorname{Irr}(G)} \frac{\phi(g)}{\phi(1)}\right), & \text { if } g^{2} \neq 1\end{cases}
$$

### 3.4 Bounds for $\left|e\left(\Gamma_{H, G}^{g}\right)\right|$

In [93, Section 3], Tolue and Erfanian have obtained bounds for $\left|e\left(\Gamma_{H, G}\right)\right|$. In this section some bounds for the number of edges in $\Gamma_{H, G}^{g}$ are obtained. By Theorem 3.3.1. we have

$$
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H|= \begin{cases}|H|^{2} \operatorname{Pr}_{g}(H)+2|H||G|\left(1-\operatorname{Pr}_{g}(H, G)\right), & \text { if } g \in H  \tag{3.4.1}\\ 2|H||G|\left(1-\operatorname{Pr}_{g}(H, G)\right), & \text { if } g \in G \backslash H,\end{cases}
$$

if $g \neq 1$ but $g^{2}=1$ and
$2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H|=\left\{\begin{array}{lr}|H|^{2} \sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H)+2|H||G|\left(1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H, G)\right), \text { if } g \in H \\ 2|H||G|\left(1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H, G)\right), & \text { if } g \in G \backslash H,\end{array}\right.$
if $g \neq 1$ and $g^{2} \neq 1$.
Theorem 3.4.1. Let $H \leq G$ and $g \neq 1$.
(a) If $g^{2}=1$ then

$$
\left|e\left(\Gamma_{H, G}^{g}\right)\right| \geq \begin{cases}\frac{|G||Z(H, G)|+|H|(|G|-1)+3|Z(H)|^{2}-|H|^{2}}{2}, & \text { if } g \in H \\ \frac{|G||Z(H, G)|+|H|(|G|-1)-|H|^{2}}{2}, & \text { if } g \in G \backslash H .\end{cases}
$$

(b) If $g^{2} \neq 1$ then

$$
\left|e\left(\Gamma_{H, G}^{g}\right)\right| \geq \begin{cases}\frac{2|G||Z(H, G)|+6|Z(H)|^{2}-|H|^{2}-|H|}{2}, & \text { if } g \in H \\ \frac{2|G||Z(H, G)|-|H|^{2}-|H|}{2}, & \text { if } g \in G \backslash H .\end{cases}
$$

Proof. By Result 1.2.5, we get

$$
\begin{equation*}
1-\operatorname{Pr}_{g}(H, G) \geq \frac{|H|+|Z(H, G)|}{2|H|} \text { and } 1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H, G) \geq \frac{|Z(H, G)|}{|H|} \tag{3.4.3}
\end{equation*}
$$

Again, by Result 1.2.4(c), we have

$$
\begin{equation*}
\operatorname{Pr}_{g}(H) \geq \frac{3|Z(H)|^{2}}{|H|^{2}} \tag{3.4.4}
\end{equation*}
$$

(a) We have $g^{2}=1$. Therefore, if $g \in H$ then, using equations (3.4.1), (3.4.3) and (3.4.4), we get

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \geq|H|^{2}\left(\frac{3|Z(H)|^{2}}{|H|^{2}}\right)+2|H||G|\left(\frac{|H|+|Z(H, G)|}{2|H|}\right) \tag{3.4.5}
\end{equation*}
$$

If $g \in G \backslash H$ then, using equations (3.4.1) and (3.4.3), we get

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H|>2|H||G|\left(\frac{|H|+|Z(H, G)|}{2|H|}\right) . \tag{3.4.6}
\end{equation*}
$$

Hence, the result follows from equations (3.4.5) and (3.4.6).
(b) We have $g^{2} \neq 1$. Therefore, if $g \in H$ then, using equations (3.4.2, (3.4.3) and (3.4.4), we get

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \geq 2|H||G|\left(\frac{|Z(H, G)|}{|H|}\right)+|H|^{2}\left(\frac{6|Z(H)|^{2}}{|H|^{2}}\right) . \tag{3.4.7}
\end{equation*}
$$

If $g \in G \backslash H$ then, using equations (3.4.2) and (3.4.3), we have

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \geq\left(\frac{2|Z(H, G)||H||G|}{|H|}\right) . \tag{3.4.8}
\end{equation*}
$$

