Chapter 3

Relative g-noncommuting graph of

a finite group

Let H be a subgroup of a finite group G and g € G. Fusing the concepts of relative non-
commuting graph 'y ¢ and g-noncommuting graph I'Y,, in this chapter, we introduce
relative g-noncommuting graph of G. The relative g-noncommuting graph of G, denoted by
F?{,G , is defined as the simple undirected graph whose vertex set is G and two vertices x
and y (r # y) are adjacentif v € H ory € H and [z, y] # g and g~*. Note thatif g = 1 then
the induced subgraph of I'}; , on G'\ Z(H, G) is the relative non-commuting graph I'y7 .
Also, if H = G thenT{, ; = I'y,. In Section we obtain computing formula for degree
of any vertex in I'}; , and characterize whether F%G is a tree, star graph, lollipop or a
complete graph together with some properties of F?L  involving isomorphism of graphs.
In Section we obtain the number of edges in I'}; , using Pry(H, G). We conclude this
chapter with some bounds for the number of edges in I'}; . This chapter is based on our

paper [85] published in Electronic Journal of Graph Theory and Applications.

3.1 Preliminary observations

Let G1 + G2 be the join of the graphs G; and G and let G be the complement of G. Then we

have the following observations, where K, is the complete graph on n vertices.
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Chapter 3. Relative g-noncommuting graph of a finite group

Observation 3.1.1. Let H < G and g € G.

(a) Ifg §é K(H, G) then F?—LG = K|G|7|H\ =+ K\H| and so

|H|, ifre G\ H
deg(z) =
IG|—1, ifzeH.

(b) If g=1and K(H,G) = {1} then F%I,G = K-
Observation 3.1.2. Let H < G and g € G\ K(H,G). Then

(a) F?{,G is a tree <= H = {1} and |H| = |G| = 2.

(b) F!;{,G is a star <= H = {1}.

(c) F%LG is a complete graph <= H = G.

Note that if H = Z(H,G) or G is abelian then K(H,G) = {1}. Therefore, in view of
Observation we consider G to be non-abelian, H < G such that H # Z(H,G) and
g € K(H,G) throughout this chapter.

3.2 Vertex degree and other properties

In this section we first obtain computing formula for deg(z) in terms of |G|, |H| and the

orders of the centralizers of z. We write x ~ y if = is conjugate to y.
Theorem 3.2.1. Letx € H.
(a) For g =1 we have deg(x) = |G| — |Ca(x)|-

G| = |Ca(x)| =1, if &~ xg or zg™"

(b) For g # 1 and g% # 1 we have deg(x) =
|G| - 2|Cq(x)| — 1, if v ~ xg and zg~ L.

(c) For g#1 and g®> = 1 we have deg(x) = |G| — |Cq ()| — 1, whenever z ~ xg.
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Chapter 3. Relative g-noncommuting graph of a finite group

Proof. (a) Let g = 1. Then deg(x) is the number of y € G such that y does not commute
with z. Hence, deg(z) = |G| — |Ca(z)].

(b) Let g # 1 and g% # 1. Then g # g~!. Suppose that z ~ xg or zg~! but not to both.
Without any loss we assume that x is conjugate to xg. Then there exits y € G such that
y~lry = xg, that is [z,y] = 27y~ lay = g. Therefore, the set S, := {y € G : y~lay = g}
is non-empty. Also, for any a € Sy we have [z, a] = g which gives that « is not adjacent to
x. Thus, o € G is not adjacent to z if and only if @ = x or a € S;. Therefore, the number
of vertices not adjacent to x is equal to |[Sy| + 1.

Let y1 € Sy and y2 € Cg(z)yr. Then yo = uy; for some u € Cg(x). We have

Y tys = yy tu tvuyy = gy tay = 2.

Therefore, y2 € Sy and so Cg(z)y1 C Sy. Suppose that y3 € S;. Then yl_lxyl = y?)_la:yg
which implies ysy; ' € Cg(x). Therefore, y3 € Cg(x)y; and so S; C Cg(z)y;. Thus
Sy = Ca(x)yr and so |Sy| = |Cq(z)|. Hence, the number of vertices not adjacent to z is
equal to |Cg(z)| + 1 and so deg(x) = |G| — |Ca(z)| — 1.

If x is conjugate to g and xg~! then SgNSy—1 = (), where Sg1:={yeG: y oy =
zg~'} and [S,-1| = |Cg(z)|. In this case, @ € G is not adjacent to z if and only if
a=xora€ S;US;1. Therefore, the number of vertices not adjacent to z is equal to

|Sg| +|S4-1] + 1 = 2|Cq(x)| + 1. Hence, deg(r) = |G| — 2|Cq(x)| — 1.

