
Chapter 6

Differential Co-expression Analysis On Single Cell

RNA-Seq Data

6.1 Introduction

Biological systems are often the congregation of meticulously regulated tens of thou-

sands of genes in complex, yet dynamic networks, that change substantially among

different tissue types, cell states, or developmental stages. So the first step towards

perceiving complex biological processes is by deciphering gene interactions and discov-

ering changes in corresponding networks. The possibility of uncovering the biological

and biochemical pathways relevant to disease progression and therapeutic targets can be

achieved through the identification of abnormal gene interactions under varying condi-

tions [367]. Network analysis on bulk tissue RNA Sequencing (RNA-Seq) data plays

a pivotal role in the identification of genes responsible for similar biological functions,

transcriptional regulation targets, and disease-associated pathway regulators. However,

with the assumption that cells maintain the same regulatory mechanisms across diverse

cell types, tissue level network analysis only explores the gene-gene interactions across

multiple samples. Recent years have seen the rapid development of single cell RNA

sequencing technology that facilitates construction and subsequent investigation of gene

networks across cell types a reality. Network analysis on scRNA-Seq data provides valu-

able insight into the transcriptional regulation mechanisms underlying various biologi-

cal processes. As in the case of all technologies, regardless of the fact that exploratory

analyses have demonstrated the possibilities of constructing functional gene networks,

technical as well as biological complications present significant challenges in scRNA-

Seq data. In scRNA-seq, a truly expressed gene may not be detected in some cells due to

technical inefficiencies resulting in false zero expressions. Furthermore, zero expression

that represents biological variations can be a result of the stochastic gene expression

process [367]. Thus, when compared to bulk RNA-Seq data, scRNA-Seq is often much



sparser and thus requires non-conventional computational and statistical tools that are

apt in tackling challenges posed by the abundance of zero counts.

6.1.1 Single Cell RNA Sequencing (scRNA-Seq)

Single-cell RNA Sequencing (scRNA-Seq), a revolutionary technique in genomics,

enables researchers to examine gene expression at the level of a single cell. scRNA-seq

offers a high-resolution view of gene expression within individual cells as opposed to

standard bulk RNA sequencing, which examines gene expression across a population of

cells. In order to identify and characterize unusual cell types, cell sub-populations, and

dynamic changes in gene expression throughout cellular development and response to

stimuli, thousands to millions of cells can be analyzed simultaneously using scRNA-seq.

Developmental biology, immunology, cancer, neuroscience, and personalized medicine

are just a few of the domains where the approach has major implications.

Unlike bulk RNA-Seq, where gene expression is examined in a population of cells,

scRNA-Seq analyzes expression profiles of individual cell within a heterogeneous popu-

lation. Thus, scRNA-Seq analysis provides a nuanced and detailed view of the diversity

and function in cells. scRNA-Seq analysis is capable of shedding light on the hetero-

geneity within cell populations by examining gene expression at single cell level and

can lead to detection of sub-populations and uncommon cell types that are not detected

by bulk RNA-Seq analysis. scRNA-Seq analysis helps in understanding the complex

biological process by investigating co-expression patterns between cells so as to unravel

the underlying interactions and associations between cell types within a tissue or organ.

scRNA-Seq approaches may introduce technical noise and biases due to sample prepa-

ration, sequencing and amplification thus leading to lower accuracy and reproducibility.

When compared to bulk RNA-Seq, scRNA-Seq has smaller read depth per cell, thus

leading to higher dropout rates and is less sensitive to finding lowly expressed genes.

scRNA-Seq can be computationally costly as it extensively investigates thousands of

distinct cells. Analysis of scRNA-Seq data entails specialized processing power and

knowledge leading to complications in interpretation. Consistent detection of cells with

low read counts or cell types that are rare by scRNA-Seq is not possible due to technical

limitations.
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6.2 Related Works

For co-expression network (CEN) construction and analysis, Salehi et al [600] em-

ploy the widely used WGCNA [327]. This work adheres to the basic pipeline of CEN

construction with scale-free topology. To quantify the correlation between the expres-

sion of each pair of genes and identify only positive correlations, the Pearson correlation

coefficient [545] and the signed network options were employed, followed by the pro-

duction of a topological overlap matrix (TOM) [574].

Li et al [367] proposed scLink, which calculates the correlation between gene pairs

followed by the use of a penalized and data-adaptive likelihood method to learn sparse

dependencies among genes and construct sparse gene CENs, to improve the construc-

tion of gene CENs for single cells. The incapacity of Pearson [545] and Spearman’s

[643] correlation coefficients to efficiently approach the representation and interpre-

tation of gene-gene relationships in exceedingly sparse scRNA-Seq data was discov-

ered in this study. Using two phases, scLink delivers reliable inference of gene co-

expression networks while also capturing functional gene modules. 1) constructing a

robust co-expression matrix from gene expression data in order to accurately reflect

the co-expression interactions between genes, and 2) identifying a sparse gene network

from the co-expression matrix using a penalized and data-adaptive likelihood approach.

scLink is intended to detect and predict ligand-receptor interactions among different cell

types in a tissue or biological sample.

Algabri et al. [18] proposed Single-cell Gene Expression Network Analysis (sc-

GENA) 1, a systematic pipeline for network analysis of scRNA-Seq data. In scGENA,

identification of DEGs through DEA is followed by creation of a CEN from the DEGs,

DCA, d=functional enrichment analysis, and finally identification of overlapping genes

across samples. scGENA investigates the changes in network topology across cell

groups under varying conditions, cell types and stages.

Sekula et. al. [614] offer a hierarchical Bayesian factor model for constructing

a gene CEN from scRNA-seq count data. The treatment-dependent parameters in the

proposed model determine the activation latent factors in each gene. This permits gene-

gene co-expression to be calculated within each treatment group. Although Sekula et al.

[614] only consider two group settings labeled as control and treatment for simplicity,

1 (https://github.com/zpliulab/scGENA)
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the model can be extended to additional group scenarios. The proposed count model,

which is conditionally Poisson but marginally overdispersed, allows for zero-inflation

and high cell-to-cell variability peculiar to scRNA-Seq data.

Chiu et al. [100] developed scdNET 2, where differential gene regulation networks

associated with cellular states are analyzed at single cell level. scdNET starts with pre-

processing and normalization , as well as deletion of non-informative genes in either

state with the aim to reduce inter-cell bias. Fisher transformation is used to reduce

sample size related bias while elimination of zeroes is achieved through the computation

of gene-gene correlation within each group of cells. Within groups of cells normalized

correlation co-efficients are compared so as to assess the changes in the correlation in

the Fisher domain. Integration of the significant changes in the gene-gene pairings into

the differential network is the final step in scdNet.

While scGENA [18] builds a network from DEGs, Sekula et al. [614] uses a hierar-

chical bayesian model for network construction, and scdNET [100] follows the pipeline

of calculating gene-gene correlation within cell groups and merging gene-gene pairs

with significant changes across groups into differential network. There are a few studies

that do network analysis [600, 176, 367] as well as DCA [18, 614, 100] on scRNA-Seq

data.

To the best of our knowledge, there are no works of DCA on scRNA-Seq data that

follow the pipeline of CEN construction, module extraction, identification of biologi-

cally relevant modules, detection of hub-genes, and finally identification of biomarkers.

With the goal of detecting intrinsic gene-gene interactions at the cellular level, we estab-

lished a framework for differential co-expression analysis suitable for scRNA-Seq data.

We tested the hypothesis on ESCC. In light of the following considerations, the sug-

gested framework for Differential Co-expression Analysis Method on single cell RNA

Sequencing data, scDiffCoAM is significant.

• Compared to some of its counterparts, it uses a better hub-gene discovery method.

• It can identify certain crucial ESCC genes that have not been reported by others.

• Due to the evaluation of both statistical and biological factors as well as written evi-

dence, its validation of possible biomarkers is full proof.

2 https://github.com/ChenLabGCCRI/scdNet
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6.3 Background

In this section, we discuss the measures that we use for deciding the significance of

genes for hub gene finding and two R packages- Seurat [219] and hdWGCNA [510] that

we use in the implementation of scDiffCoAM.

