Chapter 6

Differential Co-expression Analysis On Single Cell

RNA-Seq Data

6.1 Introduction

Biological systems are often the congregation of meticulously regulated tens of thou-
sands of genes in complex, yet dynamic networks, that change substantially among
different tissue types, cell states, or developmental stages. So the first step towards
perceiving complex biological processes is by deciphering gene interactions and discov-
ering changes in corresponding networks. The possibility of uncovering the biological
and biochemical pathways relevant to disease progression and therapeutic targets can be
achieved through the identification of abnormal gene interactions under varying condi-
tions [367]. Network analysis on bulk tissue RNA Sequencing (RNA-Seq) data plays
a pivotal role in the identification of genes responsible for similar biological functions,
transcriptional regulation targets, and disease-associated pathway regulators. However,
with the assumption that cells maintain the same regulatory mechanisms across diverse
cell types, tissue level network analysis only explores the gene-gene interactions across
multiple samples. Recent years have seen the rapid development of single cell RNA
sequencing technology that facilitates construction and subsequent investigation of gene
networks across cell types a reality. Network analysis on scRNA-Seq data provides valu-
able insight into the transcriptional regulation mechanisms underlying various biologi-
cal processes. As in the case of all technologies, regardless of the fact that exploratory
analyses have demonstrated the possibilities of constructing functional gene networks,
technical as well as biological complications present significant challenges in sScCRNA-
Seq data. In scRNA-seq, a truly expressed gene may not be detected in some cells due to
technical inefficiencies resulting in false zero expressions. Furthermore, zero expression
that represents biological variations can be a result of the stochastic gene expression

process [367]. Thus, when compared to bulk RNA-Seq data, scRNA-Seq is often much



sparser and thus requires non-conventional computational and statistical tools that are

apt in tackling challenges posed by the abundance of zero counts.

6.1.1 Single Cell RNA Sequencing (scRNA-Seq)

Single-cell RNA Sequencing (scRNA-Seq), a revolutionary technique in genomics,
enables researchers to examine gene expression at the level of a single cell. scRNA-seq
offers a high-resolution view of gene expression within individual cells as opposed to
standard bulk RNA sequencing, which examines gene expression across a population of
cells. In order to identify and characterize unusual cell types, cell sub-populations, and
dynamic changes in gene expression throughout cellular development and response to
stimuli, thousands to millions of cells can be analyzed simultaneously using sScRNA-seq.
Developmental biology, immunology, cancer, neuroscience, and personalized medicine
are just a few of the domains where the approach has major implications.

Unlike bulk RNA-Seq, where gene expression is examined in a population of cells,
scRNA-Seq analyzes expression profiles of individual cell within a heterogeneous popu-
lation. Thus, scRNA-Seq analysis provides a nuanced and detailed view of the diversity
and function in cells. scRNA-Seq analysis is capable of shedding light on the hetero-
geneity within cell populations by examining gene expression at single cell level and
can lead to detection of sub-populations and uncommon cell types that are not detected
by bulk RNA-Seq analysis. scRNA-Seq analysis helps in understanding the complex
biological process by investigating co-expression patterns between cells so as to unravel
the underlying interactions and associations between cell types within a tissue or organ.
scRNA-Seq approaches may introduce technical noise and biases due to sample prepa-
ration, sequencing and amplification thus leading to lower accuracy and reproducibility.
When compared to bulk RNA-Seq, scRNA-Seq has smaller read depth per cell, thus
leading to higher dropout rates and is less sensitive to finding lowly expressed genes.
scRNA-Seq can be computationally costly as it extensively investigates thousands of
distinct cells. Analysis of scRNA-Seq data entails specialized processing power and
knowledge leading to complications in interpretation. Consistent detection of cells with
low read counts or cell types that are rare by sScRNA-Seq is not possible due to technical

limitations.

202



6.2 Related Works

For co-expression network (CEN) construction and analysis, Salehi et al [600] em-
ploy the widely used WGCNA [327]. This work adheres to the basic pipeline of CEN
construction with scale-free topology. To quantify the correlation between the expres-
sion of each pair of genes and identify only positive correlations, the Pearson correlation
coefficient [545] and the signed network options were employed, followed by the pro-
duction of a topological overlap matrix (TOM) [574].

Li et al [367] proposed scLink, which calculates the correlation between gene pairs
followed by the use of a penalized and data-adaptive likelihood method to learn sparse
dependencies among genes and construct sparse gene CENs, to improve the construc-
tion of gene CENSs for single cells. The incapacity of Pearson [545] and Spearman’s
[643] correlation coefficients to efficiently approach the representation and interpre-
tation of gene-gene relationships in exceedingly sparse scRNA-Seq data was discov-
ered in this study. Using two phases, scLink delivers reliable inference of gene co-
expression networks while also capturing functional gene modules. 1) constructing a
robust co-expression matrix from gene expression data in order to accurately reflect
the co-expression interactions between genes, and 2) identifying a sparse gene network
from the co-expression matrix using a penalized and data-adaptive likelihood approach.
scLink is intended to detect and predict ligand-receptor interactions among different cell
types in a tissue or biological sample.

Algabri et al. [18] proposed Single-cell Gene Expression Network Analysis (sc-
GENA) !, a systematic pipeline for network analysis of sScRNA-Seq data. In scGENA,
identification of DEGs through DEA is followed by creation of a CEN from the DEGs,
DCA, d=functional enrichment analysis, and finally identification of overlapping genes
across samples. scGENA investigates the changes in network topology across cell
groups under varying conditions, cell types and stages.

Sekula et. al. [614] offer a hierarchical Bayesian factor model for constructing
a gene CEN from scRNA-seq count data. The treatment-dependent parameters in the
proposed model determine the activation latent factors in each gene. This permits gene-
gene co-expression to be calculated within each treatment group. Although Sekula et al.

[614] only consider two group settings labeled as control and treatment for simplicity,

! (https://github.com/zpliulab/scGENA)
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the model can be extended to additional group scenarios. The proposed count model,
which is conditionally Poisson but marginally overdispersed, allows for zero-inflation
and high cell-to-cell variability peculiar to scRNA-Seq data.

Chiu et al. [100] developed scdNET 2, where differential gene regulation networks
associated with cellular states are analyzed at single cell level. scdNET starts with pre-
processing and normalization , as well as deletion of non-informative genes in either
state with the aim to reduce inter-cell bias. Fisher transformation is used to reduce
sample size related bias while elimination of zeroes is achieved through the computation
of gene-gene correlation within each group of cells. Within groups of cells normalized
correlation co-efficients are compared so as to assess the changes in the correlation in
the Fisher domain. Integration of the significant changes in the gene-gene pairings into
the differential network is the final step in scdNet.

While scGENA [18] builds a network from DEGs, Sekula et al. [614] uses a hierar-
chical bayesian model for network construction, and scdNET [100] follows the pipeline
of calculating gene-gene correlation within cell groups and merging gene-gene pairs
with significant changes across groups into differential network. There are a few studies
that do network analysis [600, 176, 367] as well as DCA [18, 614, 100] on scRNA-Seq
data.

To the best of our knowledge, there are no works of DCA on scRNA-Seq data that
follow the pipeline of CEN construction, module extraction, identification of biologi-
cally relevant modules, detection of hub-genes, and finally identification of biomarkers.
With the goal of detecting intrinsic gene-gene interactions at the cellular level, we estab-
lished a framework for differential co-expression analysis suitable for scRNA-Seq data.
We tested the hypothesis on ESCC. In light of the following considerations, the sug-
gested framework for Differential Co-expression Analysis Method on single cell RNA
Sequencing data, scDiffCoAM is significant.

e Compared to some of its counterparts, it uses a better hub-gene discovery method.
e [t can identify certain crucial ESCC genes that have not been reported by others.
e Due to the evaluation of both statistical and biological factors as well as written evi-

dence, its validation of possible biomarkers is full proof.

2 https://github. com/ChenLabGCCRI/scdNet
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6.3 Background

In this section, we discuss the measures that we use for deciding the significance of

genes for hub gene finding and two R packages- Seurat [219] and hdWGCNA [510] that

we use in the implementation of scDiffCoAM.

6.3.1 Measures for hub gene finding

Azuaje et al. [35] have observed that there is often an association between key dis-

ease pathways and highly connected genes (i.e., hub-genes) in gene CENs. We employ

hdWGCNA to construct a CEN for high-dimensional data and to extract significant mod-

ules for a given dataset. With the extracted modules, important nodes (or genes) can be

identified as potential biomarkers. In Table 6.1, we summarize seven measures that we

employ for hub-gene finding.

Tab. 6.1: Centrality Measures for hub-gene finding employed in scDiffCoAM

Measure

Function

Formula

Alpha Cen-
trality [53]

An adaptation of eigenvector centrality
with the addition that nodes are imbued

with importance from external sources.

Given a graph with adjacency matrix A;
the alpha centrality is defined as follows:
x= (I—aAT)"le where ¢, is the external
importance given to node j, and « is a pa-

rameter.

Average

Distance[128]

Average distance of a node in a strongly
connected and loop free graph. It is the

inverse of closeness centrality.

Average distance of node u to the

rest of nodes in the net defined as:

Y ey dis(u,w)

CradCu= n—1

Barycenter

Centrality[712]

Barycenter scores are calculated as 1 /
(total distance from vertex v to all other
vertices) in a strongly connected network.
More central nodes in a connected com-
ponent will have smaller overall short-
est paths, and ’peripheral’ nodes on the
network will have larger overall shortest

paths.

If o(v) denotes the sum of the distances
from v to all other vertices then Barycen-

ter Centrality for vertex v defined as:

Craac,= ﬁ

Decay Cen-
trality [277]

Decay centrality is a centrality measure
based on the proximity between a chosen
vertex and every other vertex weighted by

the decay.

Decay centrality of a given vertex x of
a graph G is defined as: ¥y (g o)
where d(x,y) denotes the distance be-
tween x and y and o € (0,1) is a param-

eter.
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A network centrality metric called alpha centrality [53], a subset of eigenvector cen-
trality, is used to evaluate the significance or influence of specific nodes within a net-
work. Alpha centrality measures a node’s relative significance in a graph based on its
connections to other nodes in the network. Alpha centrality permits the introduction
of a parameter (o) to modify the weight of a node’s neighbors as opposed to stan-
dard eigenvector centrality, which determines centrality based on all connections with
equal weight. This parameter offers flexibility in emphasizing or understating particular
network edges based on personal preferences or subject-matter expertise. The average
number of steps or edges needed to travel from one node to every other node in a net-
work is measured by the average distance [128], which is a network statistic. It measures
the typical path length between nodes and offers insights on the network’s connectivity
or signal transmission efficiency. A network with nodes that are typically closer to one
another, enabling quick communication and interaction, has a smaller average distance.
On the other side, a network that is more sparse or distant is implied by a longer average
distance, which may necessitate more steps for information to spread between nodes.
Barycenter centrality [712] determines a node’s centrality based on the geometric cen-
ters (barycenters) of its nearby nodes. According to this metric, a node’s centrality is
determined by how close it is to the nodes next to it in terms of mass. The barycenter
centrality takes the spatial distribution of nodes within the network into account; nodes
with greater centrality scores are those that are closer to the centers of their neighbors. In
networks that require the physical position of nodes, such as spatial networks, this cen-
trality measure is very important. Higher centrality scores are given by decay centrality
[277] to nodes that are both well-connected and close to other nodes. According to de-
cay centrality, a node’s influence on another node declines as their distance increases.
Nodes that are closer to one another have a greater influence, whereas nodes further apart
have a less impact. This measurement illustrates the notion that a node’s influence on
its neighbors decreases with increasing distance. Decay centrality is especially helpful
in situations where determining the importance of nodes within the network depends on

both the quality of connections and their closeness.
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6.3.2 Seurat

Seurat [219] 3 is an open source R (Section 2.2.1) package developed by Satija et
al.[608] that provides for well structured organization of scRNA-seq data in the form of
objects called the Seurat Objects along with an efficient set of methods for their process-
ing. It also provides for maintaining the gene and cell related data and meta data existing
in the input data sets as well as the derived meta data obtained from preprocessing for
later use, in the respective Seurat objects. The well structured organization, provision for
derived meta data, and ready availability of methods frequently used in computational

biology make Seurat a very very useful tool for researchers in the field.