(c) Let g # 1 and g> = 1. Then g = ¢~ ! and so g = xg~!. Now, if z is conjugate to xg
then, as shown in the proof of part (b), we have deg(x) = |G| — |Ca(z)| — 1. O

Theorem 3.2.2. Let z € G\ H.
(a) For g =1 we have deg(z) = |H| — |Cu(z)|.
(b) For g # 1 and g*> # 1 we have
|H| - |Cy(x)|, ifx~mxg orxzg™! for some element in X.
deg(z) =

|H| —2|Cyx(x)|, ifx~xg and xg~* for some element in H.

(c) For g # 1 and g*> = 1 we have deg(x) = |H| — |Cy(z)|, whenever x ~ xg, for some

element in H.
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Chapter 3. Relative g-noncommuting graph of a finite group

Proof. The proof is analogous to the proof of Theorem O

It is noteworthy that g ¢ K (H, G) if z is not conjugate to xg and xg~'. Therefore, this case
does not arise in Theorems and The degree of a vertex, in such case, is given
by Observation

Now, we present some properties of I'}; . The following lemmas are useful in this

regard.
Lemma 3.2.3. If g # 1 and H has an element of order 3 then F?JG is not triangle free.

Proof. Let € H having order 3. Then the vertices 1,2 and 2! forms a triangle in Y o

Hence, the lemma follows. O

0, ifg=1
|G‘_1a ng?él

Proof. By definition of Z(H,G), it follows that z € H and [z,y] = 1 for all y € G and so
Cqa(x) = G. Therefore, if g = 1 then by Theorem [3.2.1(a) we have deg(z) = 0. If g # 1
then all the elements of G except z are adjacent to x. Therefore, deg(z) = |G| — 1. O

Lemma 3.2.4. Ifz € Z(H,G) then deg(z) =

As a consequence of Lemma we have that fy(F%,’G) = 1if g # 1 since {z} is a
dominating set for all x € Z(H, G), where 'y(F%,’G) is the domination number of FJQLLG. If
g € H having even order then it can be seen that {¢g} is also a dominating set in I‘%’G.
If g = 1 then V(F%,G) > |Z(H,G)| + 1. This lower bound is sharp because 'y(Fg?Sg) is
2 =|Z(H,S3)| + 1, where H is any subgroup of S3 of order 2. If g = 1 then, by Lemma
we also have that F%LG is disconnected. Hence, F}LG is not a tree and complete

graph. Now we determine whether I'Y; . is a tree, star graph or complete graph if g # 1.
Theorem 3.2.5. Let H < G and |H| # 2. Then I‘?fé is not a tree.

Proof. Suppose for any H < G, F%G is a tree, where g # 1. There exits a vertex x in
'Y o of degree one.
Case 1: t € H

By Theorem deg(x) = |G| — |Cq(x)] —1 =1 or deg(z) = |G| — 2|Cq(x)| — 1 = 1.
That is, |G| — |Cg(x)| = 2 or |G| — 2|Cg(x)| = 2. Therefore, |Cq(z)| = 2 and |G| = 4,6.

90



Chapter 3. Relative g-noncommuting graph of a finite group

Since G is non-abelian and |H| # 1,2, we must have G = S3 and H = Aj or S3. Therefore,
by Lemma F%LG has a triangle which is a contradiction.
Case 2: € G\ H

By Theorem deg(z) = |H| — |Cy(z)] = 1 or deg(x) = |H| — 2|Cy(z)| = 1.
Therefore, |Cy(z)] = 1 and |H| = 2,3. However, |H| # 2 (by assumption). If |H| = 3
then, by Lemma F%}G has a triangle which is a contradiction. Hence, the result
follows. O

The proof of Theorem also gives the following result.

Theorem 3.2.6. Let H < G and |H| # 2,3. Then I‘lgfé is not a lollipop. Further, if
|H| # 2,3,6 then Flgf(l; has no vertex of degree 1.

As a consequence of Theorem we have the following results.
Corollary 3.2.7. Let H < G and |H| # 2. Then Flgf(l; is not a star graph.

Corollary 3.2.8. If g # 1 and G is a group of odd order then FlgLLG is not a tree and hence

not a star.
Theorem 3.2.9. If g # 1 then T'Y; , is a star <= G = S3 and |H| = 2.