6.3.1 Measures for hub gene finding

Azuaje et al. [35] have observed that there is often an association between key dis-

ease pathways and highly connected genes (i.e., hub-genes) in gene CENs. We employ

hdWGCNA to construct a CEN for high-dimensional data and to extract significant mod-

ules for a given dataset. With the extracted modules, important nodes (or genes) can be

identified as potential biomarkers. In Table 6.1, we summarize seven measures that we

employ for hub-gene finding.

Tab. 6.1: Centrality Measures for hub-gene finding employed in scDiffCoAM

Measure Function Formula

Alpha Cen-

trality [53]

An adaptation of eigenvector centrality

with the addition that nodes are imbued

with importance from external sources.

Given a graph with adjacency matrix Ai

the alpha centrality is defined as follows:

x = (I−αAT )−1e where e j is the external

importance given to node j, and α is a pa-

rameter.

Average

Distance[128]

Average distance of a node in a strongly

connected and loop free graph. It is the

inverse of closeness centrality.

Average distance of node u to the

rest of nodes in the net defined as:

CradCu= ∑w∈V dis(u,w)
n−1

Barycenter

Centrality[712]

Barycenter scores are calculated as 1 /

(total distance from vertex v to all other

vertices) in a strongly connected network.

More central nodes in a connected com-

ponent will have smaller overall short-

est paths, and ’peripheral’ nodes on the

network will have larger overall shortest

paths.

If σ(v) denotes the sum of the distances

from v to all other vertices then Barycen-

ter Centrality for vertex v defined as:

CradCv= 1
σ(v)

Decay Cen-

trality [277]

Decay centrality is a centrality measure

based on the proximity between a chosen

vertex and every other vertex weighted by

the decay.

Decay centrality of a given vertex x of

a graph G is defined as: ∑y∈V (G) σd(x,y)

where d(x,y) denotes the distance be-

tween x and y and σ ∈ (0,1) is a param-

eter.
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A network centrality metric called alpha centrality [53], a subset of eigenvector cen-

trality, is used to evaluate the significance or influence of specific nodes within a net-

work. Alpha centrality measures a node’s relative significance in a graph based on its

connections to other nodes in the network. Alpha centrality permits the introduction

of a parameter (α) to modify the weight of a node’s neighbors as opposed to stan-

dard eigenvector centrality, which determines centrality based on all connections with

equal weight. This parameter offers flexibility in emphasizing or understating particular

network edges based on personal preferences or subject-matter expertise. The average

number of steps or edges needed to travel from one node to every other node in a net-

work is measured by the average distance [128], which is a network statistic. It measures

the typical path length between nodes and offers insights on the network’s connectivity

or signal transmission efficiency. A network with nodes that are typically closer to one

another, enabling quick communication and interaction, has a smaller average distance.

On the other side, a network that is more sparse or distant is implied by a longer average

distance, which may necessitate more steps for information to spread between nodes.

Barycenter centrality [712] determines a node’s centrality based on the geometric cen-

ters (barycenters) of its nearby nodes. According to this metric, a node’s centrality is

determined by how close it is to the nodes next to it in terms of mass. The barycenter

centrality takes the spatial distribution of nodes within the network into account; nodes

with greater centrality scores are those that are closer to the centers of their neighbors. In

networks that require the physical position of nodes, such as spatial networks, this cen-

trality measure is very important. Higher centrality scores are given by decay centrality

[277] to nodes that are both well-connected and close to other nodes. According to de-

cay centrality, a node’s influence on another node declines as their distance increases.

Nodes that are closer to one another have a greater influence, whereas nodes further apart

have a less impact. This measurement illustrates the notion that a node’s influence on

its neighbors decreases with increasing distance. Decay centrality is especially helpful

in situations where determining the importance of nodes within the network depends on

both the quality of connections and their closeness.
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6.3.2 Seurat

Seurat [219] 3 is an open source R (Section 2.2.1) package developed by Satija et

al.[608] that provides for well structured organization of scRNA-seq data in the form of

objects called the Seurat Objects along with an efficient set of methods for their process-

ing. It also provides for maintaining the gene and cell related data and meta data existing

in the input data sets as well as the derived meta data obtained from preprocessing for

later use, in the respective Seurat objects. The well structured organization, provision for

derived meta data, and ready availability of methods frequently used in computational

biology make Seurat a very very useful tool for researchers in the field.

6.3.3 High Dimensional WGCNA (hdWGCNA)

Fig. 6.1: Steps involved in WGCNA analysis for high dimensional data using hdWGCNA

Morabito et al. [510] recognize the immense complexity of biological systems with

multi-scale hierarchies of functional units based on tightly-regulated interactions among

organs, organisms, molecules, and cells. Further, they state that regardless of the ex-

istence of experimental methods that enable transcriptome-wide measurements across

millions of cells, most omnipresent bioinformatic tools do not support systems-level

analysis. Thus, Morabito et al.[510] present High Dimensional WGCNA (hdWGCNA),

a comprehensive framework for analyzing co-expression networks in high-dimensional

transcriptomics data such as single-cell and spatial RNA-seq. hdWGCNA provides

built-in functions for a) Network inference, b) Gene module identification c) Functional

gene enrichment analysis, d) Statistical tests for network reproducibility, and e) Data vi-

3 https://satijalab.org/seurat/
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sualization. hdWGCNA is further capable of performing isoform-level network analysis

using long-read single-cell data.

The following are the most advantageous characteristics of hdWGCNA:

• hdWGCNA does not require prior knowledge or databases, making it a purely unsu-

pervised approach.

• The co-expression information computed by hdWGCNA can be easily retrieved from

the Seurat object to facilitate custom downstream analyses beyond the hdWGCNA

package.

• hdWGCNA allows for comparisons between experimental groups via differential mod-

ule eigengene testing and module preservation analysis.

• The CENs inferred by hdWGCNA are highly reproducible in unseen datasets, indi-

cating that this is a robust methodology.

hdWGCNA is available as an R package4 for performing weighted gene co-expression

network analysis (WGCNA) [327] in high dimensional transcriptomics data such as

scRNA-seq or spatial transcriptomics. hdWGCNA requires data formatted as Seurat

[608] objects. Fig. 6.1 describes, in brief, the steps involved in WGCNA analysis for

high dimensional data using hdWGCNA [510, 509]. Firstly, before running hdWGCNA

the Seurat objects are set up for the operation. Setting up Seurat objects is then followed

by the first step of running the hdWGCNA pipeline which is the construction of meta-

cells from the scRNA-Seq dataset. In a nutshell, metacells are an aggregation of small

groups of similar cells from the same biological sample of origin. Identification of these

groups of similar cells is achieved through the k-Nearest Neighbors (KNN) algorithm

followed by the computation of summed expression of these cells which finally results

in a metacell gene expression matrix. Next step is the specification of the expression ma-

trix that will be used for further network analysis. As in the case of WGCNA[327], this

step is very important for hdWGCNA. hdWGCNA infers the co-expression relationship

among genes through the construction of a gene-gene correlation adjacency matrix. Re-

moval of weak connections while retaining the strong connections entails the reduction

of the amount of noise in the matrix by raising the correlations to a power. This enhances

the critical choice of soft power threshold. It is essential that the network has a scale-free

topology. Construction of CEN starts off by optionally filtering genes and samples with

too many missing entries or zero variance in at least one set. Module detection leaves

4 https://smorabit.github.io/hdWGCNA/index.html
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out the filtered genes. Genes are pre-clustered into blocks and for each block of genes,

hdWGCNA constructs the network and topological overlap matrix (TOM) [574]. Using

average linkage hierarchical clustering genes are clusters with the aim to identify mod-

ules. Processing of each block is then followed by checking, reassigning, and merging

of modules based on kMEs (i.e., correlation with module eigengene). Computation of

module connectivity involves the calculation of pairwise correlations between genes and

module eigengenes.