6.3.3 High Dimensional WGCNA (hdWGCNA)

Seurat ObjeCt  F=======sss e s m s

hdWGCNA Analysis
Set up Seurat Construct Set up the Select
object for Metacells ——3  expression  |——  soft-power
WGCNA matrix threshold

Compute Eigen
genes and Construct CEN

Connectivity

|

Seurat Object
Fig. 6.1: Steps involved in WGCNA analysis for high dimensional data using hdWGCNA
Morabito et al. [510] recognize the immense complexity of biological systems with
multi-scale hierarchies of functional units based on tightly-regulated interactions among
organs, organisms, molecules, and cells. Further, they state that regardless of the ex-
istence of experimental methods that enable transcriptome-wide measurements across
millions of cells, most omnipresent bioinformatic tools do not support systems-level
analysis. Thus, Morabito et al.[510] present High Dimensional WGCNA (hdWGCNA),
a comprehensive framework for analyzing co-expression networks in high-dimensional
transcriptomics data such as single-cell and spatial RNA-seq. hdWGCNA provides
built-in functions for a) Network inference, b) Gene module identification ¢) Functional

gene enrichment analysis, d) Statistical tests for network reproducibility, and e) Data vi-

3 https://satijalab.org/seurat/
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sualization. hdWGCNA is further capable of performing isoform-level network analysis

using long-read single-cell data.

The following are the most advantageous characteristics of hdWGCNA:

e hdWGCNA does not require prior knowledge or databases, making it a purely unsu-
pervised approach.

e The co-expression information computed by hdWGCNA can be easily retrieved from
the Seurat object to facilitate custom downstream analyses beyond the hdWGCNA
package.

e hdWGCNA allows for comparisons between experimental groups via differential mod-
ule eigengene testing and module preservation analysis.

e The CENs inferred by hdWGCNA are highly reproducible in unseen datasets, indi-
cating that this is a robust methodology.

hdWGCNA is available as an R package* for performing weighted gene co-expression

network analysis (WGCNA) [327] in high dimensional transcriptomics data such as

scRNA-seq or spatial transcriptomics. hdWGCNA requires data formatted as Seurat

[608] objects. Fig. 6.1 describes, in brief, the steps involved in WGCNA analysis for

high dimensional data using hdWGCNA [510, 509]. Firstly, before running hdWGCNA

the Seurat objects are set up for the operation. Setting up Seurat objects is then followed
by the first step of running the hdWGCNA pipeline which is the construction of meta-
cells from the scRNA-Seq dataset. In a nutshell, metacells are an aggregation of small
groups of similar cells from the same biological sample of origin. Identification of these
groups of similar cells is achieved through the k-Nearest Neighbors (KNN) algorithm
followed by the computation of summed expression of these cells which finally results
in a metacell gene expression matrix. Next step is the specification of the expression ma-
trix that will be used for further network analysis. As in the case of WGCNA[327], this
step is very important for hdWGCNA. hdWGCNA infers the co-expression relationship
among genes through the construction of a gene-gene correlation adjacency matrix. Re-
moval of weak connections while retaining the strong connections entails the reduction
of the amount of noise in the matrix by raising the correlations to a power. This enhances
the critical choice of soft power threshold. It is essential that the network has a scale-free
topology. Construction of CEN starts off by optionally filtering genes and samples with

too many missing entries or zero variance in at least one set. Module detection leaves

4 https://smorabit.github.io/hdWGCNA/index.html
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out the filtered genes. Genes are pre-clustered into blocks and for each block of genes,
hdWGCNA constructs the network and topological overlap matrix (TOM) [574]. Using
average linkage hierarchical clustering genes are clusters with the aim to identify mod-
ules. Processing of each block is then followed by checking, reassigning, and merging
of modules based on kMEs (i.e., correlation with module eigengene). Computation of
module connectivity involves the calculation of pairwise correlations between genes and

module eigengenes.

6.4 ScDiffCoAM: A Complete Framework To Identify Poten-
tial ESCC Biomarkers Using SCRNA-Seq Data Analysis

Preservation Analysis '

CD45+ CD45- Subset Object Creation

T

precsefenerannnanfanaeay {Dimensionality Reduction; T Project Modules
H ! H H +[TC| [BC] EP H
Create Otiects |t ; :6§: ﬂ% o]
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Fig. 6.2: Proposed framework for DCA on scRNA-Seq Dataset, scDiffCoAM
Our scDiff CoAM, scDiffCoAM, closely follows the conventional DCA pipeline with
the aim to identify biomarkers that includes the following: 1) CEN construction 2) mod-
ule extraction 3) identification of modules of interest (Mols) 4) hub-gene detection, and
5) identification of biomarker(s). In Fig. 6.2 we depict the proposed framework, scD-
iffCoAM, for DCA on scRNA-Seq data. The datasets for DCA on microarray or bulk
RNA-Seq are separated into two categories based on conditions, normal and disease.
We observed transcriptional changes in gene-gene interactions under normal and dis-

ease conditions using DCA on such datasets. DCA on scRNA, on the other hand, may
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enable an improved comprehension of the interaction of intrinsic cellular processes un-
der two different conditions. We construct CENs for each cell type under each condi-

tion because our focus is primarily on interactions at the cellular level.

6.4.1 Pre-processing

The initial input to our framework, scDiffCoAM, consists of two datasets that rep-
resent the two different conditions considered for DCA. We have immune(CD45+) and
non-immune(CD45-) conditions for the scRNA-Seq dataset GSE160269, as discussed
in Section 2.6.3 and Table 2.2. ScRNA-Seq data are incredibly large when compared
to bulk RNA-Seq and microarray data. Because of this, downstream analysis is very
computationally-intensive. The basic pipeline we follow to pre-process scRNA-Seq data
is discussed in detail in Section 2.7.3. It is preferred to create objects or data structures
that streamline data administration and other related analyses. The following informa-
tion is contained in these objects designed to facilitate downstream analysis: (a) the
original count data, and (b) the data used for quality filtering, pre-processing, and other
testing including meta-information such as gene counts for each sample, mitochondrial
RNA content, etc. As a result, the pre-processing module first takes two datasets as input
and generates two related objects, di and d», for condition 1 (control) and condition 2
(disease), respectively. These objects are filtered, normalized, and scaled; the pipeline
steps for each of these operations are covered in Section 2.7.3 in more detail. By ap-
plying quality filtering, we eliminate genes whose expression was only found in 0.1%
of the cells as well as cells with a low gene content or a high mitochondrial content. In
the pre-processing unit, the count data is normalized and scaled with the intention of

facilitating additional analysis, such as WGCNA and other statistical tests.

6.4.2 Dimensionality Reduction

We identify the variable features of each object, facilitating principal component
analysis (PCA) [546, 292], an effective statistical method for reducing the dimension-
ality of a sizable dataset. It is possible to identify features (samples) that are outliers
on a 'mean variability plot’ as variable features, which makes PCA and dimensionality
reduction in the subsequent steps of the framework easier. We start by identifying vari-
able features for each object (d1,d>) before using PCA (Section 2.1.6). Employing PCA

with previously identified variable features as input thus results in the identification of

211



the principal components (PCs). On each object, clustering is used, with the PCs serv-
ing as the initial cluster pivots. The process of choosing the largest clusters yields the

dimensionally reduced objects d| and d.

6.4.3 Partitioning into cell types

We divide/partition the two reduced objects, di and dé, which we now refer to
as condition-objects, into their corresponding cell-type objects to enable the cellular-
level analysis of the gene-gene interactions. This results in the creation of multiple
subgroups of objects for each condition-object that correspond to different cell types
that constitute that condition-object. There are m different cell types, for instance, for
the condition-type object d (for condition 1). In order to correspond to m cell types of
object d!, we create m cell-type objects, ay,az,...a,. Similar to this, we generate n

cell-type objects, by, bs, .. .b,, for condition-type object dj.

6.4.4 CEN Construction and Module Extraction

The creation of Co-expressed networks (CENs) corresponding to each condition is
a critical step in DCA. The conditions are further divided into cell types in SCRNA-Seq.
As a result, it is imminent to perform subsequent DCA using CENs which correspond
to each cell type. Thus, m and n CENs are constructed for each cell-type object that
corresponds to the condition-type objects d| and d, respectively. The choice of power,
referred to as the soft threshold, is required for CEN construction. For the purpose of
calculating an adjacency matrix and corresponding Topological Overlap Matrix (TOM),
co-expression similarity is raised to this power. The selection of soft thresholding power
is based on the approximate scale-free topology criterion. It is unavoidable that CENs
are not constructed from the cell-type object expression matrix as a whole for the con-
struction of CENs because there are too many missing or zero entries. The CENs are
instead constructed by identifying them as modules. Therefore, for every cell-type ob-
ject such as ay,as,...,ay or by,by,...,by,, blocks of genes constitute the modules, and
the CEN for that cell-type object consists of all such modules.

To identify modules of interest (Mol), we employ module preservation analysis (Sec-
tion 2.1.9) We define an ‘module of interest’ (Mol), as a module that is not highly
preserved because the majority of its connections are not retained [329]. We perform

preservation analysis on each pair (a;,b;) where a; correspond to m cell-type objects in
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condition-type object d}, and b; correspond to n cell-type objects in condition-type ob-
ject d) in order to detect MOIs. For example in a pair (a;,b;) , if a module x in cell-type
object ay is not highly preserved (Section 2.1.9) in majority of modules in b; then x is
an Mol. For each pair (aj,b;) we perform preservation analysis such that we analyze
which modules in a; does not retain most of its connections (not highly preserved as
disscussed in Section 2.1.9)in by and also analyze which modules in b; are not highly

preserved in aj.

6.4.5 Hub-gene Finding

Hub genes, which are thought to be significant in gene-gene networks because of
their high interconnectedness with a large number of neighbouring nodes, can initially
be considered potential biomarkers. We utilize a hub-gene finding algorithm [592] (Al-
gorithm 1) variation that was developed employing centrality measures. The CENs are
constructed by identifying sizable groups of genes as modules. For scRNA-Seq data, all
nodes (genes) have the same degree, unlike for microarray data or bulk RNA-Seq data.
As a result, the CBDCEM’s [592] degree [171], betweenness [170], pageRank [652],
and katz [302] centrality measures are proven to be useless in these situations. As they
were proven to be more effective in our networks than in CBDCEM [592], we exper-
imented with alpha centrality [53], average distance [128], barycenter centrality [712],
and decay centrality [277].

In essence, we compute each chosen measure, namely alpha centrality [53], average
distance [128], barycenter centrality [712], closeness centrality [39], decay centrality
[277], eigenvector centrality [519], and radiality [766], on all genes present in the mod-
ule for each Mol. The genes are then sorted according to the calculated value after that.
It is significant that the measure determines whether the sorting is ascending or descend-
ing. Each measure’s top; k genes are given the value 1, while the rest are given the value
0. A gene is regarded as a hub gene in its associated Mol if it ranks in the fop;k of at
least 4 out of 7 (majority) measurements. Here, top;k is determined as follows with the

goal of finding K hub-genes:

K, if 10% of MS <K
k—

10% of MS, otherwise
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where, MS is the module size in terms of no. of genes belonging to the module.