Proof. By Lemma deg(l) = |G| — 1. Suppose that F%I,G is a star graph. Then
deg(z) =1 V 1# 2 € G. Since g € K(H,G) and g # 1 we have H # {1}. Suppose
that 1 #y € H. If g = 1, then by Theorem we get 1 = deg(y) = |G| — |Ca(y)| — 1
which gives |G| = 4, a contradiction since G is non-abelian. If g2 # 1, then by Theorem
3:2.1] we get 1 = deg(y) = |G| — |Ca(y)| — 1 or |G| — 2|Ce(y)| — 1 which gives |G| = 6.
Therefore, G = S5, g = (123),(132) and H = {(1), (12)}, {(1), (13)}, {(1), (23)} or H =
{(1),(123),(132)}. If |H| = 3 then, by Lemma FlgLLSg is not a star. If |H| = 2 then

it is easy to see that I'Y; s, 1s a star. This completes the proof. O

Theorem 3.2.10. If g # 1 then T'Y; , is not complete.

Proof. Let F%}G be complete graph where g # 1. Then deg(xz) = |G| -1 V z € G. Since
g € K(H,G) and g # 1 we have H # {1}. Suppose that 1 # y € H. Then by Theorem
B2 we get |G| — 1 = deg(y) = |G| — |Caly)| — 1 or |G| — 1 = deg(y) = |G| —2|Ca(y)| — 1.
Therefore, |Cq(y)| = 0, a contradiction. Hence, F%’G is not complete. O
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~ Th
Theorem 3.2.11. Let H <G and g ~ h. Then F?{,G =Ty e

Proof. Let h = ¢* := 2~ 'gx for some € G. Then for any two elements a;,as € G, we
have

[af,a%] = h or h~! if and only if [a1,as] = g or g~ 1. (3.2.1)

Consider the bijection ¢ : U(F?{’G) — U(F?LG) given by ¢(a) = a” for all a € G. We show
that ¢ preserves adjacency.

Suppose that a1, as € U(F};LG). If a1 and as are not adjacent in F%,G then [a1,a2] =g
or g~ !. Therefore, by equation , it follows that ¢(a1) and ¢(az) are not adjacent
in FZ’G. If a1 and a9 are adjacent then atleast one of a; and as must belong to H and
[a1,a2] # g,9~'. Without any loss assume that a; € H. Since H < G we have ¢(a;) € H.

by equation (3.2.1)), we have [¢(ay), p(az)] # h, h~'. Thus ¢(a1) and ¢(az) are adjacent in
FFIL{’G. Hence, the result follows. ]

In Result 1.4.21, it has been shown that I'y, ¢, is isomorphic to I'y, ¢, if (H1,G1)
and (Haz, G3) are relative isoclinic satisfying certain conditions. Tolue et al. in Result
1.4.22, also proved that Fgal is isomorphic to Fé(zg ) if G1 and G4 are isoclinic such that
|Z(G1)| = |Z(G2)|. We conclude Section 3.2 with Theorem[3.2.12) which generalizes Result
1.4.22.

Theorem 3.2.12. Let (¢,v) be a relative isoclinism between the pairs of groups (Hy,G1)
and (Ha, G2). If |Z(H1,G1)| = |Z(H2,G2)| then F%ﬁ,Gl is isomorphic to Fﬁ(ﬁ)GQ.

Proof. Since ¢ : Z(HGll,Gl) — Z(}gf%) is an isomorphism such that ¢ (Z(;EGQ) = Z(}g?Gz)‘

H H G G H H
So we have \Z(Hlfcl)l = IZ(H;G2)| and |Z(H11,G1)| = ’z(H;Gg) |- Let |z(HﬁGl)| - |Z(H2?G2)‘ -
m and |%\ = |%| = n. Given |Z(Hy,G1)| = |Z(H2,G2)|, so 3 a bijection
0 : Z(Hl,Gl) — Z(HQ,GQ). Let {hl,hg, RN hm, Im+1, - - - ,gn} and {hl, /2, e ,hlm, g;n—i-l?

.+, gh} be two trans-versals of Z(}%Gl) and Z(Hifcb) respectively where {hy, ho,..., hy}

and {hy,hL, ... hl,} are transversals of 7 IﬁfGl) and Ig?(}g) respectively. Let us define
¢ as ¢p(hiZ(Hy,G1)) = hiZ(Hz,Gs) and ¢(g;Z(H1,G1)) = g;Z(Ha, G2) for 1 <i < m and
m+1<j7<n.