6.4 ScDiffCoAM: A Complete Framework To Identify Poten-

tial ESCC Biomarkers Using ScRNA-Seq Data Analysis

Fig. 6.2: Proposed framework for DCA on scRNA-Seq Dataset, scDiffCoAM

Our scDiffCoAM, scDiffCoAM, closely follows the conventional DCA pipeline with

the aim to identify biomarkers that includes the following: 1) CEN construction 2) mod-

ule extraction 3) identification of modules of interest (MoIs) 4) hub-gene detection, and

5) identification of biomarker(s). In Fig. 6.2 we depict the proposed framework, scD-

iffCoAM, for DCA on scRNA-Seq data. The datasets for DCA on microarray or bulk

RNA-Seq are separated into two categories based on conditions, normal and disease.

We observed transcriptional changes in gene-gene interactions under normal and dis-

ease conditions using DCA on such datasets. DCA on scRNA, on the other hand, may
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enable an improved comprehension of the interaction of intrinsic cellular processes un-

der two different conditions. We construct CENs for each cell type under each condi-

tion because our focus is primarily on interactions at the cellular level.

6.4.1 Pre-processing

The initial input to our framework, scDiffCoAM, consists of two datasets that rep-

resent the two different conditions considered for DCA. We have immune(CD45+) and

non-immune(CD45-) conditions for the scRNA-Seq dataset GSE160269, as discussed

in Section 2.6.3 and Table 2.2. ScRNA-Seq data are incredibly large when compared

to bulk RNA-Seq and microarray data. Because of this, downstream analysis is very

computationally-intensive. The basic pipeline we follow to pre-process scRNA-Seq data

is discussed in detail in Section 2.7.3. It is preferred to create objects or data structures

that streamline data administration and other related analyses. The following informa-

tion is contained in these objects designed to facilitate downstream analysis: (a) the

original count data, and (b) the data used for quality filtering, pre-processing, and other

testing including meta-information such as gene counts for each sample, mitochondrial

RNA content, etc. As a result, the pre-processing module first takes two datasets as input

and generates two related objects, d1 and d2, for condition 1 (control) and condition 2

(disease), respectively. These objects are filtered, normalized, and scaled; the pipeline

steps for each of these operations are covered in Section 2.7.3 in more detail. By ap-

plying quality filtering, we eliminate genes whose expression was only found in 0.1%

of the cells as well as cells with a low gene content or a high mitochondrial content. In

the pre-processing unit, the count data is normalized and scaled with the intention of

facilitating additional analysis, such as WGCNA and other statistical tests.

6.4.2 Dimensionality Reduction

We identify the variable features of each object, facilitating principal component

analysis (PCA) [546, 292], an effective statistical method for reducing the dimension-

ality of a sizable dataset. It is possible to identify features (samples) that are outliers

on a ’mean variability plot’ as variable features, which makes PCA and dimensionality

reduction in the subsequent steps of the framework easier. We start by identifying vari-

able features for each object (d1,d2) before using PCA (Section 2.1.6). Employing PCA

with previously identified variable features as input thus results in the identification of
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the principal components (PCs). On each object, clustering is used, with the PCs serv-

ing as the initial cluster pivots. The process of choosing the largest clusters yields the

dimensionally reduced objects d′
1 and d′

2.

6.4.3 Partitioning into cell types

We divide/partition the two reduced objects, d′
1 and d′

2, which we now refer to

as condition-objects, into their corresponding cell-type objects to enable the cellular-

level analysis of the gene-gene interactions. This results in the creation of multiple

subgroups of objects for each condition-object that correspond to different cell types

that constitute that condition-object. There are m different cell types, for instance, for

the condition-type object d′
1 (for condition 1). In order to correspond to m cell types of

object d′
1, we create m cell-type objects, a1,a2, . . .am. Similar to this, we generate n

cell-type objects, b1,b2, . . .bn, for condition-type object d′
2.

6.4.4 CEN Construction and Module Extraction

The creation of Co-expressed networks (CENs) corresponding to each condition is

a critical step in DCA. The conditions are further divided into cell types in scRNA-Seq.

As a result, it is imminent to perform subsequent DCA using CENs which correspond

to each cell type. Thus, m and n CENs are constructed for each cell-type object that

corresponds to the condition-type objects d′
1 and d′

2, respectively. The choice of power,

referred to as the soft threshold, is required for CEN construction. For the purpose of

calculating an adjacency matrix and corresponding Topological Overlap Matrix (TOM),

co-expression similarity is raised to this power. The selection of soft thresholding power

is based on the approximate scale-free topology criterion. It is unavoidable that CENs

are not constructed from the cell-type object expression matrix as a whole for the con-

struction of CENs because there are too many missing or zero entries. The CENs are

instead constructed by identifying them as modules. Therefore, for every cell-type ob-

ject such as a1,a2, . . . ,am or b1,b2, . . . ,bn, blocks of genes constitute the modules, and

the CEN for that cell-type object consists of all such modules.

To identify modules of interest (MoI), we employ module preservation analysis (Sec-

tion 2.1.9) We define an ‘module of interest’ (MoI), as a module that is not highly

preserved because the majority of its connections are not retained [329]. We perform

preservation analysis on each pair (a j,b j) where ai correspond to m cell-type objects in
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condition-type object d′
1, and b j correspond to n cell-type objects in condition-type ob-

ject d′
2 in order to detect MOIs. For example in a pair (a1,b1) , if a module x in cell-type

object a1 is not highly preserved (Section 2.1.9) in majority of modules in b j then x is

an MoI. For each pair (a1,b2) we perform preservation analysis such that we analyze

which modules in a1 does not retain most of its connections (not highly preserved as

disscussed in Section 2.1.9)in b1 and also analyze which modules in b1 are not highly

preserved in a1.

6.4.5 Hub-gene Finding

Hub genes, which are thought to be significant in gene-gene networks because of

their high interconnectedness with a large number of neighbouring nodes, can initially

be considered potential biomarkers. We utilize a hub-gene finding algorithm [592] (Al-

gorithm 1) variation that was developed employing centrality measures. The CENs are

constructed by identifying sizable groups of genes as modules. For scRNA-Seq data, all

nodes (genes) have the same degree, unlike for microarray data or bulk RNA-Seq data.

As a result, the CBDCEM’s [592] degree [171], betweenness [170], pageRank [652],

and katz [302] centrality measures are proven to be useless in these situations. As they

were proven to be more effective in our networks than in CBDCEM [592], we exper-

imented with alpha centrality [53], average distance [128], barycenter centrality [712],

and decay centrality [277].

In essence, we compute each chosen measure, namely alpha centrality [53], average

distance [128], barycenter centrality [712], closeness centrality [39], decay centrality

[277], eigenvector centrality [519], and radiality [766], on all genes present in the mod-

ule for each MoI. The genes are then sorted according to the calculated value after that.

It is significant that the measure determines whether the sorting is ascending or descend-

ing. Each measure’s top;k genes are given the value 1, while the rest are given the value

0. A gene is regarded as a hub gene in its associated MoI if it ranks in the top;k of at

least 4 out of 7 (majority) measurements. Here, top;k is determined as follows with the

goal of finding K hub-genes:

k =

K, if 10% o f MS ≤ K

10% o f MS, otherwise
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where, MS is the module size in terms of no. of genes belonging to the module.

6.4.6 Identification of DEGs

In order to establish the biological significance of the critical genes identified by

the hub-gene finding unit of the framework, lists of genes annotated to enriched GO

keywords (lgEGo) and lists of genes annotated to enriched pathways (lgEP) are essential.

We identify a set of DEGs for each non-reduced condition-type object d1 and d2 . The

validation unit takes as input every gene that is identified as a DEG in d1 or d2.

6.4.7 Validation

The validation unit of the framework validates both modules in general and hub-

genes in specific. A module is GO enriched and pathway enriched if at least one enriched

GO term and enriched pathway is present the module. Gene Ontology (GO) enrichment

analysis (Section 2.4.1.1) and pathway enrichment analysis (Section 2.4.1.2) are used

to validate MoIs identified by the preservation analysis unit. All detected MoIs are

used as input in the validation unit’s GO enrichment and pathway enrichment analysis

sub-unit of the framework. These subunits calculate the percentage of enriched GO

terms (PEGoT) for each MoI across all three GO databases (BP: Biological Process,

CC: Cellular Component, and MF: Molecular Function) as well as the percentage of

enriched pathways (PEP) in KEGG.