6.4.6 Identification of DEGs

In order to establish the biological significance of the critical genes identified by
the hub-gene finding unit of the framework, lists of genes annotated to enriched GO
keywords (IgEGo) and lists of genes annotated to enriched pathways (IgEP) are essential.
We identify a set of DEGs for each non-reduced condition-type object d; and d, . The

validation unit takes as input every gene that is identified as a DEG in d; or d>.

6.4.7 Validation

The validation unit of the framework validates both modules in general and hub-
genes in specific. A module is GO enriched and pathway enriched if at least one enriched
GO term and enriched pathway is present the module. Gene Ontology (GO) enrichment
analysis (Section 2.4.1.1) and pathway enrichment analysis (Section 2.4.1.2) are used
to validate Mols identified by the preservation analysis unit. All detected Mols are
used as input in the validation unit’s GO enrichment and pathway enrichment analysis
sub-unit of the framework. These subunits calculate the percentage of enriched GO
terms (PEGoT) for each Mol across all three GO databases (BP: Biological Process,
CC: Cellular Component, and MF: Molecular Function) as well as the percentage of
enriched pathways (PEP) in KEGG.

We further validate each hub-gene detected by the framework so as to establish them
as potential biomarkers. We assess the acceptability of hub-genes as potential biomark-
ers based on the following criterion.

a We examine the pertinent literature related to that disease with respect to the genes
identified as crucial to support the claim in order to support the direct or indirect
relationship of the identified hub-genes as potential biomarkers with the disease of
interest.

b We perform pathway enrichment and GO enrichment analysis to determine the bio-
logical relevance of the identified hub-genes to the dataset and to comprehend how
they interact with one another within a network.

¢ We identify the transcription factors (TFs) among the list of identified hub-genes
and employ gene regulatory networks (GRN) to analyze their regulatory behavior in

order to examine the association patterns between the target genes (TG) and the cor-
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responding transcription factors (TF) as well as regulatory behavior among the list of

identified hub-genes.
We initially find 1gEGo and IgEP with p — value = 0.05 for the validation of the hub-
genes identified by scDiffCoAM. The GO enrichment and pathway enrichment sub-units
utilize the DEGs discovered by the framework’s identification of DEGs unit as input.
Two lists—IgEP, and 1gEGo—are the outcomes. The hub-gene list, IgEGo, and 1gEP
are provided to the biological analysis unit in order to validate the hub-genes identified
by the hub-gene finding unit of the framework. The biological analysis unit finds hub-
genes that are annotated to enriched pathways and enriched GO terms. In other words,
the hub-genes that are present in IgEGo and IgEP are identified by the biological analysis
unit. In order to determine how these hub-genes behave in terms of regulation within the
network, this unit further identifies hub-genes that are TFs and constructs GRN (Section
2.4.2). The validation unit of the framework’s literature trace sub-unit finds hub-genes
that have published literature traces confirming their status as biomarkers for ESCC or

other SCCs closely associated with ESCC.

6.5 Experimental Results

Our main area of interest is ESCC, a single cell RNA-Seq dataset, GSE160269 was
used to validate our proposed framework scDiffCoOAM. The detailed specifications for
the dataset are provided in Table 2.2 and Section 2.6.3. Zhang et al.[877] analyzed
208,659 single cell transcriptomes in ESCC and obtained samples from four adjacent
normal tissue and sixty ESCC tumors and samples from 60 individuals. The immune
(CD45+) or non-immune (CD45-) cells were obtained through the CD45-FITC stain-
ing of single cell suspension. CD45+ immune cells has 3 cell types namely, Tcells
(TC), Beells (BC), and Myeloid (MY) while CD 45- non-immune cells have 5 cell types
namely, Epithelial, Endothelial, Fibroblasts (FI), Pericytes (PE), and Fibroblastic Retic-
ular Cells (FRC). DELL workstation running Windows 10 Pro for workstations with a
3.70GHz Intel(R) Xeon(R) W-2145 CPU and 64 GB of RAM serves as the test plat-

form.In the R programming environment (Section 2.2.1), we carry out the experiments.

6.5.1 Pre-processing

As mentioned in Section 6.4.1, the input to the presprocessing unit are two datasets

CD45+ (immune) and non-immune(CD45-) datasets (Table 2.2 and Section 2.6.3). We
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employ the Seurat package [608] (version 4.1.1) >to construct two Seurat objects, CD45+
and CD45-, for quality filtering as well as subsequent downstream analysis. We in-
tend to simplify the maintenance of the original count data and computation of meta-
information, such as gene counts for each sample, mitochondrial content, etc. useful in
quality filtering, by using Seurat to create the two objects. Furthermore, all information
pertaining to the implementation of each test on a Seurat object can be stored in the same
object and easily accessed thus aiding in the implementation of other statistical tests and
analyses.

CD45+ and CD45- condition-type Seurat objects are of sizes 15,175 x 1,11,028 and
17,012 x 97,631, respectively. According to Zhang et al. [877], we achieve quality fil-
tering by eliminating genes whose expressions were found in less than 0.1 percent of all
cells and eliminating cells with gene counts below 500 or mitochondrial RNA contents
above 20% (Figures 6.3a and 6.3b). In this step, the number of CD45+ Seurat cells
(columns) is reduced by one, resulting in a dataset that is 15,175 x 1,11,027, while the
number of CD45- cells is left unchanged at 17,012 x 97,631. Based on average expres-
sion and dispersion level thresholds, genes with highly variable expression, or to put it
another way, outlier genes in a ‘mean variable plot” were chosen [877]. Data scaling is
accomplished by regressing normalized expression levels against the sum of UMI counts
and the amount of mitochondrial RNA present in each cell for each gene using a linear

model.
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Fig. 6.3: Violin Plots for (a) CD45+ and (b) CD45-. Here, nCoun_RNA= no. of UMIs per
cell, nFeature_RNA=no. of genes detected per cell and percent. MT= Percentage of
mitochondrial RNA content.

3> https://satijalab.org/seurat/
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6.5.2 Dimensionality Reduction

We initially perform PCA (Section 2.1.6) on CD45+ and CD45- Seurat objects
in order to their reduce dimensions. In order to identify PCs, PCA incorporates the
variable features obtained in the pre-processing unit. The PCA elbow plots for CD45+
and CD45- are shown in Fig. 6.4a and Fig.6.4b, respectively. By assessing the minimum
value of the following, we determined where PCA begins to elbow ©.

1. the point at which PCs cumulatively contribute 90% of the standard deviation (sd)
but only contribute 5% of sd individually.
2. the point at which the fluctuation in percentage between two consecutive PCs is less

than 0.1%.

10.01
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5 10 15 20
5 10 15 20
PC PC
(a) CD45+ (b) CDA45-

Fig. 6.4: Elbow Plots for (a) CD45+ and (b) CD45-.
These values are respectively PC 45 and PC 20 for CD45+ and CD45-, and respectively

PC 42 and PC 14. As a result, we established PC 20 and PC 14 as the minimal values
for CD45+ and CD45-, respectively. We use Shared Nearest Neighbour (SNN) to per-
form graph-based Louvain clustering on 20 (CD45+) (Fig. 6.4a )and 14 (CD45-) (Fig.
6.4b) principal components (PCs), and then we find the clusters. As a result, 20 and
25 clusters are detected in CD45+ and CD45-, respectively. According to the cluster
results, the size of the clusters significantly decreases in the seventh (7!) and eighth
(8™) clusters for CD45+ and CD45-, respectively. As a result, we select a subset of the
first six (CD45+) and first seven (CD45-) clusters in order to decrease the number of
cells. This lowers CD45+ to 15,175 x 74,588 and CD45-to 17,012 x 62,484. We re-
fer to these reduced condition-type Seurat objects as CD45’'+ and CD45’' — Tcell reduces
from 69,278 to 53,694, Bcell decreases from 22,477 to 12,021, and Myeloid decreases

® https://hbctraining.github.io/scRNA-seq/lessons/elbow_plot_metric.html
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from 19,273 to 8,873. Epithelial decreases from 44,730 to 20,092, endothelial from
11,267 to 6,63, fibroblast from 37,213 to 35,803, pericytes from 3,102 to 8, and FRC
from 1,319 to 218 (Table 2.2). With Bonferroni p-value correction [49], we identify
cluster-specific markers to detect DEGs. We particularly used the MAST method [165]
7, which uses a hurdle model customized for scRNA-seq data to identify DEGs between
two groups of cells. 5,321 and 7,292 genes, correspondingly, were identified as markers

(DEGs) for CD45+ and CD45-.

6.5.3 Partitioning into cell types

As mentioned earlier in Section 6.4.3, we primarily focus on transcription changes
in gene-gene interaction at cellular level. As such we subset each reduced Seurat object
into their respective cell types. We create cell-type Seurat objects, Tcell (TC), Beell
(BC), and Myeloid (MY) Seurat objects from CD45+ condition-type Seurat object with
53,694, 12,021, and 8,873 cells, respectively. Similarly, Epithelial (EP), Endothelial
(EN), and Fibroblast (FI) cell-type Seurat objects of sizes 20,092, 6,63, 35,803, re-
spectively are created from conditon-type Seurat object CD45-. Here, it is noteworthy
that we were unable to create subsets for Pericytes and FRC due to their smaller size as

compared to the other cell types.

6.5.4 CEN Construction and Module Extraction

Following definitions are useful in understanding the subsequent discussion.

Definition 6.5.1 (CEN). A CEN can be defined as a graph, G(V,E), where V represents
the set of genes in a Seurat object and E represents the set of associations among the

genes in terms of their expression similarity.

Definition 6.5.2 (Module). A module is a subset of genes, M C G in a Seurat object,
where there exists high coherence or homogeneity among the genes in terms of associa-

tions or expression similarities.

It is not feasible to implement WGCNA on sc-RNA-Seq because of its inherent
limitations. The application of hdWGCNA makes it possible to generate CENs and
conduct further analyses on highly dimensional data. Furthermore, the treatment of sc-

RNA-Seq data as Seurat objects is plausible thanks to hdWCNA. In Section 6.3.3, we

" https://github.com/RGLab/MAST
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discussed every step involved in CEN construction employing hdWGCNA. The initial
stage in building a CEN is to put up all six Seurat objects for the WGCNA, then build

metacells, and finally set up the expression matrices.
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Fig. 6.5: Soft Thresholds for CD45+ cell types a) Tcell and b) Beell ¢) Myeloid are 4, 5 iand 4,
respectively, and for CD45- cell type d) Epithelial, e)Endothelial, and f) Fibroblast are
6, 3, and 4, respectively.

Soft power thresholds are chosen prior to CEN construction. Soft power thresholds for
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the CD45+ cell types Tcell, Bceell, and Myeloid are four (Fig. 6.5a), five (Fig. 6.5b),
and four Fig. 6.5¢c), respectively. Soft power thresholds for CD45-cell types Epithelial,
Endothelial, and Fibroblast are six (Fig. 6.5d), three (Fig. 6.5¢), and four (Fig. 6.5f),
respectively. We construct the CEN using multiple gene blocks as modules, which is
covered in Section 6.3.3. Next, we compute the module eigens and connectivity, which
leads to the merging of the modules. For CD45+ cell types, the Fig. 6.6a, Fig. 6.6b,
and Fig. 6.6c, respectively, represent all modules found in Tcell, Bcell, and Myeloid.
The dendrograms for Epithelial, Endothelial, and Fibroblast are shown in Fig. 6.6d,
Fig. 6.7a, and Fig. 6.7b, respectively. The computation of module eigens and module

connectivity for all six Seurat objects comes after CEN construction.
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Fig. 6.6: Dendrograms for the CD45+ cell types a) Tcell, b) Beell, and ¢) Myeloid with 4, 3, and
10 modules, respectively and the CD45- cell type d) Epithelial with 9 modules.
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Fig. 6.7: Dendrograms for the CD45- cell types a) Endothelial and b) Fibroblast with 3 and 4
modules, respectively.