Let n : Gi — Ga be a map such that u(hiz) = hif(z), u(g;z) = g;0(z) for z €
Z(H1,Gp), 1 <i<mand m+1<j <n. Clearly u is a bijection. Suppose two vertices
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x and y in F%lyGl are adjacent. Then x € Hy or y € Hy and [z,y] # g,9~'. Without
any loss of generality, let us assume that x € H;. Then x = h;z; for 1 < i < m and
y = kzo where 21,29 € Z(H1,G1), k € {h1,h2,...,hm, gm+1,---,9n}. Therefore, for some
K e{hi, ..., Ghits-- - 90}, We have

Y([hiz1, kza]) = Y([hi, k]) = ¥ 0 am, ¢y (hiZ(Hy, Gh), kZ(Hy, Gh)))
A(Hy,G) © (¢ X @) ((hiZ(H1, G1), kZ(Hy, G1)))
= a(1,,6,) (M Z(Hz2, G2), k' Z(Hz, G2)))
= [h}, k'] = [hjz1, K 25), (3.2.2)

where 21, 25 € Z(H2,G3). Also,

[hiz1, ko) # 9,97
= ¢([hiz1, kz2]) # D(9), (g™
= [hi21, K 23] # 9 (9), 9" (g) (using equation (3:2.2))
= [1i0(21), K'0(22)] # (9), ¥~ (9)
= [u(hiz1), u(kz2)] # ¥ (9), v (9)
= [u(), p(y)] # ¥(9), v (9).

Thus u(x) is adjacent to u(y) in Fﬁ(j};? since pu(x) € Ha. Hence, the graphs I'y  and

FQIZ}{(;)GQ are isomorphic under the map pu. ]

3.3 Relation between I'}; , and Pr,(H,G)

In [93], Tolue and Erfanian have established some relations between Pry(H, G) and rel-
ative non-commuting graphs of finite groups. In [94], Tolue et al. have also established
relations between I'Y, and Pry(G). Their results stimulate us to obtain relations between
I‘%’G and Pr,(H,G). We obtain the number of edges in I'Y 7. denoted by \e(I‘?{,G)L in
terms of Pry(H, G). Clearly, if g ¢ K(H, G) then from Observation we get

2le(Py o)l = 2[H||G| — |H|? - |H]|.
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Chapter 3. Relative g-noncommuting graph of a finite group

The following theorem expresses |e(I'}; ;)| in terms of Pry(H, G), where g € K(H,G).
Theorem 3.3.1. Let {1} # H < G and g € K(H,G). Let Pry+4(H,G) :=1—Pry(H,G).
(2) I g =1 then 20e(T% )| = 2|H|[GIProy(H, G) — |HI2(1 — Pr,(H)).

(b) If g # 1 and g> =1 then

, 2|H||G[Prosy(H, G) — |H[>(1 — Pry(H)) — |H|, ifgeH
2le(Ty )l =
2|H||G|Prozy(H, G) — |HJ? — |H|, ifgeG\H.

(c) If g # 1 and g> # 1 then

AHNGIL— 5 Pro(H,G))
u=g,g~"
Aeye)l={  ~IHP(Q~ X Pr,(H) - |H]| e
u=g,9~
2H|GIA - X Pru(H,G) - [HP - |H|, ifgeG\H.
u=g,9~

Proof. Let By = {(2,w) € Hx G : 2z # w,[2,w] # g and [z,w] # g~} and By = {(z,w) €
Gx H:z#w|z,w #gand [z,w] # g~'}. Clearly we have a bijection from E; to Fs
defined by (z,w) — (w,z). So |Ei| = |Es|. It is easy to see that |e(F§{’G)] is equal to half
of |[Ey U E3|. Therefore,

2e(Ty o)l = 2|E1] — |[E1 N Eal, (3.3.1)

where By N By = {(z,w) € H x H : 2 # w,[z,w] # g and [z,w] # g1}
(a) If g =1 then we have

[Er = H(zw) € HxG: [z,w] # 1}

= [H||G] = {(z,w) € Hx G : [z,w] = 1} = [H||G[(1 - Pry(H, G))

and  |FyNEs| =|{(z,w) € Hx H :[z,w] # 1}

— [HP? = |{(s,w) € H x H : [z,u] = 1}] = |H[*(1 - Pry(H)).
Hence, the result follows from equation ((3.3.1]).
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(b) If g # 1 and ¢® = 1 then we have
Bi| = {(z,0) € H x Gt 2 # w, [2,u] # g}]
= [H|IG| ~ {(zw) € H x Gt [z,w] = g}] — |{(2,w) € H x G+ 2 = w})]
= |H||G|(1 - Pr,(I,G)) - |H].
Now, if g € H then
[BinEa| = [{(zsw) € H x H: 2 # w, [2,0] # g}
= [H]? ~ [{(zw) € H x H: [z,u] = g}| ~ [{(zsw) € H x H : 2 = w}|
= [H[2(1 — Pry(H)) - |H].