We further validate each hub-gene detected by the framework so as to establish them

as potential biomarkers. We assess the acceptability of hub-genes as potential biomark-

ers based on the following criterion.

a We examine the pertinent literature related to that disease with respect to the genes

identified as crucial to support the claim in order to support the direct or indirect

relationship of the identified hub-genes as potential biomarkers with the disease of

interest.

b We perform pathway enrichment and GO enrichment analysis to determine the bio-

logical relevance of the identified hub-genes to the dataset and to comprehend how

they interact with one another within a network.

c We identify the transcription factors (TFs) among the list of identified hub-genes

and employ gene regulatory networks (GRN) to analyze their regulatory behavior in

order to examine the association patterns between the target genes (TG) and the cor-
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responding transcription factors (TF) as well as regulatory behavior among the list of

identified hub-genes.

We initially find lgEGo and lgEP with p− value = 0.05 for the validation of the hub-

genes identified by scDiffCoAM. The GO enrichment and pathway enrichment sub-units

utilize the DEGs discovered by the framework’s identification of DEGs unit as input.

Two lists—lgEP, and lgEGo—are the outcomes. The hub-gene list, lgEGo, and lgEP

are provided to the biological analysis unit in order to validate the hub-genes identified

by the hub-gene finding unit of the framework. The biological analysis unit finds hub-

genes that are annotated to enriched pathways and enriched GO terms. In other words,

the hub-genes that are present in lgEGo and lgEP are identified by the biological analysis

unit. In order to determine how these hub-genes behave in terms of regulation within the

network, this unit further identifies hub-genes that are TFs and constructs GRN (Section

2.4.2). The validation unit of the framework’s literature trace sub-unit finds hub-genes

that have published literature traces confirming their status as biomarkers for ESCC or

other SCCs closely associated with ESCC.

6.5 Experimental Results

Our main area of interest is ESCC, a single cell RNA-Seq dataset, GSE160269 was

used to validate our proposed framework scDiffCoAM. The detailed specifications for

the dataset are provided in Table 2.2 and Section 2.6.3. Zhang et al.[877] analyzed

208,659 single cell transcriptomes in ESCC and obtained samples from four adjacent

normal tissue and sixty ESCC tumors and samples from 60 individuals. The immune

(CD45+) or non-immune (CD45-) cells were obtained through the CD45-FITC stain-

ing of single cell suspension. CD45+ immune cells has 3 cell types namely, Tcells

(TC), Bcells (BC), and Myeloid (MY) while CD 45- non-immune cells have 5 cell types

namely, Epithelial, Endothelial, Fibroblasts (FI), Pericytes (PE), and Fibroblastic Retic-

ular Cells (FRC). DELL workstation running Windows 10 Pro for workstations with a

3.70GHz Intel(R) Xeon(R) W-2145 CPU and 64 GB of RAM serves as the test plat-

form.In the R programming environment (Section 2.2.1), we carry out the experiments.

6.5.1 Pre-processing

As mentioned in Section 6.4.1, the input to the presprocessing unit are two datasets

CD45+ (immune) and non-immune(CD45-) datasets (Table 2.2 and Section 2.6.3). We
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employ the Seurat package [608] (version 4.1.1) 5to construct two Seurat objects, CD45+

and CD45-, for quality filtering as well as subsequent downstream analysis. We in-

tend to simplify the maintenance of the original count data and computation of meta-

information, such as gene counts for each sample, mitochondrial content, etc. useful in

quality filtering, by using Seurat to create the two objects. Furthermore, all information

pertaining to the implementation of each test on a Seurat object can be stored in the same

object and easily accessed thus aiding in the implementation of other statistical tests and

analyses.

CD45+ and CD45- condition-type Seurat objects are of sizes 15,175×1,11,028 and

17,012×97,631, respectively. According to Zhang et al. [877], we achieve quality fil-

tering by eliminating genes whose expressions were found in less than 0.1 percent of all

cells and eliminating cells with gene counts below 500 or mitochondrial RNA contents

above 20% (Figures 6.3a and 6.3b). In this step, the number of CD45+ Seurat cells

(columns) is reduced by one, resulting in a dataset that is 15,175×1,11,027, while the

number of CD45- cells is left unchanged at 17,012×97,631. Based on average expres-

sion and dispersion level thresholds, genes with highly variable expression, or to put it

another way, outlier genes in a ‘mean variable plot’ were chosen [877]. Data scaling is

accomplished by regressing normalized expression levels against the sum of UMI counts

and the amount of mitochondrial RNA present in each cell for each gene using a linear

model.

(a) CD45+ (b) CD45-

Fig. 6.3: Violin Plots for (a) CD45+ and (b) CD45-. Here, nCoun_RNA= no. of UMIs per
cell, nFeature_RNA=no. of genes detected per cell and percent.MT= Percentage of
mitochondrial RNA content.

5 https://satijalab.org/seurat/
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6.5.2 Dimensionality Reduction

We initially perform PCA (Section 2.1.6) on CD45+ and CD45- Seurat objects

in order to their reduce dimensions. In order to identify PCs, PCA incorporates the

variable features obtained in the pre-processing unit. The PCA elbow plots for CD45+

and CD45- are shown in Fig. 6.4a and Fig.6.4b, respectively. By assessing the minimum

value of the following, we determined where PCA begins to elbow 6.

1. the point at which PCs cumulatively contribute 90% of the standard deviation (sd)

but only contribute 5% of sd individually.

2. the point at which the fluctuation in percentage between two consecutive PCs is less

than 0.1%.

(a) CD45+ (b) CD45-

Fig. 6.4: Elbow Plots for (a) CD45+ and (b) CD45-.
These values are respectively PC 45 and PC 20 for CD45+ and CD45-, and respectively

PC 42 and PC 14. As a result, we established PC 20 and PC 14 as the minimal values

for CD45+ and CD45-, respectively. We use Shared Nearest Neighbour (SNN) to per-

form graph-based Louvain clustering on 20 (CD45+) (Fig. 6.4a )and 14 (CD45-) (Fig.

6.4b) principal components (PCs), and then we find the clusters. As a result, 20 and

25 clusters are detected in CD45+ and CD45-, respectively. According to the cluster

results, the size of the clusters significantly decreases in the seventh (7th) and eighth

(8th) clusters for CD45+ and CD45-, respectively. As a result, we select a subset of the

first six (CD45+) and first seven (CD45-) clusters in order to decrease the number of

cells. This lowers CD45+ to 15,175× 74,588 and CD45- to 17,012× 62,484. We re-

fer to these reduced condition-type Seurat objects as CD45′+ and CD45′− Tcell reduces

from 69,278 to 53,694, Bcell decreases from 22,477 to 12,021, and Myeloid decreases

6 https://hbctraining.github.io/scRNA-seq/lessons/elbow_plot_metric.html
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from 19,273 to 8,873. Epithelial decreases from 44,730 to 20,092, endothelial from

11,267 to 6,63, fibroblast from 37,213 to 35,803, pericytes from 3,102 to 8, and FRC

from 1,319 to 218 (Table 2.2). With Bonferroni p-value correction [49], we identify

cluster-specific markers to detect DEGs. We particularly used the MAST method [165]
7, which uses a hurdle model customized for scRNA-seq data to identify DEGs between

two groups of cells. 5,321 and 7,292 genes, correspondingly, were identified as markers

(DEGs) for CD45+ and CD45-.

6.5.3 Partitioning into cell types

As mentioned earlier in Section 6.4.3, we primarily focus on transcription changes

in gene-gene interaction at cellular level. As such we subset each reduced Seurat object

into their respective cell types. We create cell-type Seurat objects, Tcell (TC), Bcell

(BC), and Myeloid (MY) Seurat objects from CD45+ condition-type Seurat object with

53,694, 12,021, and 8,873 cells, respectively. Similarly, Epithelial (EP), Endothelial

(EN), and Fibroblast (FI) cell-type Seurat objects of sizes 20,092, 6,63, 35,803, re-

spectively are created from conditon-type Seurat object CD45-. Here, it is noteworthy

that we were unable to create subsets for Pericytes and FRC due to their smaller size as

compared to the other cell types.