6.5.5 Preservation Analysis

The concept of preservation analysis is discussed in detail in Section 2.1.9. In scD-
iffCoAM, the retainment of associations of modules from one Seurat object in another
Seurat object is analyzed using module preservation analysis. For instance, let’s say
we wish to discover the modules found in the Tcell Seurat object that have the most
connections retained in the Epithelial Seurat object. Here, we refer to the Seurat object
that contains the modules for preservation analysis as the reference Seurat object and the
Seurat object that analyses the preservation of the modules as the query Seurat object. In
other words, selecting a Seurat object pair from CD45+ and CD45- is required for mod-
ule preservation analysis. By alternating between each object in a pair as a reference
and a query Seurat object, we analyze each object pair for preservation. The following
are the steps for performing a module preservation analysis using the hdWGCNA pro-
gramme [510, 509] 8.

1. Modules of the reference Seurat object are projected on the query Seurat object.
2. The expression matrices for both reference and query Seurat objects are constructed.
3. An adequate number of permutations are chosen in the module preservation analysis.

(We’ve chosen 250 in this case).

The table 6.3 provides the Zg,mmary statistics (Section 2.1.10) for the preservation anal-
ysis of all modules in instances of cell types as reference Seurat objects compared to

corresponding query Seurat objects. All modules in each cell type (Seurat object) high-

8 https://smorabit.github.io/hdWGCNA/index.html
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lighted in the bolded and blue are Mols and thus taken into account for subsequent

downstream analysis.

Definition 6.5.3 (Module of Interest (MOI)). A module, i.e. a subset of genes is defined

as ‘'module of interest’, if (i) its size > 100, and (ii) it is not highly preserved or non-

preserved (Zsummary < 2) [329] or moderately preserved (2 < Zyymmary < 10) [329] in at

least 2 out of 3 corresponding query Seurat objects.

Despite having a size of 159 (genes) but a Zgummary < 10 (at least moderately pre-

served) in the Bceell query Seurat object only, the module yellow in Epithelial is not re-

garded as a Mol. However, module green in Epithelial is non-preserved (Z,ummary < 2)

[329] in all of the three corresponding query Seurat objects and is therefore disqualified

as a Mol because it is size = 79 (i.e., size < 100).

Tab. 6.3: Preservation Analysis (Zsymmary) 0f CD45+ modules in CD45- dataset and vice versa.
Rows represent the Reference Seurat object while columns represent the query Seurat
object. Zgynmary values > 10 in modules of Size > 100 are highlighted in italics .Mod-
ules with Size > 100 and atleast moderately preserved (i.€, Zsummary < 10), highlighted
in italics, in atleast two (out of three) corresponding test/query Seurat object are con-
sidered for subsequent downstream analysis and highlighted in blue and bolded. Here,
TC: Tcell, BC: Bceell, MY: Myeloid, EP: Epithelial, EN: Endothelial and FI: Fibrob-

lasts.
Ref Module Size EP EN FI Ref Module Size TC BC MY
yellow 61 0.597 0.864 0.174 black 47 -0.645 -0.161 -0.012
brown 151 3916 4573 3.702 pink 47 -0.450 -0.536 -0.271
Te blue 276 -0.830 0.402 0.170 red 64 -0.659 -0.257 -0.045
turquoise 300 3.767 5365 1.452 green 79 0.344 1.554 1.749
brown 87 2799 4961 4.018 P yellow 159 10.038 7.540 10.951
BC blue 108 0.996 1.754 0.889 brown 212 -0962 -0.152 1.143
turquoise 244 0.615 0.715 0.530 " blue 253 -0.568 -0.127  3.063
% magenta 54  2.033 0.781 1.696 é turquoise 336 1.923 7.553 15.771
@) pink 54 2364 0.045 0.747 brown 152 5810  5.173 7.033
purple 54 5256 5316 4973 EN blue 313 3539 5144 5515
black 65 28490 6.287 6.560 turquoise 330 0.127 6.629 1.66
MY green 102 2459 2532 0.986 yellow 52 2314 2144  5.073
yellow 145 7.270  8.406 7.575 brown 114 -0.099 -0.499 1.004
brown 178 1.807 1.802 3.210 H blue 250 1.125 1.533 1.392
blue 189 3.150  3.760 2.856 turquoise424 1.121 0.795 2.196
turquoise 228 4.245 4791 5.099
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Fig. 6.8a, Fig. 6.8c, and Fig. 6.9a show the Zgumnary plots for Tcell in Epithelial,
Endothelial, and Fibroblast, respectively. Similar preservation plots for Bcell modules in
Epithelial, Endothelial, and Fibroblast are shown in Fig. 6.9c, Fig. 6.9e, and Fig. 6.10a,
respectively, while plots for Myeloid modules in Epithelial, Endothelial, and Fibroblast
are shown in Figures 6.10c, Fig. 6.10e, and Fig. 6.11a. On the other hand, Fig. 6.8b,
Fig. 6.9d and Fig. 6.10d shows the Zg;mary statistics for Epithelial modules in Tcell,
Bceell, and Myeloid, Fig. 6.8d, Fig. 6.9f and Fig. 6.10f shows the plots for Endothelial
modules in Tcell, Beell, and Myeloid and Fig. 6.9b, Fig. 6.10b and Fig. 6.11b shows
the plots for Fibroblast modules in Tcell, Bceell, and Myeloid, respectively.
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Fig. 6.8: Zgunmary plot for a) Tcell (CD45+) in Epithelial (CD45-) , b) Epithelial (CD45-) in
Tcell (CD45+), c¢) Tcell (CD45+) in Endothelial (CD45-), and d) Endothelial (CD45-)
in Tcell (CD45+)
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Fig. 6.9: Zgunmary plot for a) Tcell (CD45+) in Fibroblast (CD45-) , b) Fibroblast (CD45-) in
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Fig. 6.10: Zsynmary plot for a) Beell (CD45+) in Fibroblast (CD45-) , b) Fibroblast (CD45-) in
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in Myeloid (CD45+), e) Myeloid (CD45+) in Endothelial (CD45-), and f) Endothelial
(CD45-) in Myeloid (CD45+)
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Fig. 6.11: Zsynmary plot for a) Myeloid (CD45+) in Fibroblast (CD45-) and b) Fibroblast (CD45-)
in Myeloid (CD45+).

6.5.6 Hub Gene Finding

As previously noted, we employed the hub-gene finding algorithm described in CB-
DCEM [592] in detail. But instead of using degree [171], betweenness [170], pageRank
[652], and katz [302] centralities, we replace them with alpha [53], average distance
[128], barycenter [712], and decay [277]. We found that the substituted measures are in-
effectual through repeated trials in which we incorporate the original method suggested
by CBDCEM [592] into scDiffCoAM. We have seen that the degree of the nodes has a
significant impact on degree [171], betweenness [170], and katz centrality [302]. How-
ever, because hdWGCNA constructs networks on blocks of genes, the network modules
that are discovered are highly connected, and every node (gene) in the module has the
exact same degree. As a result, all genes have zero values for the centralities described
before. To find the centrality measures that worked well for our research, we used the
CINNA R package [31] °. An R package called CINNA [31] for network science cen-
trality analysis is helpful for compiling, contrasting, assessing, and visualizing various
centrality measurements. In the past, we designated three, two, and five modules in
CD45+ cell types, Tcell, Beell, and Myeloid as Mols. In each CD45- cell type, epithe-
lial, endothelial, and fibroblast, three modules are Mols. With K = 20 and the goal of
identifying 20 hub-genes in each module, these nineteen Mols are taken as input into
the hub-gene finding unit. There are approximately 380 hub-genes detected. It is worth

noting that many hub-genes are identified in both CD45+ and CD45-cell types in across

9 https://cran.r-project.org/web/packages/CINNA/vignettes/CINNA . html
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multiple modules. Table 6.4 summarizes all the hub-genes identified using the CBD-

CEM [592] hub-gene finding algorithm across all six cell types.

Tab. 6.4: Top 20 hub genes for each extracted Mol in CD45+ and CD45- datasets using our hub-
gene finding algorithm. Hub genes with strong literature evidence of association to
ESCC are marked in Red while hub genes with evidence of association with five other
SCCs, HNSCC, LaSCC, LSCC, OSCC, and OSCC are marked in Blue.

Cell Module Hub genes
Type

blue ALDHIA2, ATFS5, CCNB2, CDHI, , HBEGEF, IFI30, IGHGI, IGKC, LAMPS3,
TC MERTK, MPPI, NEURL3, TCF4, TNFAIP6, ASAHI, ELF3, IGHM, PPTI,

TRAV4, VASH?2

brown DTL, ADM, ARL5B, BAMBI, DLX2, FEZI, GLA, HEYI, HISTIH2AG,
KCNQIOTI, MNDA, PROK2, PSTPIP2, RAB3A, RP11-61J19.5, RRAD, TPD52,
TRAM?2, VASN, IL15

turquoise NLRP3, SLAMFS8, APOC2, B3GNT7, CD68, COL3A1, COL6A3, FLTI, FUT7, IT-
GAX, KIAA0101, KRT17, LIPA, MCM7, MYL9, NCAPG, POGLUTI, RAD5IAPI,
SGPLI, SLCI2A8

CD45+

blue BCAS4, BCATI, CCRI, CD81, CDCA7, GATM, GPRI137B, HCK, HIST3H2A,
IGKC, IQCG, SINGLEC6, TRAM?2, ZBED2, CYFIPI, IL5RA, PGD, PTAFR,
RP11-731F5.1, ZNF296

turquoise ABCAI, CDID, CFP, IFITM3, IGHJ4, IGLC3, MXDI, PLK2, ABCB9, ACP2,
FAM64A, GCHFR, HK2, HLA-DQB2, IGHV2-70.1, IGHV3-43, IGLV3-1, KL-
HDC8B, NDUFAF6, TUBB3

BC

blue ADAMTS2, CAVI, CCR4, CDIB, COL6A3, DBNI, FAM3C, GATA3, IGLV2-

14, PCSKIN, PTPNI13, SH2D4A, TRBV12-3, A4GALT, ALDOC, B9D1, GLDN,
MY MMPI10, UCHLI, ZNF385A

brown TBXAS1, CTSZ, LINC00996, RARRESI, CUL9, ERLECI, FCGRIB, GFRA2,
HMOXI, HVCNI, MGLL, PGM2LI1, PILRA, PTFAR, PTTGIIP, SDSL, SGPLI,
SUCNRI, VMOI1, ZC2HCIA

green LMO2, LY9, RP11-62414.2, TRDV2, ACY3, AFF3, FLI21408, GCSAM, GMDS,
GPRIS, ILF3-AS1, KIFCI, MIDIIPI, POGLUTI, RP11-350N15.5, TNFRSF13C,
TRAVI6, TRAV9-2, YWHAH

turquoise ANGPTLA4, BESTI, Cl1orf96, CEACAM3, DOCK4, EMILIN2, HOXAS, IGFBP7,
JAML, OSM, P2RXI, PEAI5, SLC8AI, BACH2, CCND2, CEMIP, GPR3l,
NEURL3, RHCG, SPRED?2

yellow C4orf46, CCR2, CH25H, HCAR2, KIR2DIL4, LGALS3, LINC00309, NRNI,
NUBI, PLBDI, RASGEFIB, RNUI12, RP11-386114.4, RP11-467L13.7, RPI11-
598F7.3, RP11-796E2.4, SPON2, TIFA, PDCDI, PRF1

Continued on next page
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Hub genes

FGF5, GOS2, MMP9, TMEM45A, ANPEP, APCDDI1, ARHGAP15, C100rfIO0,
CH25H, CLDNI11, CLEC3B, COL14Al, COL9AI, HAS2, IL24, LEPR, MSC,
PAMRI,RGS5,SRGN