If g€ G\ H then |Ey; N Ey| = |H|? — |H|. Hence, the result follows from equation (3.3.1]).
(c) If g # 1 and g2 # 1 then we have

Bl = [{(zw) € Hx G 2 £ w, [z, 0] # g and [z, 0] # g7}
= [H||G] = {(z,w) € H x G : [2,w] = g}|
—H{(z,w) € Hx G : [z,w] :g_l}] —{(z,w) € Hx H:z=w}|

= |H||GI(1—- Y Pry(H,G))—|H|.
u=g,9~ !
Now, if g € H then

|Ey N Ey| = |{(z,w) € Hx H:z+#w,[zw) #gand [z,w] # g}
= H|> — {(z.w) € H x H : [z,u] = g}
—H(z,w) e Hx H: [z,w] =g '} - |{(z,w) € Hx H:z=uw}

=|HP(1— ) Pru(H)) - H|

u=g,g~*
If g € G\ H then |EyNEy| = |H|?—|H|. Hence, the result follows from equation (3.3.1). O

For an abelian group H we have
1, ifg=1
Pry(H) =
0, ifg=#1.

95



Chapter 3. Relative g-noncommuting graph of a finite group

Using these values in Theorem 3.3.1|we get Corollary 3.3.2}
Corollary 3.3.2. Let g € K(H,G) where {1} # H < G is abelian.
(a) Ifg =1 then [e(T% ;)| = [H||GI(1 — Pry(H, G)).
(b) If g #1 and g> = 1 then

2le(Py o)l = 2|H||GI(1 — Pry(H,G)) — |H|* — |H]|.

(c) If g# 1 and g # 1 then

2le(Ty o)l = 21 H|IG|(1 = ) Pry(H G)) - |H] - |H|.

u=g,971

Theorem 3.3.3. Let H < G and g € K(H,G). Let |[H,G]|| = p, the smallest prime
dividing |G|.

(a) If g = 1 then
2ple(Ty )| = (p = DRIGI(H| - |2(H,G)|) - [H|(|H| - |Z(H)|)].
(b) If g # 1 and g*> = 1 then
21G|((p = DIH| +|Z(H, G)])
—H[((p-VIH[+[Z(H)|+p), ifgeH

2ple(Ty o)| =
2|GI((p—DIH|+ |Z(H,G)I)

—plH|(|H]+1), ifge G\ H.

(c) If g #1 and g> # 1 then
(

2|G|((p = 2)|H| +2|1Z(H,G)])

’ —|H[((p=2)|H[ +2[Z(H)[ +p), fgecH
2ple(Ty )l =
2G|((p—2)|H| +2|1Z2(H,G)])

—plH|(|H|+ 1), ifgeG\H.
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Proof. By Result 1.2.8, we have

SR CTI = N BT
Prg(H G) = p (1 + |H:Z(H7G)|) , ifg=1
1 1 '
5(1_m), if g #1.
Hence, the result follows from Theorem [3.3.1 i

It is worth mentioning that, in view of Result 1.2.7, the conclusion of Theorem [3.3.3]
also holds if G is nilpotent such that |[H, G]| = p, where p is not necessarily the smallest

prime. We also have the following corollary.

Corollary 3.3.4. Let H < G where H is abelian and G is nilpotent. Let |[H,G]| = p be
any prime and g € K(H,G).

(a) If g=1 then ple(T'y; o) = (p — D|G|(|H| — |Z(H, G)]).
(b) If g #1 and g> =1 then

2ple(Ny )| = 21G|(1Z2(H, G)| + (p — D|H]) — plH|(1 + |H]).

(c) If g # 1 and g> # 1 then

2ple(Ty )| = 2IG|(2|Z(H, G)| + (p = 2)|H|) — p|H|(1 + |H]).

In Result 1.4.23, Toule et al. have obtained a relation between |e(I'Y,)| and Pry(G). It
is noteworthy that their result can also be obtained from the next theorem considering

H = G, where k(H ) denotes the number of conjugacy classes in H.
Theorem 3.3.5. Let {1} # H <G and g € K(H,G).