6.5.4 CEN Construction and Module Extraction

Following definitions are useful in understanding the subsequent discussion.

Definition 6.5.1 (CEN). A CEN can be defined as a graph, G(V,E), where V represents

the set of genes in a Seurat object and E represents the set of associations among the

genes in terms of their expression similarity.

Definition 6.5.2 (Module). A module is a subset of genes, M ⊂ G in a Seurat object,

where there exists high coherence or homogeneity among the genes in terms of associa-

tions or expression similarities.

It is not feasible to implement WGCNA on sc-RNA-Seq because of its inherent

limitations. The application of hdWGCNA makes it possible to generate CENs and

conduct further analyses on highly dimensional data. Furthermore, the treatment of sc-

RNA-Seq data as Seurat objects is plausible thanks to hdWCNA. In Section 6.3.3, we

7 https://github.com/RGLab/MAST
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discussed every step involved in CEN construction employing hdWGCNA. The initial

stage in building a CEN is to put up all six Seurat objects for the WGCNA, then build

metacells, and finally set up the expression matrices.

(a) Tcell (CD45+) (b) Bcell (CD45+)

(c) Myeloid (CD45+) (d) Epithelial (CD45-)

(e) Endothelial (CD45-) (f) Fibroblast (CD45-)

Fig. 6.5: Soft Thresholds for CD45+ cell types a) Tcell and b) Bcell c) Myeloid are 4, 5 iand 4,
respectively, and for CD45- cell type d) Epithelial, e)Endothelial, and f) Fibroblast are
6, 3, and 4, respectively.

Soft power thresholds are chosen prior to CEN construction. Soft power thresholds for
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the CD45+ cell types Tcell, Bcell, and Myeloid are four (Fig. 6.5a), five (Fig. 6.5b),

and four Fig. 6.5c), respectively. Soft power thresholds for CD45-cell types Epithelial,

Endothelial, and Fibroblast are six (Fig. 6.5d), three (Fig. 6.5e), and four (Fig. 6.5f),

respectively. We construct the CEN using multiple gene blocks as modules, which is

covered in Section 6.3.3. Next, we compute the module eigens and connectivity, which

leads to the merging of the modules. For CD45+ cell types, the Fig. 6.6a, Fig. 6.6b,

and Fig. 6.6c, respectively, represent all modules found in Tcell, Bcell, and Myeloid.

The dendrograms for Epithelial, Endothelial, and Fibroblast are shown in Fig. 6.6d,

Fig. 6.7a, and Fig. 6.7b, respectively. The computation of module eigens and module

connectivity for all six Seurat objects comes after CEN construction.

(a) Tcell (CD45+) (b) Bcell (CD45+)

(c) Myeloid (CD45+) (d) Epithelial (CD45-)

Fig. 6.6: Dendrograms for the CD45+ cell types a) Tcell, b) Bcell, and c) Myeloid with 4, 3, and
10 modules, respectively and the CD45- cell type d) Epithelial with 9 modules.

220



(a) Endothelial (CD45-) (b) Fibroblast (CD45-)

Fig. 6.7: Dendrograms for the CD45- cell types a) Endothelial and b) Fibroblast with 3 and 4
modules, respectively.

6.5.5 Preservation Analysis

The concept of preservation analysis is discussed in detail in Section 2.1.9. In scD-

iffCoAM, the retainment of associations of modules from one Seurat object in another

Seurat object is analyzed using module preservation analysis. For instance, let’s say

we wish to discover the modules found in the Tcell Seurat object that have the most

connections retained in the Epithelial Seurat object. Here, we refer to the Seurat object

that contains the modules for preservation analysis as the reference Seurat object and the

Seurat object that analyses the preservation of the modules as the query Seurat object. In

other words, selecting a Seurat object pair from CD45+ and CD45- is required for mod-

ule preservation analysis. By alternating between each object in a pair as a reference

and a query Seurat object, we analyze each object pair for preservation. The following

are the steps for performing a module preservation analysis using the hdWGCNA pro-

gramme [510, 509] 8.

1. Modules of the reference Seurat object are projected on the query Seurat object.

2. The expression matrices for both reference and query Seurat objects are constructed.

3. An adequate number of permutations are chosen in the module preservation analysis.

(We’ve chosen 250 in this case).

The table 6.3 provides the Zsummary statistics (Section 2.1.10) for the preservation anal-

ysis of all modules in instances of cell types as reference Seurat objects compared to

corresponding query Seurat objects. All modules in each cell type (Seurat object) high-

8 https://smorabit.github.io/hdWGCNA/index.html
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lighted in the bolded and blue are MoIs and thus taken into account for subsequent

downstream analysis.

Definition 6.5.3 (Module of Interest (MOI)). A module, i.e. a subset of genes is defined

as ’module of interest’, if (i) its size ≥ 100, and (ii) it is not highly preserved or non-

preserved (Zsummary < 2) [329] or moderately preserved (2 ≤ Zsummary ≤ 10) [329] in at

least 2 out of 3 corresponding query Seurat objects.

Despite having a size of 159 (genes) but a Zsummary ≤ 10 (at least moderately pre-

served) in the Bcell query Seurat object only, the module yellow in Epithelial is not re-

garded as a MoI. However, module green in Epithelial is non-preserved (Zsummary < 2)

[329] in all of the three corresponding query Seurat objects and is therefore disqualified

as a MoI because it is size = 79 (i.e., size < 100).

Tab. 6.3: Preservation Analysis (Zsummary) of CD45+ modules in CD45- dataset and vice versa.
Rows represent the Reference Seurat object while columns represent the query Seurat
object. Zsummary values ≥ 10 in modules of Size ≥ 100 are highlighted in italics .Mod-
ules with Size ≥ 100 and atleast moderately preserved (i.e, Zsummary ≤ 10), highlighted
in italics, in atleast two (out of three) corresponding test/query Seurat object are con-
sidered for subsequent downstream analysis and highlighted in blue and bolded. Here,
TC: Tcell, BC: Bcell, MY: Myeloid, EP: Epithelial, EN: Endothelial and FI: Fibrob-
lasts.

Ref Module Size EP EN FI Ref Module Size TC BC MY

C
D

45
+

TC

yellow 61 0.597 0.864 0.174

C
D

45
-

EP

black 47 -0.645 -0.161 -0.012

brown 151 3.916 4.573 3.702 pink 47 -0.450 -0.536 -0.271

blue 276 -0.830 0.402 0.170 red 64 -0.659 -0.257 -0.045

turquoise 300 3.767 5.365 1.452 green 79 0.344 1.554 1.749

BC

brown 87 2.799 4.961 4.018 yellow 159 10.038 7.540 10.951

blue 108 0.996 1.754 0.889 brown 212 -0.962 -0.152 1.143

turquoise 244 0.615 0.715 0.530 blue 253 -0.568 -0.127 3.063

MY

magenta 54 2.033 0.781 1.696 turquoise 336 1.923 7.553 15.771

pink 54 2.364 0.045 0.747

EN

brown 152 5.810 5.173 7.033

purple 54 5.256 5.316 4.973 blue 313 3.539 5.144 5.515

black 65 28.490 6.287 6.560 turquoise 330 0.127 6.629 1.66

green 102 2.459 2.532 0.986

FI

yellow 52 2.314 2.144 5.073

yellow 145 7.270 8.406 7.575 brown 114 -0.099 -0.499 1.004

brown 178 1.807 1.802 3.210 blue 250 1.125 1.533 1.392

blue 189 3.150 3.760 2.856 turquoise 424 1.121 0.795 2.196

turquoise 228 4.245 4.791 5.099
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Fig. 6.8a, Fig. 6.8c, and Fig. 6.9a show the Zsummary plots for Tcell in Epithelial,

Endothelial, and Fibroblast, respectively. Similar preservation plots for Bcell modules in

Epithelial, Endothelial, and Fibroblast are shown in Fig. 6.9c, Fig. 6.9e, and Fig. 6.10a,

respectively, while plots for Myeloid modules in Epithelial, Endothelial, and Fibroblast

are shown in Figures 6.10c, Fig. 6.10e, and Fig. 6.11a. On the other hand, Fig. 6.8b,

Fig. 6.9d and Fig. 6.10d shows the Zsummary statistics for Epithelial modules in Tcell,

Bcell, and Myeloid, Fig. 6.8d, Fig. 6.9f and Fig. 6.10f shows the plots for Endothelial

modules in Tcell, Bcell, and Myeloid and Fig. 6.9b, Fig. 6.10b and Fig. 6.11b shows

the plots for Fibroblast modules in Tcell, Bcell, and Myeloid, respectively.