Hence, the result follows from equations (3.4.7) and 3.4.8).
Theorem 3.4.2. Let $H \leq G$ and $g \neq 1$.
(a) If $g^{2}=1$ then

$$
\left|e\left(\Gamma_{H, G}^{g}\right)\right| \leq \begin{cases}\frac{4|H||G|-8|Z(H, G)||Z(G, H)|-|H|^{2}-|H|(|Z(H)|+2)}{4}, & \text { if } g \in H \\ \frac{2|H||G|-4|Z(H, G)||Z(G, H)|-|H|^{2}-|H|}{2}, & \text { if } g \in G \backslash H\end{cases}
$$

(b) If $g^{2} \neq 1$ then

$$
\left|e\left(\Gamma_{H, G}^{g}\right)\right| \leq \begin{cases}\frac{2|H||G|-8|Z(H, G)||Z(G, H)|-|H|(|Z(H)|+1)}{2}, & \text { if } g \in H \\ \frac{2|H||G|-8|Z(H, G)||Z(G, H)|-|H|^{2}-|H|}{2}, & \text { if } g \in G \backslash H .\end{cases}
$$

Proof. By Result 1.2.4(b), we get

$$
\begin{equation*}
1-\operatorname{Pr}_{g}(H, G) \leq \frac{|H||G|-2|Z(H, G)||Z(G, H)|}{|H||G|} \tag{3.4.9}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H, G) \leq \frac{|H||G|-4|Z(H, G)||Z(G, H)|}{|H||G|} \tag{3.4.10}
\end{equation*}
$$

Also, by Result 1.2.5, we get

$$
\begin{equation*}
\operatorname{Pr}_{g}(H) \leq \frac{|H|-|Z(H)|}{2|H|} \tag{3.4.11}
\end{equation*}
$$

(a) We have $g^{2}=1$. Therefore, if $g \in H$ then, using equations (3.4.1), (3.4.9) and (3.4.11), we get

$$
\begin{align*}
& 2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \\
& \qquad \leq|H|^{2}\left(\frac{|H|-|Z(H)|}{2|H|}\right)+2|H||G|\left(\frac{|H||G|-2|Z(H, G)||Z(G, H)|}{|H||G|}\right) \tag{3.4.12}
\end{align*}
$$

If $g \in G \backslash H$ then, using equations (3.4.1) and (3.4.9), we get

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \leq 2|H||G|\left(\frac{|H||G|-2|Z(H, G)||Z(G, H)|}{|H||G|}\right) . \tag{3.4.13}
\end{equation*}
$$

Hence, the result follows from equations (3.4.12) and (3.4.13).
(b) We have $g^{2} \neq 1$. Therefore, if $g \in H$ then, using equations (3.4.2), (3.4.10) and 3.4.11), we get

$$
\begin{align*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \leq & 2|H||G| \\
& \left(\frac{|H||G|-4|Z(H, G)||Z(G, H)|}{|H||G|}\right)  \tag{3.4.14}\\
& +|H|^{2}\left(\frac{|H|-|Z(H)|}{|H|}\right) .
\end{align*}
$$

If $g \in G \backslash H$ then, using equations (3.4.2) and (3.4.10), we get

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \leq 2|H||G|\left(\frac{|H||G|-4|Z(H, G)||Z(G, H)|}{|H||G|}\right) \tag{3.4.15}
\end{equation*}
$$

Hence, the result follows from equations (3.4.14) and (3.4.15).
In the remaining results $p$ stands for the smallest prime such that $p \||G|$ and $g \neq 1$.

Theorem 3.4.3. (a) If $g^{2}=1$ then

$$
\left|e\left(\Gamma_{H, G}^{g}\right)\right| \geq \begin{cases}\frac{2(p-1)|H||G|+2\left|Z(H, G) \|\left|||-p| H|^{2}+3 p\right| Z(H)\right|^{2}-p|H|}{2 p}, & \text { if } g \in H \\ \frac{2(p-1)|H||G|+2|Z(H, G)||G|-p|H|^{2}-p|H|}{2 p}, & \text { if } g \in G \backslash H .\end{cases}
$$

(b) If $g^{2} \neq 1$ then

$$
\left|e\left(\Gamma_{H, G}^{g}\right)\right| \geq \begin{cases}\frac{2(p-2)|H||G|+4|Z(H, G)||G|-p|H|^{2}+6 p|Z(H)|^{2}-p|H|}{2 p}, & \text { if } g \in H \\ \frac{2(p-2)|H||G|+4|Z(H, G)||G|-p|H|^{2}-p|H|}{2 p}, & \text { if } g \in G \backslash H .\end{cases}
$$