(a) If g =1 then 2[e(Ty o) = 2G| = [H])([H] = k(H)).

(b) If g # 1 and g*> =1 then

2le(Pyyq)| = 2|H||GI(1 — Pry(H, G)) — [H[*(1 - Pry(H)) — |H]|.
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(c) If g# 1 and g* # 1 then
2le(I o) = 2|H||G|(1 - 2Pry(H,G)) — |[H|*(1 — 2Pry(H)) — |H|.

Proof. If g =1 then by Result 1.2.2 we have

k(H)

Pry(H,G) =Pry(H) = TH

Hence, part (a) follows from Theorem [3.3.1] Parts (b) and (c) also follow from Theorem
noting that the case ¢ € G \ H does not arise (since ¢ € H if H is normal) and
Pry(H,G) = Pr,-1(H,G) (as shown in Result 1.2.3). O

By the expression of Result 1.2.6 for Pry(H, G) and Theorem we get the following

character theoretic formula for \e(l“lgLLG) |.

Corollary 3.3.6. Let {1} # H <G and g € K(H,G).
(a) If g =1 then 2|e(T'} ;)| = (|H| — [Trr(H)[)(2|G| — [H]).
(b) If g #1 and g> = 1 then

20e(TY, )| = 2] (G 3 <¢H,¢H>j§§§)ﬂ (H 3 jjg;)ﬂ

¢elrr(G) ¢clr(H)

(c) If g #1 and g> # 1 then
2e(T, )| = 2|H] (Gz > <¢H,¢H>jgﬂ> || (H2 > jﬁi) -]
P€lrr(G) ¢elrr(H)
Corollary 3.3.7. Let g € K(G).

(a) For g =1 we have 2|e(T'%)| = |G|(|G| — | Irr(G))).

(b) If g # 1 then

le !G\—l—wz(G)‘i’Eﬁi), if g2 =1
20e(TE)| = =

GG -1-2 ¥ “) if g # 1.
o€lrr(G)
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3.4 Bounds for |e(T' ;)|

In [93, Section 3], Tolue and Erfanian have obtained bounds for |e(I'y,)|. In this section

some bounds for the number of edges in I'}; , are obtained. By Theorem we have

[Py, () + 2| H|IGI(1 ~ Pr,(H,G)), ifg e H
2le(T; )|+ HI>+|H| = (3.4.1)

2|H||G|(1 — Pry(H,G)), if g€ G\ H,

if g # 1but g> = 1and

|H|? > Pry(H)+2/H||G|(1—- > PrH,G)), ifge H

20T+ HI+ H| = o e
ARG~ X Pru(H.G)). ifgeG\H,
u=g,g~"
(3.4.2)
if g #1and g% # 1.
Theorem 3.4.1. Let H < G and g # 1.
(a) If g> =1 then
|Gl Z(H.G) |+ H|(IG|-1)+3|Z(H)|*—|H|? ifge H
g 2 ’
G S TER S
|Gl Z(H, )|+\1‘21|(| |=D—|H| : ifg € G\ H.
(b) If g*> # 1 then
2|GI|Z(H,G)|+6|Z(H)|*—|H|*~ | H]| ifge H
g 2 ’
|€(FH’G)‘ = 2|G||Z(H,G)|-|H|*—|H
|H(v)2|—| =1 |’ if g€ G\ H.
Proof. By Result 1.2.5, we get
|H| +|Z(H,G)| 1Z(H,G)|
— > d1-— Pr,(H,G) > ——=. 4.
1—Pry(H,G) > o an > Pry(H,G) Vi (3.4.3)

u=g,g~1
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Again, by Result 1.2.4(c), we have

3|Z(H)|?
pry(ar) = W50

(a) We have g2 = 1. Therefore, if g € H then, using equations (3.4.1)), (3.4.3) and (3.4.4),

(3.4.4)

we get
3|1Z(H)P? |H|+[Z(H,G)|
2|e(I9 HP?+|H| > |H? | 5 | +2|H||G : . (345
e 1+ P+ 1 > | (P00 ) 4 e (HEE (3.4.5)
If g € G\ H then, using equations (3.4.1)) and (3.4.3]), we get
H|+|Z(H,G
2T )| + P + 1111 > 2 (RN (346

Hence, the result follows from equations (3.4.5)) and (3.4.6)).
(b) We have g? # 1. Therefore, if g € H then, using equations (3.4.2), (3.4.3) and (3.4.4),

we get

2
24Tl ) + P+ 1211 > 2l () e (B ea)

If g € G\ H then, using equations (3.4.2) and (3.4.3]), we have

2|1Z(H,G)||H||G
20e(Ty )| + [H? + |H| > < 12( |H)||| l |> . (3.4.8)
Hence, the result follows from equations (3.4.7) and (3.4.8)). O

Theorem 3.4.2. Let H < G and g # 1.