AKRIBI0, SLC7Al11, CAPNI4, G6PD, RAB27B, SRXNI, TRIM7, DAPLI,
ENTPD3, GPRC5D, GSN, GSTA4, KIAAI324, KRTIS, MATN2, MCF2L2,
MTSS1, RGS2, SATI, TSPAN13

AMTN, AREG, CIl2o0rf75, CEACAMIY9, COLA4AI, CRABP2, CRIPI, CST6,
EGFL7, IF127, IFIT3, IL1B, KRT6A, LAMP3, MED24, NEFM, NEURL3, S100A1,
SERPINE2, TGM?2

ABCCY, AOXI, EPHA2, EREG, GUCYIA2, KANK4, NDRGI, OMD, RCLI,
SELE, SLIT3, SOX7, ZG16B, ANK2, Cl1orf96, C3, EGFR, PLA2G2A, PROXI,
MSC

ABCA4, AVPII, C20rf40, CBRI, COLI4Al, CYP3AS5, DSC2, FABP4, FXYDI,
GJB6, HEYL, HHIP, IDO1, KRT19, LRRC17, NOTCH3, RELN, RP11-277P12.20,
TNS4

ACHE, CCLS5, CSTA, DSC3, FCERIG, GINS2, IQCG, ITGA3, LIPG, NFE2L3,
PRSS3, SEMA3B, SLC6A8, ABCCS, ESM1, FXYD3, HMUMR, MEOXI, NUSAPI,
UBE2T

Cell Module
Type
EP  blue
brown
v
A,
a
O
turquoise
EN  blue
brown
turquoise
FI  blue
brown
turquoise

EPYC, LXN, TSPANI13, CMPK2, DUSP2, ECT2, FADD, FAM84A, FMO1 GBPS,
GGH, HILPDA, KRTI14, KRTI18, LAYN, MMP19, MMP7, NAA20, RGS2, SGK1
AARD, CLICS5, CST2, CXCLI4, ENPP2, ETV5, GRAMD3, HGF, KERA,
PLXDCI, PTGRI, TNN, WFDCI, ECELI, LYPD5, MCM5, PRR15, RNF183,
SCNNID, SHANK?2

CAI2, CLIC3, FAM46A, PAX9, ABCCI, ATF5, CDC6, CDKN2B, CITED?2,
CLDN4, CMTMS5, EGFLS, GDF15, HTRA3, INPP1, MCM3, NFKBID, PON3,
PTGER4, PVTI

6.5.7 Identification of DEGs

We identify DEGs from the cell clusters deected in non-reduced CD45+ and CD45-

condition-type Seurat objects, as shown in Fig. 6.2. Prior to relevant cluster selection,

the dimensionality reduction unit generates twenty and twenty-five clusters in CD45+

and CD45-, respectively. To find DEGs, we use the "MAST’ differential expression

testing that is already built into Seurat [608]. With a p —value < 0.05, 13,955 genes

have been identified to be DEGs in CD45+. It is notable that many genes are identified

as DEGs in several clusters. As a result, CD45+ has been found to have 5,321 distinct

genes in twenty clusters. Similarly CD45-, which contains twenty-five clusters, 24,175
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genes are recognized as DEGs with p —value < 0.05, 7,292 of which are distinct DEGs.
We perform GO enrichment (Section 2.4.1.1) and pathway enrichment (Section 2.4.1.2)
analysis on these 5,321 (CD45+) and 7,292(CD45-) DEGs resulting in list of genes
annotated to enriched GO terms (IgEGo in Fig. 6.2) and pathways (IgEP in Fig. 6.2)
with p —value < 0.05 each for CD45+ and CD45-.

6.6 Validation

Multiple approaches are used to validate our results. First and foremost, we confirm
that the Mols found by our approach are biologically significant and substantially en-
riched. Through functional enrichment analysis (Section 2.4.1), we achieve this. Only
highly enriched Mols are evaluated for further research since they are biologically rel-
evant. Every hub-gene of the biologically significant Mols is regarded as a potential
biomarker candidate gene (BCG) (Definition 6.6.1). To further confirm the biological
significance of these BCGs, we make use of Regulatory Behaviour Network analysis
(Section 2.4.2). Additionally, we trace the research that shows the BCGs to be po-
tential biomarkers for ESCC and five other SCCs connected to ESCC. We identify the
potential biomarkers by using our proposed biomarker criteria, which are covered in

Section 2.5.

Definition 6.6.1 (BCG). A gene g; is defined as a Biomarker Candidate Gene (BCG) if
it is identified as a hub-gene in a given Mol extracted by scDiffCoAM.

First, GO enrichment followed by pathway enrichment analysis is used to validate
all nineteen Mols that the preservation analysis unit discovered across all six cell types.
Second, enrichment analysis, biological analysis, and the presence of prior literature

evidence are used to validate all hub-genes found in each Mol.

6.6.1 Enrichment Analysis of Modules

All nineteen Mols are analyzed for GO enrichment and pathway enrichment as
part of the validation process. All enrichment analyses are carried out using the widely
known and open-source bioinformatics tool DAVID [628, 253] '°. The percentage
of genes in each module that have annotations in the corresponding GO and KEGG

databases is summarized in Table 6.5. A module’s biological significance is confirmed

10 https://david.ncifcrf.gov/home. jsp
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by the presence of at least one enriched KEGG pathway and one enriched GO term.
In the nineteen Mols, we have demonstrated that > 50% of the genes are annotated
to enriched pathways, whereas > 90% are annotated to enriched GO terms. All nine-

teen Mols are therefore biologically significant.

Tab. 6.5: Percentage of genes in each Mol that are annotated in the GO databases (BP: Biological
Processes, CC: Cellular components or MF: Molecular function) and KEGG pathways.
Three CD45+ cell types TC: Tcell, BC: Bcell, MY: Myeloid, and three CD45- cell
types EP: Epithelial, EN: Endothelial, and FI: Fibroblasts

Cell Module Size BP CC MF KEGG | Cell Module Size BP CC MF KEGG

Type %) (%) (%) (%) | Type %) (%) (%) (%)
brown 151 969 984 969 56.7 brown 212 958 96.5 972 620

TC  blue 276 952 974 96.0 59.0 blue 253 97.0 992 955 49.6
turquoise 300 939 96.8 96.0 56.7 P turquoise 330 96.0 97.5 94.6 533
blue 108 939 98.0 99.0 52.0 brown 152 919 946 899 50.7

Be turquoise 244  96.8 982 95.0 50.5 EN  blue 313 973 987 96.0 57.8
green 102 955 97.8 92.1 438 turquoise 330 959 975 94.6 522

MY yellow 145 93.0 93.0 93.8 628 brown 114 94.6 946 938 518
brown 178 96.0 97.7 954 649 FI  blue 250 932 983 96.2 547
blue 189 95.7 989 973 613 turquoise 424 97.0 98.0 96.8 55.6
turquoise 228 96.8 97.7 96.8 55.3

6.6.2 Biological Analysis

We validate the biological relevance of the hub-genes identified through GO and
pathway enrichment analysis (Sections 2.4.1.1 and 2.4.1.2). These lists, IgEP and 1gEGo
(Fig. 6.2) are input to the biological analysis component of validation unit. Based on
the hub-genes identified biological analysis componenet extraxcts the hub-genes from
1gEGo and IgEP. Table 6.6 and Table 6.7 summarize the hub-genes in modules of CD45+
Seurat objects (Tcell, Beell, and Myeloid) and CD45- (Epithelial, Endothelial, and Fi-
broblast), respectively that are annotated to top 20 KEGG pathways. Table 6.8 and Table
6.9 summarize the hub-genes that are annotated to top 10, top 3 and top 3 enriched GO
terms in GO_BP, GO_CC and GO_MF databases, respectively in the corresponding
CD45+ and CD45- cell types, respectively.
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Transcription Factors (TF) have remarkable diversity as well potency as drivers of
cell transformation. Deregulation of TFs is a pervasive theme across many forms of
human cancer, justifying the continued pursuit of TFs as potential biomarkers [45]. We
observe that in CD45+, five, five and seven hub-genes detected by scDiffCoAM in Tcell,
Beell, and Myeloid, respectively are TFs. Similarly, 6, 8 and 9 hub-genes in CD45-
cell types Epithelial, Endothelial, and Fibroblast, respectively are TFs. It is noteworthy
however that ATF5 TF is a hub-gene in both Tcell(CD45+) and fibroblast (CD45-). On
the other hand , TF MSC is a hub-gene in epithelial (CD45-) and endothelial (CD45-
) while TF NFKBID is a hub-gene in both epithelial (CD45-) and fibroblast (CD45-).
Regulatory behaviors exhibited by these 20 TFs in their respective modules establish
their biological relevance. With the aim to achieve comprehensive visualization, we
extracted a manageable subset of hub-genes from the Mols for these 20 TFs that are
also hub-genes detected by scDiffCoOoAM. We construct a Gene Regulatory Network
(RN) (Fig. 6.12a-6.15) with these hub-genes and associated TFs so as to observe the
regulatory behavior of the corresponding genes. The resulting RN is in the form of an
adjacency list with weighted directed edges from TFs to other target genes (TGs). In
module blue (Tcell) (Fig. 6.12a), three hub-genes ATF5,TCF4 and ELF3 are TFs.

]
=] = <‘

=
IL15

[~
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=

(a) blue Tcell (CD45+) (b) brown Tcell (CD45+)

Fig. 6.12: GRN for modules a) blue, and b) brown in CD45+ cell type, Tcell
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(e) turquoise Myeloid (CD45+) (f) turquoise Epithelial (CD45-)

Fig. 6.13: GRN for modules a) turquoise in Tcell, and b) blue and c) turquoise in Beell, and d)
blue and e) turquoise in Myeloid. GRN for module f) furquoise in Epthelial.
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(¢) turquoise Endothelial (CD45-) (d) brown Fibroblast (CD45-)

Fig. 6.14: GRN for modules a) blue, b) brown and c) turquoise in Endothelial, and d) brown in
Fibroblast.

Fig. 6.15: GRN for module turquoise in Fibroblast
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6.6.3 Literature Trace

Through tracing existing literature we perceive the association of the hub-genes de-

tected by scDiffCoAM to ESCC. Furthermore, we also take into consideration the asso-

ciation with five other Squamous cell carcinomas (SCCs) namely, Oral SCC, Lung SCC,

Tongue SCC, Head and Neck SCC, and Laryngeal SCC with the assumption that genes

established as potential biomarkers in these SCCs might also be potential biomarkers for

ESCC in specific.

He et. al [225] found ATFS5 to be upregulated in ESCC and their findings suggest that
inhibition of ATFS5 activity can be anti-tumorigenic.

Yi et al.[826] found that Angiopoietin-like protein 4 (ANGPTL4) upregulation may
play an important role in ESCC development, and serum ANGPTL4 level may be a
potential tumor marker for ESCC diagnosis and prognosis. Shibata et al.[633] found
that ANGPTL4 may potentially affect the prognosis of ESCC due to its role in metas-
tasis through lymphovascular invasion.

Yang et. al [817] identifies CCNB2 as one of 10 hub genes that might function as
novel biomarkers for ESCC.

Ando et al.[26] found that the ESCC patients with positive staining for caveolin-1
(CAV1) had significantly shorter survival than those with negative staining and thus
CAV1 is a potential prognostic marker of ESCC. According to Kato et al., [301],
over-expression of CAV 1 is associated with lymph node metastasis and a worse prog-
nosis after surgery in ESCC. Jia et al.[283] found that down-regulation of stromal
CAV1 expression in ESCC had high malignant potential and suggests that it could be
a powerful prognostic marker for patients with ESCC.

Studies by Wu et al. [777] find that the chemokine (C-C motif) ligand 5 (CCLS)
autocrine loop may promote ESCC progression. Results presented by Liu et al. [421]
indicate that CCLS5 plays a role in patient survival by serving as the key chemokines
to recruit CD8(+) T lymphocytes into ESCC tissue.