Proof. By Result 1.2.5, we get

$$
\begin{equation*}
1-\operatorname{Pr}_{g}(H, G) \geq \frac{|Z(H, G)|+(p-1)|H|}{p|H|} \tag{3.4.16}
\end{equation*}
$$

and

$$
\begin{equation*}
1-\sum_{u=g, g^{-1}} \operatorname{Pr}_{u}(H, G) \geq \frac{2|Z(H, G)|+(p-2)|H|}{p|H|} \tag{3.4.17}
\end{equation*}
$$

(a) We have $g^{2}=1$. Therefore, if $g \in H$ then, using equations (3.4.1, 3.4.16) and 3.4.4, we get

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \geq|H|^{2}\left(\frac{3|Z(H)|^{2}}{|H|^{2}}\right)+2|H||G|\left(\frac{|Z(H, G)|+(p-1)|H|}{p|H|}\right) . \tag{3.4.18}
\end{equation*}
$$

If $g \in G \backslash H$ then, using equations (3.4.1) and (3.4.16), we get

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \geq 2|H||G|\left(\frac{|Z(H, G)|+(p-1)|H|}{p|H|}\right) . \tag{3.4.19}
\end{equation*}
$$

Hence, the result follows from equations (3.4.18) and (3.4.19).
(b) We have $g^{2} \neq 1$. Therefore, if $g \in H$ then, using equations (3.4.2), (3.4.17) and (3.4.4), we get

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \geq 2|H||G|\left(\frac{(p-2)|H|+2|Z(H, G)|}{p|H|}\right)+|H|^{2}\left(\frac{6|Z(H)|^{2}}{|H|^{2}}\right) . \tag{3.4.20}
\end{equation*}
$$

If $g \in G \backslash H$ then, using equations (3.4.2) and (3.4.17), we have

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \geq 2|H||G|\left(\frac{(p-2)|H|+2|Z(H, G)|}{p|H|}\right) \tag{3.4.21}
\end{equation*}
$$

Hence, the result follows from equations (3.4.20) and 3.4.21.

Theorem 3.4.4. (a) If $g^{2}=1$ then

$$
\left|e\left(\Gamma_{H, G}^{g}\right)\right| \leq \begin{cases}\frac{2 p|H||G|-4 p|Z(H, G)||Z(G, H)|-(p-1)|H|^{2}-|H||Z(H)|-p|H|}{2 p}, & \text { if } g \in H \\ \frac{2|H||G|-4|Z(H, G)||Z(G, H)|-|H|^{2}-|H|}{2}, & \text { if } g \in G \backslash H\end{cases}
$$

(b) If $g^{2} \neq 1$ then

$$
\left|e\left(\Gamma_{H, G}^{g}\right)\right| \leq \begin{cases}\frac{2 p|H||G|-8 p|Z(H, G)||Z(G, H)|-(p-2)|H|^{2}-2|H||Z(H)|-p|H|}{2 p}, & \text { if } g \in H \\ \frac{2|H||G|-8|Z(H, G)||Z(G, H)|-|H|^{2}-|H|}{2}, & \text { if } g \in G \backslash H\end{cases}
$$

Proof. By Result 1.2.5, we get

$$
\begin{equation*}
\operatorname{Pr}_{g}(H) \leq \frac{|H|-|Z(H)|}{p|H|} \tag{3.4.22}
\end{equation*}
$$

(a) We have $g^{2}=1$. Therefore, if $g \in H$ then, using equations (3.4.1), (3.4.9) and (3.4.22), we get

$$
\begin{align*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right| & +|H|^{2}+|H| \\
& \leq|H|^{2}\left(\frac{|H|-|Z(H)|}{p|H|}\right)+2|H||G|\left(\frac{|H||G|-2|Z(H, G)||Z(G, H)|}{|H||G|}\right) . \tag{3.4.23}
\end{align*}
$$

If $g \in G \backslash H$ then, using equations (3.4.1) and (3.4.9), we get

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \leq 2|H||G|\left(\frac{|H||G|-2|Z(H, G)||Z(G, H)|}{|H||G|}\right) \tag{3.4.24}
\end{equation*}
$$