(a) Tcell (CD45+) in Epithelial (b) Epithelial (CD45-) in Tcell

(c) Tcell (CD45+) in Endothelial (d) Endothelial (CD45-) in Tcell

Fig. 6.8: Zsummary plot for a) Tcell (CD45+) in Epithelial (CD45-) , b) Epithelial (CD45-) in
Tcell (CD45+), c) Tcell (CD45+) in Endothelial (CD45-), and d) Endothelial (CD45-)
in Tcell (CD45+)
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(a) Tcell (CD45+) in Fibroblast (b) Fibroblast (CD45-) in Tcell

(c) Bcell (CD45+) in Epithelial (d) Epithelial (CD45-) in Bcell

(e) Bcell (CD45+) in Endothelial (f) Endothelial (CD45-) in Bcell

Fig. 6.9: Zsummary plot for a) Tcell (CD45+) in Fibroblast (CD45-) , b) Fibroblast (CD45-) in
Tcell (CD45+), c) Bcell (CD45+) in Epithelial (CD45-), and d) Epithelial (CD45-) in
Bcell (CD45+), e) Bcell (CD45+) in Endothelial (CD45-), and f) Endothelial (CD45-)
in Bcell (CD45+)
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(a) Bcell (CD45+) in Fibroblast (b) Fibroblast (CD45-) in Bcell

(c) Myeloid (CD45+) in Epithelial (d) Epithelial (CD45-) in Myeloid

(e) Myeloid (CD45+) in Endothelial (f) Endothelial (CD45-) in Myeloid

Fig. 6.10: Zsummary plot for a) Bcell (CD45+) in Fibroblast (CD45-) , b) Fibroblast (CD45-) in
Bcell (CD45+), c) Myeloid (CD45+) in Epithelial (CD45-), and d) Epithelial (CD45-)
in Myeloid (CD45+), e) Myeloid (CD45+) in Endothelial (CD45-), and f) Endothelial
(CD45-) in Myeloid (CD45+)

225



(a) Myeloid (CD45+) in Fibroblast (b) Fibroblast (CD45-) in Myeloid

Fig. 6.11: Zsummary plot for a) Myeloid (CD45+) in Fibroblast (CD45-) and b) Fibroblast (CD45-)
in Myeloid (CD45+).

6.5.6 Hub Gene Finding

As previously noted, we employed the hub-gene finding algorithm described in CB-

DCEM [592] in detail. But instead of using degree [171], betweenness [170], pageRank

[652], and katz [302] centralities, we replace them with alpha [53], average distance

[128], barycenter [712], and decay [277]. We found that the substituted measures are in-

effectual through repeated trials in which we incorporate the original method suggested

by CBDCEM [592] into scDiffCoAM. We have seen that the degree of the nodes has a

significant impact on degree [171], betweenness [170], and katz centrality [302]. How-

ever, because hdWGCNA constructs networks on blocks of genes, the network modules

that are discovered are highly connected, and every node (gene) in the module has the

exact same degree. As a result, all genes have zero values for the centralities described

before. To find the centrality measures that worked well for our research, we used the

CINNA R package [31] 9. An R package called CINNA [31] for network science cen-

trality analysis is helpful for compiling, contrasting, assessing, and visualizing various

centrality measurements. In the past, we designated three, two, and five modules in

CD45+ cell types, Tcell, Bcell, and Myeloid as MoIs. In each CD45- cell type, epithe-

lial, endothelial, and fibroblast, three modules are MoIs. With K = 20 and the goal of

identifying 20 hub-genes in each module, these nineteen MoIs are taken as input into

the hub-gene finding unit. There are approximately 380 hub-genes detected. It is worth

noting that many hub-genes are identified in both CD45+ and CD45-cell types in across

9 https://cran.r-project.org/web/packages/CINNA/vignettes/CINNA.html
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multiple modules. Table 6.4 summarizes all the hub-genes identified using the CBD-

CEM [592] hub-gene finding algorithm across all six cell types.

Tab. 6.4: Top 20 hub genes for each extracted MoI in CD45+ and CD45- datasets using our hub-
gene finding algorithm. Hub genes with strong literature evidence of association to
ESCC are marked in Red while hub genes with evidence of association with five other
SCCs, HNSCC, LaSCC, LSCC, OSCC, and OSCC are marked in Blue.