Li et al.[351] found that the overexpression of Cell Division Cycle Associated 7
(CDCAT) promoted proliferation, colony formation, and cell cycle in ESCC cells.
Li et al.[350] states that CDCA7 might be a new therapeutic target in the suppression
of metastasis and invasion of ESCC.

According to Ishiguro et. al [270], decreased expression of CpG island hypermethy-
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lation of E-cadherin (CDH1) in the cell membranes of cancer cells is associated with
poor survival of patients with esophageal cancer. Lee et. al [338] in their study sug-
gests that hypermethylation of CDH1 genes may be significantly associated with a
recurrence-associated prognosis in stage [ ESCC.
Ghobadi et al.[188] present an association of a novel genetic variant in CDKN2B gene
with the clinical outcome of patients with ESCC.
Sung et al.[659] indicate that claudin-4 (CLDN4) expression is deregulated in ESCC,
implying its potential use as a prognostic biomarker in ESCC. Lin et al.[399] suggest
CLDN4 as a prognostic and CCRT response indicator for ESCC patients.
Li et al. [359] identifies Cellular retinoic acid-binding protein 2 (CRABP2) as a sup-
pressor factor that is expected to be a potential prognosis marker for esophageal squa-
mous cell carcinoma. Yang et al. [815] further demonstrate that CRABP2 acted as
a tumor suppressor in ESCC carcinogenesis by significantly inhibiting cell growth,
inducing cell apoptosis, and blocking cell metastasis both in vitro and in vivo.
According to Shiba et al., [632], relatively high levels of cysteine protease inhibitor A
(CSTA) expression in tumors were correlated with tumor progression and advanced
cancer stage in ESCC.
Data presented by Guo et al. [205] suggests that for ESCC patients with low-level
chemokine (CXC motif) ligand 14 (CXCL14), increasing CXCL14 expression com-
bined with inhibition of SRC or EGFR might be a promising therapeutic strategy.
According to Fang et al. [153], desmocollin 2 (DSC2) is involved in the transforma-
tion and development of esophageal tumors, and its expression level and intracellular
localization may serve as a predictor for patient outcomes. Fang et al. [154] suggest
that miR-25-mediated down-regulation of DSC2 promotes ESCC cell aggressiveness
through redistributing adherens junctions and activating beta-catenin signaling.
According to Sun et al. [653], epithelial cell transformation sequence 2 (ECT2) could
regulate the expression of VEGF and MMP?9 to inhibit cells proliferation, invasion,
migration, and tumor development through the RhoA-ERK signaling pathway.
Moghbeli et al.[505] illustrate the oncogenic function of epidermal growth factor re-
ceptor (EGFR) in the development of ESCC through advanced stages.
Miyazaki et al. [504] found that Ephrin receptor A2 (EphA?2) overexpression is related
to a poor degree of tumor differentiation and lymph node metastasis in ESCC. Syed
et al. [660] found that knockdown of EPHA2 in ESCC cell line TES8 resulted in a
241



significant decrease in cell proliferation and invasion.

Li et al. [354] establish that silencing Endothelial cell-specific molecule 1 (ESM1)
suppressed the proliferation, migration, and invasion of KYSE150 and KYSES10
cells. Zhu et al. [924] found that Overexpression of FXYD-3 in the cytoplasm may
play an important role in the tumorigenesis and development in the human ESCC.
According to Sun et al. [655], E26 transformation-specific (ETS) variant 5 (ETVS)
promoted metastasis of ESCC.

Zhu et al.[922] found that family with sequence similarity 3, member C (FAM3C)
expression was dramatically increased in ESCC and might serve as a valuable prog-
nostic indicator for ESCC patients after surgery.

According to Iwabu et al., [273], fibroblast growth factor 5 (FGF5) methylation is a
sensitive marker of ESCC to definitive chemoradiotherapy.

Chi et al.[97] showed that GATA-binding protein 3 (GATA3) positivity is associated
with poor prognosis in ESCC.

Urakawa et al. [702] found that recombinant human growth differentiation factor 15
(GDF15) promotes cell proliferation and the phosphorylation of both Akt and Erk1/2
in ESCC cell lines in vitro. According to Okamoto et al. [532], GDF15 promotes
ESCC progression by increasing cellular proliferation, migration, and invasion.

Zhou et al. [914] suggest that GINS2 acts as an ESCC promoter and can be a novel
diagnostic and prognostic marker.

Wang et al. [745] employed Cox multivariate assay to demonstrate that glucose-6-
phosphate dehydrogenase (G6PD) was an independent prognostic factor for the pa-
tients with ESCC. Furthermore, Wang et al. [746] suggest that GOPD may function as
an important regulator in the development and progression of ESCC by manipulating
STAT3 signaling pathway.

Results by Ren et al. [577] suggest that serum hepatocyte growth factor (HGF) may be
a useful biomarker of tumor progression and a valuable independent prognostic factor
in patients with ESCC. The results presented by Xu et al. [796] indicate that the fre-
quent overexpression of HGF proteins, secreted by esophageal epithelium and stromal
fibroblasts, promoted the progression of ESCC. Takada et al. [661] indicate that HGF
is significantly increased in ESCC and suggests the same as a useful biomarker.
According to Zhang et al.[865] knockdown of homeobox AS (HOXAS) suppressed
the proliferation and metastasis partly by interfering with Wnt/B-catenin signaling
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pathway in ESCC cells.

Li et al.[373] increased insulin-like growth factor binding protein 7 (IGFBP7) may

accelerate ESCC progression by promoting the expression of TGFS1, a-SMA, and

collagen I by activating the TGFf 1/SMAD signaling pathway.

Jiao et al. [286] indicate that chemotherapy could promote tumor Indoleamine 2,3-

dioxygenase (IDO1) expression, and the increased tumor IDO1 expression after neoad-

juvant therapy predicted poor pathologic response and prognosis in ESCC.

Jia et al.[282] demonstrates that interferon-induced transmembrane protein 3 (IFITM3)

expression has a close relationship with prognosis in ESCC patients.

Huang et al.[259] demonstrated that serum IGFBP7 is a potential biomarker in the

early detection of ESCC.

Che et al. [79] found that Interleukin-1 beta (IL-1B) is significantly linked to poor

prognosis for patients with esophageal cancer and may be a promising molecular tar-

get for therapeutic intervention for ESCC.

Du et al. [145] suggest integrin subunit a3 (ITGA3) a potential therapeutic target

for the treatment of ESCC as they demonstrate that its knockdown suppressed cell

proliferation, invasion, migration, and autophagy in ECA109 and TE1 cells.

According to Cheng et al. [95], KIAAO101 is emerging as a meaningful marker for

poor prognosis in EC, such as early recurrence and short survival.

Results presented by Imai et al.[266] suggest that kinesin family member C1 (KIFC1)

plays an important role in ESCC pathogenesis.

According to Liu et al. [442], Keratin 17 (KRT17) upregulation in ESCC cells not

only promoted cell proliferation but also increased invasion and metastasis. Haye

et al. [224] established that KRT17 is a negative prognostic biomarker for the most

common subtype of esophageal cancer.

In their study Liao et. al [392] suggests that epithelial Lysosomal-associated mem-

brane protein 3 (LAMP3) expression is an independent prognostic biomarker for

ESCC. Furthermore, Huang et. al [254] identifies the role of LAMP3 in promoting

cellular motility and metastasis in ESCC.

According to the findings of Qiu et al. [563], mini-chromosome maintenance complex

component 7 (MCM7) activates the AKT1/mTOR signaling pathway leading to the

promotion of colony formation and migration of ESCC cells as well as tumor cell

proliferation. Zhong et al. [906] state that MCM7 may serve as effective prognostic
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factors and could also be used as biomarkers for predicting various clinical outcomes
of ESCC in the Chinese population. According to et al. Ahn et. al [10], MCM7
expression is associated with the invasiveness of ESCC.

Zhou et. al. [909] Serum autoantibody levels of matrix metalloproteinase-7 (MMP-7)
may be a good diagnostic biomarker for esophageal squamous cell carcinoma. Malik
et al. [484] state that the determination of the matrix metalloproteinase-7 (MMP-
7) genotype may provide a useful genetic marker in predicting high-risk individuals
for the development of ESCC. Data presented by Miao et al. [496] illustrates that
overexpression of MMP-7 may be a suitable diagnostic biomarker for ESCC.

Zeng et al. [850] overexpression of matrix metalloproteinase-9 (MMP-9) may be
a potential independent prognosis factor of ESCC patients in Asia. Li et al. [378]
MMP-9 may play important roles in ESCC carcinogenesis.

Xie et al. [783] demonstrate that Metastasis suppressor-1 (MTSS1) expression in
ESCC cells significantly influenced the aggressiveness of the esophageal cancer cells,
by reducing their cellular migration and in vitro invasiveness.

The study by Du et al.[144] suggests that MY C-associated factor X dimerization pro-
tein 1 (MXD1) is a crucial prognostic factor in ESCC patients.

Wang et al. [725] MYLO expression might be a promising prognostic marker and
therapeutic target in ESCC.

Ueki et al. [700] establish that (N-myc downstream regulated gene-1) NDRGI1 plays
a pivotal role in tumor progression and development of chemo-resistance in patients
with ESCC undergoing neoadjuvant chemotherapy. Ando et al. [25] suggest that up-
regulation of NDRG1 mRNA expression levels could be a good candidate for prog-
nosis markers in ESCC. Ai et al. [11] indicate the pro-oncogenic role of NDRGI in
ESCC whereby it modulates tumor progression.

Chen et al. [81] find that Nuclear factor, erythroid 2 like 3 (NFE2L3) affects the
radiosensitivity of ESCC cells through IL-6 transcription and IL-6/STAT3 signaling
pathway making it a putative target to regulate ESCC cell radiosensitivity.

According to Yu et. al [837], the NLR pyrin family domain containing 3 (NLRP3) in-
flammasome is upregulated in human ESCC tissues and promotes ESCC progression.
Findings by Zhou et al. [908] indicate that Alpha-1 Type III Collagen (COL3A1)
confers a poor prognosis and malignant phenotype in ESCC, potentially representing
a novel biomarker and/or providing a new curative target for ESCC.
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According to Matsuura et al., [493], NOTCH3 may serve as a novel biomarker to
predict better clinical outcomes in ESCC patients. Pramanik et al.[555] indicate that
the NOTCH3 H score is an independent predictor of survival in ESCC.

Guan et al. [200] establish that suppression of nucleolar spindle-associated protein 1
(NUSAP1) inhibited cellular proliferation and invasion, and induced cell cycle arrest
and apoptosis in vitro.

Tan et al.[666] identifies paired box 9 (PAX9) as an independent prognostic factor for
the surgical treatment of ESCC and a possible predictor of radiation sensitivity.

Ren et al. [575] suggest that phospholipase A2 group IIA (PLA2G2A) may serve as a
useful marker for the prognostic evaluation of ESCC patients. Zhai et al. [851] show
that in patients with ESCC, PLA2G2A overexpression and PLA2G2A co-expression
with COX-2 is significantly correlated with the advanced stage.

Yokobori et al. [829] suggest that high expression of prospero homeobox 1 (PROX1)
in ESCC could be used as an indicator of poor prognosis and as such it is a promising
candidate molecular target for ESCC treatment.

Li et al. [362] suggest that plasmacytoma variant translocation 1 (PVT1) promotes
ESCC progression via functioning as a molecular sponge for miR-203 and LASPI.
Similarly, Hu et al. [248] establish that PVT1 promoted ESCC progression via the
miR-128/ZEB1/E-cadherin axis. According to Li et al.[345], up-regulated PVT1 can
induce ESCC tumorigenesis by regulating the cell cycle and Wnt signaling pathway.