Hence, the result follows from equations (3.4.23) and (3.4.24).
(b) We have $g^{2} \neq 1$. Therefore, if $g \in H$ then, using equations (3.4.2), (3.4.10) and (3.4.22), we get

$$
\begin{align*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right| & +|H|^{2}+|H| \\
& \leq 2|H|^{2}\left(\frac{|H|-|Z(H)|}{p|H|}\right)+2|H||G|\left(\frac{|H||G|-4|Z(H, G)||Z(G, H)|}{|H||G|}\right) \tag{3.4.25}
\end{align*}
$$

If $g \in G \backslash H$ then, using equations (3.4.2) and (3.4.10), we get

$$
\begin{equation*}
2\left|e\left(\Gamma_{H, G}^{g}\right)\right|+|H|^{2}+|H| \leq 2|H||G|\left(\frac{|H||G|-4|Z(H, G)||Z(G, H)|}{|H||G|}\right) \tag{3.4.26}
\end{equation*}
$$

Hence, the result follows from equations (3.4.25) and (3.4.26).

Note that several other bounds for $\left|e\left(\Gamma_{H, G}^{g}\right)\right|$ can be obtained using different combinations of the bounds for $\operatorname{Pr}_{g}(H, G)$ and $\operatorname{Pr}_{g}(H)$. We conclude this chapter with certain bounds for $\left|e\left(\Gamma_{G}^{g}\right)\right|$ which are obtained by putting $H=G$ in the above theorems.

Corollary 3.4.5. (a) If $g^{2}=1$ then

$$
\frac{3|G|^{2}-8|Z(G)|^{2}-|G|(|Z(G)|+2)}{4} \geq\left|e\left(\Gamma_{G}^{g}\right)\right| \geq \frac{|G||Z(G)|+3|Z(G)|^{2}-|G|}{2} .
$$

(b) If $g^{2} \neq 1$ then

$$
\frac{2|G|^{2}-8|Z(G)|^{2}-|G|(|Z(G)|+1)}{2} \geq\left|e\left(\Gamma_{G}^{g}\right)\right| \geq \frac{2|G||Z(G)|+6|Z(G)|^{2}-|G|^{2}-|G|}{2}
$$

Corollary 3.4.6. (a) If $g^{2}=1$ then

$$
\begin{aligned}
\frac{(p+1)|G|^{2}-4 p|Z(G)|^{2}-|G||Z(G)|-p|G|}{2 p} & \geq\left|e\left(\Gamma_{G}^{g}\right)\right| \\
& \geq \frac{(p-2)|G|^{2}+2|Z(G)||G|+3 p|Z(G)|^{2}-p|G|}{2 p}
\end{aligned}
$$

(b) If $g^{2} \neq 1$ then

$$
\begin{aligned}
\frac{(p+2)|G|^{2}-8 p|Z(G)|^{2}-2|G||Z(G)|}{2 p} & -p|G| \\
& \geq\left|e\left(\Gamma_{G}^{g}\right)\right| \\
& \geq \frac{(p-4)|G|^{2}+4|Z(G)||G|+6 p|Z(G)|^{2}-p|G|}{2 p}
\end{aligned}
$$

### 3.5 Conclusion

In this chapter, we have introduced the concept of relative $g$-noncommuting graph $\left(\Gamma_{H, G}^{g}\right)$, for any subgroup $H$ of a finite group $G$. We have characterized finite groups such that $\Gamma_{H, G}^{g \neq 1}$ is a star. We have also shown that $\Gamma_{H, G}^{g}$ is not a tree (whenever $|H| \neq 2$ ), lollipop (whenever $|H| \neq 2,3$ ) or a complete graph when $1 \neq g \in K(H, G)$ along with certain other results. Further, we have derived an expression for the number of edges in $\Gamma_{H, G}^{g}$ in terms of $\operatorname{Pr}_{g}(H, G)$ and $\operatorname{Pr}_{g}(G)$, and subsequently established certain bounds for this quantity. As a consequence of our research we obtain several new results on $\Gamma_{G}^{g}$ ( for example, see Corollaries 3.3.7, 3.4.5 and 3.4.6). Some of our results also generalize some existing results on $\Gamma_{G}^{g}$ (for example, Theorem 3.2.12 generalizes Results 1.4.21 and 1.4.22; Theorem 3.3.5 generalizes Result 1.4.23).