Cell

Type

Module Hub genes

C
D

45
+

TC

blue ALDH1A2, ATF5, CCNB2, CDH1, , HBEGF, IFI30, IGHG1, IGKC, LAMP3,

MERTK, MPP1, NEURL3, TCF4, TNFAIP6, ASAH1, ELF3, IGHM, PPT1,

TRAV4, VASH2

brown DTL, ADM, ARL5B, BAMBI, DLX2, FEZ1, GLA, HEY1, HIST1H2AG,

KCNQ1OT1, MNDA, PROK2, PSTPIP2, RAB3A, RP11-61J19.5, RRAD, TPD52,

TRAM2, VASN, IL15

turquoise NLRP3, SLAMF8, APOC2, B3GNT7, CD68, COL3A1, COL6A3, FLT1, FUT7, IT-

GAX, KIAA0101, KRT17, LIPA, MCM7, MYL9, NCAPG, POGLUT1, RAD51AP1,

SGPL1, SLC12A8

BC
blue BCAS4, BCAT1, CCR1, CD81, CDCA7, GATM, GPR137B, HCK, HIST3H2A,

IGKC, IQCG, SINGLEC6, TRAM2, ZBED2, CYFIP1, IL5RA, PGD, PTAFR,

RP11-731F5.1, ZNF296

turquoise ABCA1, CD1D, CFP, IFITM3, IGHJ4, IGLC3, MXD1, PLK2, ABCB9, ACP2,

FAM64A, GCHFR, HK2, HLA-DQB2, IGHV2-70.1, IGHV3-43, IGLV3-1, KL-

HDC8B, NDUFAF6, TUBB3

MY

blue ADAMTS2, CAV1, CCR4, CD1B, COL6A3, DBN1, FAM3C, GATA3, IGLV2-

14, PCSK1N, PTPN13, SH2D4A, TRBV12-3, A4GALT, ALDOC, B9D1, GLDN,

MMP10, UCHL1, ZNF385A

brown TBXAS1, CTSZ, LINC00996, RARRES1, CUL9, ERLEC1, FCGR1B, GFRA2,

HMOX1, HVCN1, MGLL, PGM2L1, PILRA, PTFAR, PTTG1IP, SDSL, SGPL1,

SUCNR1, VMO1, ZC2HC1A

green LMO2, LY9, RP11-62414.2, TRDV2, ACY3, AFF3, FLI21408, GCSAM, GMDS,

GPR18, ILF3-AS1, KIFC1, MID1IP1, POGLUT1, RP11-350N15.5, TNFRSF13C,

TRAV16, TRAV9-2, YWHAH

turquoise ANGPTL4, BEST1, C11orf96, CEACAM3, DOCK4, EMILIN2, HOXA5, IGFBP7,

JAML, OSM, P2RX1, PEA15, SLC8A1, BACH2, CCND2, CEMIP, GPR31,

NEURL3, RHCG, SPRED2

yellow C4orf46, CCR2, CH25H, HCAR2, KIR2DL4, LGALS3, LINC00309, NRN1,

NUB1, PLBD1, RASGEF1B, RNU12, RP11-386I14.4, RP11-467L13.7, RP11-

598F7.3, RP11-796E2.4, SPON2, TIFA, PDCD1, PRF1

Continued on next page
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Cell

Type

Module Hub genes

C
D

45
-

EP blue FGF5, GOS2, MMP9, TMEM45A, ANPEP, APCDD1, ARHGAP15, C10orf10,

CH25H, CLDN11, CLEC3B, COL14A1, COL9A1, HAS2, IL24, LEPR, MSC,

PAMR1,RGS5,SRGN

brown AKR1B10, SLC7A11, CAPN14, G6PD, RAB27B, SRXN1, TRIM7, DAPL1,

ENTPD3, GPRC5D, GSN, GSTA4, KIAA1324, KRT18, MATN2, MCF2L2,

MTSS1, RGS2, SAT1, TSPAN13

turquoise AMTN, AREG, C12orf75, CEACAMI9, COL4A1, CRABP2, CRIP1, CST6,

EGFL7, IFI27, IFIT3, IL1B, KRT6A, LAMP3, MED24, NEFM, NEURL3, S100A1,

SERPINE2, TGM2

EN blue ABCC9, AOX1, EPHA2, EREG, GUCY1A2, KANK4, NDRG1, OMD, RCL1,

SELE, SLIT3, SOX7, ZG16B, ANK2, C11orf96, C3, EGFR, PLA2G2A, PROX1,

MSC

brown ABCA4, AVPI1, C2orf40, CBR1, COL14A1, CYP3A5, DSC2, FABP4, FXYD1,

GJB6, HEYL, HHIP, IDO1, KRT19, LRRC17, NOTCH3, RELN, RP11-277P12.20,

TNS4

turquoise ACHE, CCL5, CSTA, DSC3, FCER1G, GINS2, IQCG, ITGA3, LIPG, NFE2L3,

PRSS3, SEMA3B, SLC6A8, ABCC5, ESM1, FXYD3, HMMR, MEOX1, NUSAP1,

UBE2T

FI blue EPYC, LXN, TSPAN13, CMPK2, DUSP2, ECT2, FADD, FAM84A, FMO1 GBP5,

GGH, HILPDA, KRT14, KRT18, LAYN, MMP19, MMP7, NAA20, RGS2, SGK1

brown AARD, CLIC5, CST2, CXCL14, ENPP2, ETV5, GRAMD3, HGF, KERA,

PLXDC1, PTGR1, TNN, WFDC1, ECEL1, LYPD5, MCM5, PRR15, RNF183,

SCNN1D, SHANK2

turquoise CA12, CLIC3, FAM46A, PAX9, ABCC1, ATF5, CDC6, CDKN2B, CITED2,

CLDN4, CMTM5, EGFL8, GDF15, HTRA3, INPP1, MCM3, NFKBID, PON3,

PTGER4, PVT1

6.5.7 Identification of DEGs

We identify DEGs from the cell clusters deected in non-reduced CD45+ and CD45-

condition-type Seurat objects, as shown in Fig. 6.2. Prior to relevant cluster selection,

the dimensionality reduction unit generates twenty and twenty-five clusters in CD45+

and CD45-, respectively. To find DEGs, we use the ’MAST’ differential expression

testing that is already built into Seurat [608]. With a p− value ≤ 0.05, 13,955 genes

have been identified to be DEGs in CD45+. It is notable that many genes are identified

as DEGs in several clusters. As a result, CD45+ has been found to have 5,321 distinct

genes in twenty clusters. Similarly CD45-, which contains twenty-five clusters, 24,175
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genes are recognized as DEGs with p−value ≤ 0.05, 7,292 of which are distinct DEGs.

We perform GO enrichment (Section 2.4.1.1) and pathway enrichment (Section 2.4.1.2)

analysis on these 5,321 (CD45+) and 7,292(CD45-) DEGs resulting in list of genes

annotated to enriched GO terms (lgEGo in Fig. 6.2) and pathways (lgEP in Fig. 6.2)

with p− value ≤ 0.05 each for CD45+ and CD45-.

6.6 Validation

Multiple approaches are used to validate our results. First and foremost, we confirm

that the MoIs found by our approach are biologically significant and substantially en-

riched. Through functional enrichment analysis (Section 2.4.1), we achieve this. Only

highly enriched MoIs are evaluated for further research since they are biologically rel-

evant. Every hub-gene of the biologically significant MoIs is regarded as a potential

biomarker candidate gene (BCG) (Definition 6.6.1). To further confirm the biological

significance of these BCGs, we make use of Regulatory Behaviour Network analysis

(Section 2.4.2). Additionally, we trace the research that shows the BCGs to be po-

tential biomarkers for ESCC and five other SCCs connected to ESCC. We identify the

potential biomarkers by using our proposed biomarker criteria, which are covered in

Section 2.5.

Definition 6.6.1 (BCG). A gene gi is defined as a Biomarker Candidate Gene (BCG) if

it is identified as a hub-gene in a given MoI extracted by scDiffCoAM.

First, GO enrichment followed by pathway enrichment analysis is used to validate

all nineteen MoIs that the preservation analysis unit discovered across all six cell types.

Second, enrichment analysis, biological analysis, and the presence of prior literature

evidence are used to validate all hub-genes found in each MoI.

6.6.1 Enrichment Analysis of Modules

All nineteen MoIs are analyzed for GO enrichment and pathway enrichment as

part of the validation process. All enrichment analyses are carried out using the widely

known and open-source bioinformatics tool DAVID [628, 253] 10. The percentage

of genes in each module that have annotations in the corresponding GO and KEGG

databases is summarized in Table 6.5. A module’s biological significance is confirmed

10 https://david.ncifcrf.gov/home.jsp
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by the presence of at least one enriched KEGG pathway and one enriched GO term.

In the nineteen MoIs, we have demonstrated that > 50% of the genes are annotated

to enriched pathways, whereas > 90% are annotated to enriched GO terms. All nine-

teen MoIs are therefore biologically significant.

Tab. 6.5: Percentage of genes in each MoI that are annotated in the GO databases (BP: Biological
Processes, CC: Cellular components or MF: Molecular function) and KEGG pathways.
Three CD45+ cell types TC: Tcell, BC: Bcell, MY: Myeloid, and three CD45- cell
types EP: Epithelial, EN: Endothelial, and FI: Fibroblasts

Cell

Type

Module Size BP

(%)

CC

(%)

MF

(%)

KEGG

(%)

Cell

Type

Module Size BP

(%)

CC

(%)

MF

(%)

KEGG

(%)

TC

brown 151 96.9 98.4 96.9 56.7

EP

brown 212 95.8 96.5 97.2 62.0

blue 276 95.2 97.4 96.0 59.0 blue 253 97.0 99.2 95.5 49.6

turquoise 300 93.9 96.8 96.0 56.7 turquoise 330 96.0 97.5 94.6 53.3

BC
blue 108 93.9 98.0 99.0 52.0

EN

brown 152 91.9 94.6 89.9 50.7

turquoise 244 96.8 98.2 95.0 50.5 blue 313 97.3 98.7 96.0 57.8

MY

green 102 95.5 97.8 92.1 43.8 turquoise 330 95.9 97.5 94.6 52.2

yellow 145 93.0 93.0 93.8 62.8

FI

brown 114 94.6 94.6 93.8 51.8

brown 178 96.0 97.7 95.4 64.9 blue 250 93.2 98.3 96.2 54.7

blue 189 95.7 98.9 97.3 61.3 turquoise 424 97.0 98.0 96.8 55.6

turquoise 228 96.8 97.7 96.8 55.3

6.6.2 Biological Analysis

We validate the biological relevance of the hub-genes identified through GO and

pathway enrichment analysis (Sections 2.4.1.1 and 2.4.1.2). These lists, lgEP and lgEGo

(Fig. 6.2) are input to the biological analysis component of validation unit. Based on

the hub-genes identified biological analysis componenet extraxcts the hub-genes from

lgEGo and lgEP. Table 6.6 and Table 6.7 summarize the hub-genes in modules of CD45+

Seurat objects (Tcell, Bcell, and Myeloid) and CD45- (Epithelial, Endothelial, and Fi-

broblast), respectively that are annotated to top 20 KEGG pathways. Table 6.8 and Table

6.9 summarize the hub-genes that are annotated to top 10, top 3 and top 3 enriched GO

terms in GO_BP, GO_CC and GO_MF databases, respectively in the corresponding

CD45+ and CD45- cell types, respectively.
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Transcription Factors (TF) have remarkable diversity as well potency as drivers of

cell transformation. Deregulation of TFs is a pervasive theme across many forms of

human cancer, justifying the continued pursuit of TFs as potential biomarkers [45]. We

observe that in CD45+, five, five and seven hub-genes detected by scDiffCoAM in Tcell,

Bcell, and Myeloid, respectively are TFs. Similarly, 6, 8 and 9 hub-genes in CD45-

cell types Epithelial, Endothelial, and Fibroblast, respectively are TFs. It is noteworthy

however that ATF5 TF is a hub-gene in both Tcell(CD45+) and fibroblast (CD45-). On

the other hand , TF MSC is a hub-gene in epithelial (CD45-) and endothelial (CD45-

) while TF NFKBID is a hub-gene in both epithelial (CD45-) and fibroblast (CD45-).