Through multivariate Cox regression analyses, Yu et al. [834] validates that RAB27B
expression is an independent prognostic factor for unfavorable overall survival in
ESCC.

Hu et al. [252] results demonstrated that RADS51-associated protein 1 (RAD51AP1)
silencing significantly inhibited cell proliferation and invasion in ESCC, thereby high-
lighting its potential as a novel target for ESCC treatment.

Ming et al.[498] supports the notion that RHCG is a novel tumor suppressor gene that
plays an important role in the development and progression of ESCC.

Findings by Zhang et al. [868] suggest that serpin family E member 2 (SERPINE2)
promotes tumor metastasis by activating BMP4 and could serve as a potential thera-
peutic target for clinical intervention in ESCC.

Tang et al. [673] suggest that semaphorin 3B (SEMA3B) is an important tumor-
suppressor gene in the malignant progression of ESCC, as well as a valuable prog-
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nostic marker for ESCC patients. Dong et al. [142] suggests SEMA3B as tumor
suppressors and may serve as potential targets for antitumor therapy.

As in the case of NDRGI1, Ueki [700] found that serum-and glucocorticoid-regulated
kinase 1 (SGK1) also plays a pivotal role in tumor progression and development of
chemo-resistance in patients with ESCC.

Zhu et al. [923] provides evidence that elevated serum SRGN has prognostic sig-
nificance in ESCC patients, and sheds light on the molecular mechanism by which
elevated circulating serglycin (SRGN) in cancer patients might promote cancer pro-
gression.

He et. al [226] suggested that deregulation of T cell transcription factor-4 (TCF4)
isoform may contribute to the tumorigenesis of ESCC.

Yu et al.[839] identify that the expression level of tubulin beta 3 class III (TUBB3)
and 4 other genes is closely associated with the clinical characteristics of patients with
ESCC. Gong et al.[194] show that TUBB3 negative expression prior to treatment and
pCR may indicate a better prognosis for stage II and III ESCC patients.

According to et al., ubiquitin-conjugating enzyme E2 T (UBE2T) is involved in the
development of ESCC, and gene signatures derived from UBE2T-associated genes are
predictive of prognosis in ESCC.

Wang et al.[724] highlight that ubiquitin carboxyl-terminal esterase L1 (UCH-L1)
expression significantly increased with the progression of ESCC, implying the impor-
tance of UCH-LI1 as a potential biomarker in cancer diagnosis and treatment.
Ninomiya et al. [523] suggest that high Vasohibin-2 (VASH2) expression may be
novel independent predictors of a poor prognosis in patients with ESCC. Furthermore,
according to [799], high plasma concentrations were associated with poor clinical

outcomes for both VASH1 and VASH2.

From all hub-genes detected in nineteen Mols, we first identify the hub-genes that have

previous literature traces of association with ESCC and five other previously mentioned

SCCs. In Table 6.10 we summarize all hub-genes with literature trace to all six SCCs and

can be termed as candidates for ESCC potential biomarkers. This is then followed by the

establishment of the biological relevance of these candidates. Table 6.10 summarizes

the literature evidence associated with hub genes (candidates) and corresponding GO

databases they are annotated to, the associated enriched pathways as well as whether

they exhibit regulatory behavior (TF).
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Tab. 6.11: Summary of potential ESCC biomarkers identified by scDiffCOAM using the
biomarker criteria (Section 2.5).

Cell Case 1 Case 2 Case 3 Case 4
Type
+ TC MCM7 CCNB2, CDHI, ATF5, TCF4, RAD5IAPI
E LAMP3, NLRP3
~ BC TUBB3 CDCA7, IFITM3, MXD1
MY GATA3  CAVI, UCHLI FAM3C,KIFCI1, IGFBP7
" EP G6PD, LAMP3, FGFS5 RAB27B, MTSS1, CRABP2,
é SERPINE2, SRGN
EN NOTCH3 EPHA2, EGFR, DSC2, NDRGI, PROXI, CSTA,

IDOI, ITGA3, SEMA3B  GINS2, NFE2L3, ESMI,
FXYD3, NUSAPI, UBE2T
FI ETV5 MMP7, SGKI, CXCL14, ECT2, PAX9, ATF5, GDF15 MCM5, CDC6,
CDKN2B, CLDN4 MCM3

All hub-genes that belong to Cases 1 and 2 can be considered potential biomarkers
for ESCC as discussed in the biomarker criteria (Section 2.5). This is because aside
from the existing literature evidence of association to ESCC itself, these hub-genes
are biologically relevant as they are annotated to highly enriched GO terms and path-
ways. Table 6.11 summarizes the cases of all hub-genes (candidates) that has litera-
ture trace of association to the ESCC and the other five SCCs fall under. Four hub-
genes MCM7, GATA3, NOTCH3 and ETVS5 fall under case 1 and thus are potential
biomarkers for ESCC. These four hub-genes are also TFs and their corresponding GRNs
are shown in fig 6.13a (MCM?7), fig 6.13d (GATA3), fig 6.14b (NOTCH3), fig 6.14d
(ETVS5). Even though twenty hub-genes, CCNB2, CDHI, LAMP3, NLRP3, TUBB3,
CAVI, UCHLI, G6PD, FGF5, EPHA2, EGFR, DSC2, IDO1, ITGA3, SEMA3B, MMP?7,
SGK1, CXCLI14, CDKN2B, and CLDN4, do not exhibit regulatory behavior, they are bi-
ologically relevant due to their annotation to enriched GO terms and enriched pathways
as well as associated to ESCC and other five SCCs

Twenty six hub-genes, ATF5, TCF4, RAD51API1, CDCA7, IFITM3, MXD1, FAM3C,
KIFCI, IGFBP7, RAB27B, MTSS1, CRABP2, SERPINE2, SRGN, NDRGI, PROXI,
CSTA, GINS2, NFE2L3, ESM1, FXYD3, NUSAPI, UBE2T, ECT2, PAX9 and GDF15
fall under Case 3. Although there exists strong literature on their association with the
ESCC and the other five SCCs, none of them have enriched pathways even though many

of them are TFs (ATF5, TCF4, CDCA7, MXD1, CRABP2, PROX1, NFE2L3 and PAX9).
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Thus, they can be said to be probable potential biomarkers for ESCC but require fur-
ther in-depth analysis. Three hub-genes , MCM5, CDC6, and MCM3 fall under case
4. These three hub-genes exhibit regulatory behavior and are annotated highly enriched
GO terms and pathways establishing their biological relevance. However, they do not
have literature evidence of association to ESCC but are associated with the five previ-
ously mentioned SCCs. Thus, these hub-genes require further in-depth analysis to be
potential biomarkers of ESCC.

Finally, we conclude that twenty-four hub-genes, MCM7, GATA3, NOTCH3, ETVS,
CCNB2, CDHI, LAMP3, NLRP3, TUBB3, CAVI, UCHLI, G6PD, FGF5, EPHA?2,
EGFR, DSC2, IDO1, ITGA3, SEMA3B, MMP7, SGK1, CXCL14, CDKN2B, and CLDN4,
are identified by scDiffCoAM as potential biomarkers for ESCC. Furthermore, twenty-
six hub-genes, ATF5, TCF4, RAD51API, CDCA7, IFITM3, MXD1, FAM3C, KIFCI,
IGFBP7, RAB27B, MTSS1, CRABP2, SERPINE?2, SRGN, NDRGI, PROX1, CSTA, GINS2,
NFE2L3, ESM1, FXYD3, NUSAPI, UBE2T, ECT2, PAX9 and GDF15 have moderate
evidence of association to ESCC and requires further in-depth analysis but can be con-

sidered probable potential biomarkers for ESCC.

6.7 Discussion

We contrast our method with four other widely used hub-gene finding methods. Two
frequently used hub-gene discovery methods, Weighted Gene Score (WGS) and p-value
Cut Off (PCO), were proposed by Das et al. [120] in their work Differential Hub Gene
Analysis (DHGA). In WGCNA[327], intramodular connectivity (IMC), which deter-
mines how connected nodes are to other nodes inside the same module. In in hdWGCNA
[509, 510], using eigengene-based connectivity, also known as kKME (HWH), of each
gene, hub-genes are computed. We give a brief comparison of these four hub-gene dis-
covery techniques with scDiffCoAM. It is unfair to compare these four hub-gene finding
techniques with scDiffCOAM. As a result, we use the pipeline below to compare our
hub-gene discovery method WGS, PCO, IMC, and HWH.

e We consider the MOIs identified by the framework while preserving the entire pipeline
in scDiffCoAM, from pre-processing to preservation analysis.

e On all nineteen MOIs, we apply the other four methods and identify the corresponding
lists of the top 20 hub-genes.

e We identify the hub-genes associated with the following cancers: a) ESCC, b) HN-
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SCC, c¢) LaSCC, d) LSCC, e) OSCC, and f) TSCC based on literature evidence for

each of the other four methods.
Table 6.12 summarizes the hub-genes detected by a) our hub-gene finding algorithm
[592], b) WGS: DHGA[120] weighted gene-score, ¢c) PCO: DHGA[120] p-value Cut
Off d) IMC: WGCNA [327] Intramodular-Connectivity and e) HWH: hdWGCNA [510,
509] kME hub-gene finding algorithm. All hub-genes with existing literature associat-
ing them as potential biomarkers for ESCC itself (as well as the other five SCCs) are
highlighted in red.

From the analysis summarized in Table6.12, we make the following observation.
Except for module brown in myeloid cell type, our method can detect at least one hub-
gene with association to ESCC and other five SCCs in the form of existing literature. Our
method can detect at least one hub-gene that has also been suggested in the literature as
a potential biomarker for ESCC in most Mols. The exceptions are modules brown in
Tcell, brown, and yellow in myeloid. The other four methods on the hand were able to
detect at least one such hub-gene. With the exception of a few modules, most modules
extracted by scDiff CoAM include hub-genes that were not detected by the other four
methods for that particular module. For the other four methods, in many modules, a few
hub-genes are commonly detected by all methods. For example in blue in Tcell, FOXP3
is detected by WGS, IMC and HWH. However, none of the hub-genes detected by our
method was detected by WGS, PCO, IMC, or HWH for that module. It is noteworthy
that some hub-genes detected by our method in one module may be detected by our
method or by another method but in a different module. For example, LAMP3 detected
by our method in blue (Tcell) is further by our method in furquoise (Epithelial) and by
IMC in turquoise (Endothelial).
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Unlike the other four methods, our method can identify 44 unique hub-genes with
reference to existing literature that establishes them as potential biomarkers for ESCC.
These hub-genes, ALDHIA2, ATFS5, CCNB2, VASH2, NLRP3, KIAAO101, RAD51API,
CDCA7, TUBB3, MMPI10, UCHLI, KIFCI1, ANGPTL4, HOXA5, RHCG, SLC7All,
G6PD, RAB27B, MTSS1, CRABP2, FGF5, MMP9, EPHA2, NDRG1, EGFR, PLA2G?2A,
PROXI1, NOTCH3, CCLS5, GINS2, ITGA3, NFE2L3, SEMA3B, ESM1, NUSAP1, UBE2T,
ECT2, MMP7, ETV5, HGFE, PAX9, CDKN2B, GDF15 and PVTI, were detected by our
method but not by other four methods. Fourteen hub-genes, CCNB2, NLRP3, TUBB3,
UCHLI, G6PD, FGF5, MMP7, ETV5, CDKN2B, EPHA2, EGFR, NOTCH3, ITGA3,
and SEMA3B, are among the twenty-four hub-genes further validated by scDiffCoAM
as potential biomarkers for ESCC (Table 6.11). Like the other four methods, our method
also identifies and validates ten hub-genes such as potential biomarkers, CDHI, LAMP3,
MCM7, CAVI, GATA3, SGKI1, CXCLI14, CLDN4, DSC2 and IDO1, validated by scDif-
fCoAM as potential ESCC biomarkers are also detected by other four methods in other
modules across cell types.