(a) If g> =1 then

)< 4IH\IG\—S\Z(HVG)I\Z(Gvf)l—lH\Q—lH\(IZ(H)|+2)7 ifge H
elmall >

2|H\IG\*4\Z(H7G)IEZ(GvH)I*IH\Q*IH\, ifge G\ H.

(b) If g* # 1 then

2H|GI-8 ZUHGNZGIHZUDEY) i g ¢ b

le(Th )l <

2|H|IG\*SIZ(H:G)I\QZ(G:H)I*IH\Q*IHI’ ifge G\ H.
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Proof. By Result 1.2.4(b), we get
|H||G| - 2|1Z(H,G)||1Z(G, H)|

1-Pr,(H,G) < 3.4.9
and
H —4|Z(H Z(G,H
LS e < I AZUL G126 H) (5.4.10
gt |HI|G|
u=g,9
Also, by Result 1.2.5, we get
Pr,(H) < 1H| = |Z(H)] (3.4.11)

2|H|

(a) We have g2 = 1. Therefore, if g € H then, using equations ([3.4.1]), (3.4.9) and (3.4.11)),

we get

2e(Py )|+ HI* + | H|

< s (L 2D o (UG- AAE VA I -y,

If g € G\ H then, using equations (3.4.1)) and (3.4.9), we get

H|lG] — 2!Z(H,G)HZ(G7H)\>
[H||G| '

2le(Py o) + [H|? + |H| < 2|H||G]| < (3.4.13)

Hence, the result follows from equations (3.4.12)) and (3.4.13).
(b) We have g2 # 1. Therefore, if g € H then, using equations (3.4.2)), (3.4.10)) and (3.4.11)),

we get

H||G| - 4|Z(H,0)||2(G, H
2T )| + P + 11| <2l (HHIEI =L I

[H||G]

o (1H|—|Z(H)|
+!H!( i > (3.4.14)

If g € G\ H then, using equations (3.4.2)) and (3.4.10)), we get

H||G| — 4|Z(H,G)||Z2(G, H
2Tl )| + AP+ 11| < 2 (A= DIZEEN) .0
’ |HI|G|
Hence, the result follows from equations (3.4.14) and (3.4.15)). O

In the remaining results p stands for the smallest prime such that p | |G| and g # 1.
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Theorem 3.4.3. (a) If g> =1 then

2(p—1)|H\|GH-2\Z(H,G)|\ZG]J—p|H|2+3p|Z(H)|2—p\H|7 ifge H
le(Th )l > )
2(p*1)|H\|G\+2\Z(;II;G)HG|*P|H| *p\HI’ ifge G\ H.
(b) If g* # 1 then
2(19—2)|H\|G\+4\Z(H7G)|\2Gp|—1?|1*1’|2+6PIZ(15’)|2—p\HI7 ifge H
’e(F%’G”z H||G|+4|Z(H,G)||G|—p|H |2 —p|H
2(p—2)|H||G|+4] (21; MG|=p|H|?—p| I’ ifge G\ H.
Proof. By Result 1.2.5, we get
|Z(H,G)[+ (p—1)|H|
1— Pr(H,G) > 3.4.16
and
2|1Z(H,G —2)|H
1- > Pr(HG)> |Z(H,G)l + (p — 2)|H]| (3.4.17)
it plH|
u=g,9
(a) We have g2 = 1. Therefore, if g € H then, using equations ([3.4.1]), (3.4.16)) and (3.4.4),
we get
3|Z(H)]? |Z(H,G)| + (p—1)|H|
20e(T o)1+ H|*+|H| > |H|? <H2 +2|H||G] 7 . (3.4.18)
| H] plH|
If g € G\ H then, using equations (3.4.1)) and (3.4.16)), we get
Z(H,G ~|H
20e(T )| + [H> + |H| > 2|H||G| (’ ( ”pf;{('p ) ) (3.4.19)