We analyze the performance of our method against each of the four methods in
terms of two parameters: a) Quantity, which measures the number of potential biomark-
ers identified by a method for the six previously mentioned categories of SCC in gen-
eral, and b) Quality, which measures the number of potential biomarkers identified by a
method for ESCC in particular. A method’s overall performance should be favorable for
both parameters. We provide a complete assessment of our method’s performance in
comparison to WGS, PCO, IMC, and HWH in all cell types in terms of two parameters,
quality, and quantity, in Fig. 6.16. In terms of both quantity and quality, our method

outperforms other methods.

6.7.1 Comparison with WGS, PCO,IMC, and HWH

Comparing the performance of our proposed framework, scDiffCoAM with the ex-
isting schemes we can make the following observations:
¢ In nine and eight modules, respectively, scDiffCoAM outperforms WGS in terms of
quantity and quality, while performing similarly to WGS in one module in terms of
both quantity and quality.
e In ten and eight modules, respectively, scDiff CoAM outperforms PCO in terms of

quantity and quality, and in four modules, scDiffCoAM performs similarly to PCO in
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terms of quantity and quality.
e In eleven and nine modules, respectively, scDiffCoAM outperforms IMC in terms
of quantity and quality, while for one and three modules, respectively, scDiffCoAM

performs similarly to IMC in terms of quantity and quality.

QUALITY

QUALITY

B Our Framework > Method E Our Framework = Method E Our Framework < Method

(a) Quality

QUANTITY

QUANTITY

B Our Framework > Method mE Our Framework = Method E Our Framework < Method

(b) Quantity

Fig. 6.16: Summary of performances of scDiffCoAM vs. three other methods. We compare
these methods on Mols in various cell types. Here, WGS: DHGA [120] Weighted
Gene Score, PCO:DHGA [120] p-value Cut Off, IMC: WGCNA [327] Intramodular-
connectivity and HWH: hdWGCNA [510, 509] KME hub-gene finding algorithm.
Quantity measures the number of potential biomarkers identified by a method for the
six previously mentioned categories of SCC in general and Quality measures the num-
ber of potential biomarkers identified by a method for ESCC, in particular.

e In most modules, scDiffCoAM performs better than HWH. In eleven and nine mod-
ules, respectively, scDiffCoAM outperforms HWH in terms of quantity and quality,
while in two modules, scDiffCoAM outperforms HWH in terms of both quantity and
quality. HWH outperforms scDiffCoAM in six and eight modules, respectively, in
terms of quantity and quality.

e When compared to the other four methods, the performance of scDiffCoAM in Tcell
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also stays consistent. In two of the three modules, scDiffCoAM outperforms WGS,
PCO, IMC, and HWH in terms of both quantity and quality.
In all modules extracted in Beell, WGS outperforms scDiffCoAM in terms of quantity
and quality. However, PCO performs similarly to scDiffCoAM in terms of quantity
while performing similarly or better in terms of quality. In one module, scDiffCoAM
outperforms IMC in terms of both quality and quantity, while IMC outperforms scD-
iffCoAM in the other. While HWH performs better in some modules and worse in
others when in terms of quantity, scDiffCoAM outperforms or performs similarly with
HWH in terms of quality.
In terms of quantity and quality, all four methods perform better than scDiffCoAM in
the majority of modules. It is to be noted that, in contrast to the majority of other cell
types where we discovered two to four modules with varied sizes, in myeloid cells we
detected nine modules, the majority of which were less than 200, with turquoise being
the only exception.
In most cases, scDiffCOAM outperforms all four methods in terms of quantity. In
terms of quality, WGS performs better than or on par with scDiffCoAM, scDiffCoAM
performs better than or similarly to PCO and IMC in every case, and scDiffCoAM per-
forms better than or similarly to HWH in two out of the three modules. Even though
epithelial detects more modules (eight) than other cell types, similar to myeloid, all
Mols are sizeable as compared to myeloid.
In terms of quality, scDiffCoOAM outperforms WGS and PCO in all modules while
outperforming IMC and HWH in the majority of modules (two out of three). In terms
of quantity, scDiffCoAM outperforms PCO and HWH in each of the three modules
and outperforms IMC in the majority of the modules. In two out of three modules,
WGS performs better or similarly to scDiffCoAM.
In all three modules, scDiffCoAM outperforms HWH in terms of quantity, and in two
of the three modules, it outperforms PCO and IMC. scDiffCoAM outperforms WGS
in the majority of modules, although WGS performs better than scDiffCoAM in one
module. In most modules (two out of three) scDiffCoAM outperforms WGS, IMC,
and HWH in terms of quality, with the exception of one module where WGS, IMC,
and HWH perform better than scDiffCoAM. On the other hand, in one module PCO
performs better than scDiffCoAM, and in another module scDiffCoAM outperforms
PCO.
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6.7.2 Biomarker Ranking

We present a ranking method for all potential biomarkers identified by all our frame-
works. By ranking these biomarkers, we aim to identify the genes that are most likely to
play a crucial role. Our biomarker criteria discussed in Section 2.5 biologically validates
the BCGs as potential biomarkers for ESCC based on fulfillment of minimum require-
ments. The minimum requirement for a BCG to be identified as a potential biomarker
for ESCC are (Biomarker Citeria discussed in Section 2.5): a) at least one literature
that establishes the BCG as an ESCC biomarker, b) annotated to at leat one enriched
pathway, c) annotated at least one enriched GO term in two out of three GO databases
(BP, CC, and MF). Taking this minimum requirement as the basis we add further signif-
icance to the identified potential biomarker. To rank all potential biomarkers for ESCC
identified by the four frameworks we score them as follows.

(a) For every additional literature evidence found that associates that gene with ESCC,
add 1.

(b) If enriched pathway the gene is annotated to a cancer pathway, we add 1 to the
score. If the gene is annotated to more than 5 enriched pathways we add 2 while
we add 3 when they are annotated to more than 10 enriched pathways.

(c) Ifthe gene is annotated to an enriched GO term in all three GO databases as opposed
to minimum requirement of two, we add 1 to the score.

(d) If the gene exhibits regulatory behavior in a GRN.i.e, it is a TF, we add 1 to the
score.

(e) A gene detected as a potential biomarker by more than framework are genes very
relevant to ESCC as they are significant enough to be detected by multiple analysis
that target varying behavior of a gene. If a gene is detected by more than one
framework, we add the number of frameworks to the score.

Table 6.13 gives a summary of all potential biomarker rankings. We have not included
the genes that has a score < 3. Following are the observations made after ranking the
seventy six potential biomarkers for ESCC identified by all four frameworks.

e Two genes PSATI, and SELI1L only qualify the the minimum requirement with a

score of 0 and thus are not considered significant.

e Thirty one genes score 1 as they are annotated to GO enriched terms in all three GO

databases (BP, CC, and MF) and as most highly ranked genes with the exception of
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FGF5 do fulfil this requirement these genes cannot be considered significant.

Tab. 6.13: Ranking all potential biomarkers for ESCC identified by all four proposed frameworks

Gene Literature Cancer Path- GO TF? > Frame Score
ways (CPs) databases
CAV] +2 [26, 301, +1(1CP) +1 (All) No +3(3FWs) 7
283]
MCM7  +2 [563, 102, NULL +1 (All) +1 (Fig. 4.13b,5.19a,6.21a) +3(3FWs) 7
906]
E2F1 +1[146,361] +3(13CPs) +1 (All) +1 (Fig. 3.17b) No 6
KPNA2  +1[475,596] +1(1CP) +1 (All) No +2(2FWs) 5
DGKA  [76] +1 (1 CP) +1 (All) No +2(2FWs) 4
EPHA2 +1[504,660]  NULL +1 (All) No +2(2FWs) 4
EGFR  [505] +3(17CPs) +1 (All) No No 4
HIFIA  +1[619,251] +1(2CPs) +1 (All) +1 (Fig. 4.16b) No 4
HSFI +1[694,396]  +1 (1 CPs) +1 (All) +1 (Fig. 5.18b) No 4
NOTCH3 +1[493,555] +1(2CPs) +1 (All) +1 (Fig. 6.24b) No 4
SEMA3B +1[673,142] NULL +1 (All) No +2(2FWs) 4
CDHI  +1][270,338] +1 (4 CPs) +1 (All) No No 3
CTTN  +1[460,243] +1(1CP) +1 (All) No No 3
ETVS [655] +1 (2 CPs) +1 (All) +1 (Fig. 6.25b) No 3
FGF5 [273] +1 (5 CPs) (BPCC) No +2(2FWs) 3
GSK3B  +1[52, 182] +1 (5 CPs) +1 (All) No No 3
G6PD  +1[745,746]  +1 (1 CPs) +1 (All) No No 3
HMGA2 [538] +1 (1 CP) +1 (All) +1 (Fig. 3.18b) No 3
MMP7  +2 [909, 484, NULL +1 (All) No No 3
496]
PML [825] +1 (1 CPs) +1 (All)  +1 (Fig. 5.20b) No 3
STATI  [884] +1 (1 CPs) +1 (All) +1 (Fig. 4.15b) No 3
TGFA [384] +2 (7 CPs) +1 (All) No No 3
VEGFC +1[670,305] +1 (1 CPs) +1 (All) No No 3

e Two genes CAV1 and the TF MCM?7 are the highest potential biomarkers for ESCC

detected by three of our frameworks. While most potential biomarkers with high

scores such as KPNA2, DGKA, and EPHA?2 are identified by more than one frame-

work, the gene E2F1 ranks high as they are annotated to thirteen cancer pathways and

exhibits regulatory behavior in a GRN.
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e Similarly, the gene EGFR are annotated to seventeen cancer pathways and thus ranks
high with a score of 4. On the other hand, HIF1A, HSF1, and NOTCH3 are highly
ranked with a score of 4 because they exhibit regulatory behavior, are annotated to
cancer pathways and have two literature evidence that associates them with ESCC.

SEMAZ3B also has a score 4 as it is identified by two frameworks as potential biomarker.

6.8 Chapter Summary

The scDiffCoAM framework for differential co-expression analysis (DCA) on single
cell RNA-seq data has been proven to be successful in extracting biologically relevant
modules as well as discovering interesting hub-genes. We validated our framework,
scDiffCoAM, on the scRNA-Seq ESCC dataset, GSE160269, which includes eight cell
types. DCA has been performed by the framework on six of the eight cell types, three
immune (CD45+), and three non-immune (CD45-). It can extract nineteen biologi-
cally significant modules, i.e., ‘modules of interest’ (Mol). The proposed framework
is proven to be efficient in identifying potential biomarkers after further investigation of
these nineteen Mols. On scRNA-Seq data, the hub-gene finding method described in
CBDCEM by Saikia et al. [592] is found to be effective when the choice of the seven
measures is made based on the network properties. Twenty-four hub-genes have been
identified to be potential biomarkers for ESCC by scDiffCoAM with strong evidence of
association.

In most cases, scDiffCoAM performs better than or similarly to the four other hub-
gene finding methods, which include weighted gene score [120], p-value cutoff [120],
WGCNA [327] intra-modular connectivity, and hdWGCNA [510, 509] kKME score. Fur-
thermore, the framework can identify forty-four distinct potential biomarkers that none
of the other four methods that were considered could. Fourteen of the twenty-four po-
tential biomarkers found and verified by scDiffCoAM were among these forty-four hub-
genes. Ten of the remaining twenty-four hub-genes that were identified and verified
by scDiffCoAM as potential biomarkers are also detected by the other four methods
in different modules across cell types.

Next chapter is the final chapter of the thesis that summarizes the concluding remarks
for all four contributions of our work. Furthermore, we summarize few of the shortcom-
ings observed in each framework and further suggest future directions for improvements

of the same.
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