Hence, the result follows from equations (3.4.18)) and (3.4.19).
(b) We have g? # 1. Therefore, if g € H then, using equations (3.4.2)), (3.4.17) and (3.4.4),

we get

_ 2
2e(T%y )|+ [H[2 +|H| > 2|H]||G] <(p 2)|H]|)‘+}5‘Z(H’G)’>+1H|2 (%ﬁ;ﬂ) (3.4.20)

If g € G\ H then, using equations (3.4.2)) and (3.4.17)), we have

—2)|H| +2|Z(H,G
2T )| + P + 1] > 2 (=2 HZELEN), (3.4.21)
Hence, the result follows from equations (3.4.20) and (3.4.21)). O
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Theorem 3.4.4. (a) If g> =1 then

2p\H|\G|*4P\Z(H7G)|\Z(GZH)I*(P*U\HIQ*\HHZ(H)\*MHI’ ifge H

2
|€(F%’G)|S 2|H||G|—4|Z(H,G)||Z(G,H pH2 H
|H]| I—I(,)IIQ(,)\—II—\ I’ ifge G\ H.

(b) If g*> # 1 then

2p|HIIGL =891 Z(H.G)|Z(G, )| ~(p=2) [ H -2 HIZ(H)=plH| ¢ o

2
‘B(P?{’G”S 2|H||G|-8|Z(H,G)||Z(G,H 1;12 H
|H||G|-8|Z(H, )||2( )= |H|? | \7 ifge G\ H.

Proof. By Result 1.2.5, we get

|H| — |Z(H)]
Pr,(H) < 3.4.22
(a) We have g2 = 1. Therefore, if g € H then, using equations (3.4.1)), (3.4.9) and (3.4.22),

we get

2e(Cy o)l + [H? + |H|

< (LU oy (VLG22 GNZCIN -y,

If g € G\ H then, using equations (3.4.1)) and (3.4.9)), we get
[HI|G| —2!Z(H,G)HZ(G7H)\>
|HI|G|

(3.4.24)

2e(I% )| + | HI? + |H| < 2|H]|G (

Hence, the result follows from equations (3.4.23) and (3.4.24).

(b) We have g2 # 1. Therefore, if g € H then, using equations (3.4.2)), (3.4.10)) and (3.4.22),

we get

2e(T o)l + [HI* + |H|

If g € G\ H then, using equations (3.4.2)) and (3.4.10)), we get

H||G| - 4|Z(H,G)||Z2(G, H
2Tl )| + AP+ 11| < 2 (A= DIZEEN) .0
’ |HI|G|
Hence, the result follows from equations (3.4.25)) and (3.4.26)). O
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Note that several other bounds for |e(I'}; ;)| can be obtained using different combi-
nations of the bounds for Pr,(H,G) and Pry(H). We conclude this chapter with certain
bounds for |e(I'Y,)| which are obtained by putting H = G in the above theorems.

Corollary 3.4.5. (a) If g> =1 then

3|G|2 — 812(G)|? — |GI(12(G)| +2)
4

Gl1Z(G)] +312(G)* — |G
: .

> le(TE)] >

(b) If g*> # 1 then
2|GP? - 8|1Z(G)* — |GI(1Z2(G)| + 1)
2
Corollary 3.4.6. (a) If g> =1 then
(p+ DIGP - 4p|Z(G)]* - |G]|Z(G)| - plG]
2p

2|G|12(G)| +612(G)|> - |GI* - |G|

> le(TE)| = 5

> le(TE)|

L (P=2)|GP +2|Z2(G)[|G] + 3pZ(G)* - plG]
> % :

(b) If g*> # 1 then
(p+2)|G* — 8p|Z(G)]> — 2|G||Z(G)] - plG]

” > [e(T)|

(p = DIGP* + 4 Z(G)IG| + 6p1Z(G)* — pIG|

>
= %

3.5 Conclusion

In this chapter, we have introduced the concept of relative g-noncommuting graph (I'y; ,),
for any subgroup H of a finite group G. We have characterized finite groups such that
F‘}fé is a star. We have also shown that F%G is not a tree (whenever |H| # 2), lollipop
(whenever |H| # 2,3) or a complete graph when 1 # ¢g € K(H,G) along with certain
other results. Further, we have derived an expression for the number of edges in F%LG
in terms of Pry(H,G) and Pry(G), and subsequently established certain bounds for this
quantity. As a consequence of our research we obtain several new results on I'Y, ( for
example, see Corollaries 3.4.5 and 3.4.6). Some of our results also generalize some
existing results on I'Y, (for example, Theorem generalizes Results 1.4.21 and 1.4.22;
Theorem [3.3.5|generalizes Result 1.4.23).
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