Regulatory behaviors exhibited by these 20 TFs in their respective modules establish

their biological relevance. With the aim to achieve comprehensive visualization, we

extracted a manageable subset of hub-genes from the MoIs for these 20 TFs that are

also hub-genes detected by scDiffCoAM. We construct a Gene Regulatory Network

(RN) (Fig. 6.12a-6.15) with these hub-genes and associated TFs so as to observe the

regulatory behavior of the corresponding genes. The resulting RN is in the form of an

adjacency list with weighted directed edges from TFs to other target genes (TGs). In

module blue (Tcell) (Fig. 6.12a), three hub-genes ATF5,TCF4 and ELF3 are TFs.

(a) blue Tcell (CD45+) (b) brown Tcell (CD45+)

Fig. 6.12: GRN for modules a) blue, and b) brown in CD45+ cell type, Tcell
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(a) turquoise Tcell (CD45+) (b) blue Bcell (CD45+)

(c) turquoise Bcell (CD45+) (d) blue Myeloid (CD45+)

(e) turquoise Myeloid (CD45+) (f) turquoise Epithelial (CD45-)

Fig. 6.13: GRN for modules a) turquoise in Tcell, and b) blue and c) turquoise in Bcell, and d)
blue and e) turquoise in Myeloid. GRN for module f) turquoise in Epthelial.
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(a) blue Endothelial (CD45-) (b) brown Endothelial (CD45-)

(c) turquoise Endothelial (CD45-) (d) brown Fibroblast (CD45-)

Fig. 6.14: GRN for modules a) blue, b) brown and c) turquoise in Endothelial, and d) brown in
Fibroblast.

Fig. 6.15: GRN for module turquoise in Fibroblast
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6.6.3 Literature Trace

Through tracing existing literature we perceive the association of the hub-genes de-

tected by scDiffCoAM to ESCC. Furthermore, we also take into consideration the asso-

ciation with five other Squamous cell carcinomas (SCCs) namely, Oral SCC, Lung SCC,

Tongue SCC, Head and Neck SCC, and Laryngeal SCC with the assumption that genes

established as potential biomarkers in these SCCs might also be potential biomarkers for

ESCC in specific.

• He et. al [225] found ATF5 to be upregulated in ESCC and their findings suggest that

inhibition of ATF5 activity can be anti-tumorigenic.

• Yi et al.[826] found that Angiopoietin-like protein 4 (ANGPTL4) upregulation may

play an important role in ESCC development, and serum ANGPTL4 level may be a

potential tumor marker for ESCC diagnosis and prognosis. Shibata et al.[633] found

that ANGPTL4 may potentially affect the prognosis of ESCC due to its role in metas-

tasis through lymphovascular invasion.

• Yang et. al [817] identifies CCNB2 as one of 10 hub genes that might function as

novel biomarkers for ESCC.

• Ando et al.[26] found that the ESCC patients with positive staining for caveolin-1

(CAV1) had significantly shorter survival than those with negative staining and thus

CAV1 is a potential prognostic marker of ESCC. According to Kato et al., [301],

over-expression of CAV1 is associated with lymph node metastasis and a worse prog-

nosis after surgery in ESCC. Jia et al.[283] found that down-regulation of stromal

CAV1 expression in ESCC had high malignant potential and suggests that it could be

a powerful prognostic marker for patients with ESCC.

• Studies by Wu et al. [777] find that the chemokine (C-C motif) ligand 5 (CCL5)

autocrine loop may promote ESCC progression. Results presented by Liu et al. [421]

indicate that CCL5 plays a role in patient survival by serving as the key chemokines

to recruit CD8(+) T lymphocytes into ESCC tissue.

• Li et al.[351] found that the overexpression of Cell Division Cycle Associated 7

(CDCA7) promoted proliferation, colony formation, and cell cycle in ESCC cells.

Li et al.[350] states that CDCA7 might be a new therapeutic target in the suppression

of metastasis and invasion of ESCC.

• According to Ishiguro et. al [270], decreased expression of CpG island hypermethy-

240



lation of E-cadherin (CDH1) in the cell membranes of cancer cells is associated with

poor survival of patients with esophageal cancer. Lee et. al [338] in their study sug-

gests that hypermethylation of CDH1 genes may be significantly associated with a

recurrence-associated prognosis in stage I ESCC.

• Ghobadi et al.[188] present an association of a novel genetic variant in CDKN2B gene

with the clinical outcome of patients with ESCC.

• Sung et al.[659] indicate that claudin-4 (CLDN4) expression is deregulated in ESCC,

implying its potential use as a prognostic biomarker in ESCC. Lin et al.[399] suggest

CLDN4 as a prognostic and CCRT response indicator for ESCC patients.

• Li et al. [359] identifies Cellular retinoic acid-binding protein 2 (CRABP2) as a sup-

pressor factor that is expected to be a potential prognosis marker for esophageal squa-

mous cell carcinoma. Yang et al. [815] further demonstrate that CRABP2 acted as

a tumor suppressor in ESCC carcinogenesis by significantly inhibiting cell growth,

inducing cell apoptosis, and blocking cell metastasis both in vitro and in vivo.

• According to Shiba et al., [632], relatively high levels of cysteine protease inhibitor A

(CSTA) expression in tumors were correlated with tumor progression and advanced

cancer stage in ESCC.

• Data presented by Guo et al. [205] suggests that for ESCC patients with low-level

chemokine (CXC motif) ligand 14 (CXCL14), increasing CXCL14 expression com-

bined with inhibition of SRC or EGFR might be a promising therapeutic strategy.

• According to Fang et al. [153], desmocollin 2 (DSC2) is involved in the transforma-

tion and development of esophageal tumors, and its expression level and intracellular

localization may serve as a predictor for patient outcomes. Fang et al. [154] suggest

that miR-25-mediated down-regulation of DSC2 promotes ESCC cell aggressiveness

through redistributing adherens junctions and activating beta-catenin signaling.

• According to Sun et al. [653], epithelial cell transformation sequence 2 (ECT2) could

regulate the expression of VEGF and MMP9 to inhibit cells proliferation, invasion,

migration, and tumor development through the RhoA-ERK signaling pathway.

• Moghbeli et al.[505] illustrate the oncogenic function of epidermal growth factor re-

ceptor (EGFR) in the development of ESCC through advanced stages.

• Miyazaki et al. [504] found that Ephrin receptor A2 (EphA2) overexpression is related

to a poor degree of tumor differentiation and lymph node metastasis in ESCC. Syed

et al. [660] found that knockdown of EPHA2 in ESCC cell line TE8 resulted in a
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significant decrease in cell proliferation and invasion.

• Li et al. [354] establish that silencing Endothelial cell-specific molecule 1 (ESM1)

suppressed the proliferation, migration, and invasion of KYSE150 and KYSE510

cells. Zhu et al. [924] found that Overexpression of FXYD-3 in the cytoplasm may

play an important role in the tumorigenesis and development in the human ESCC.

• According to Sun et al. [655], E26 transformation-specific (ETS) variant 5 (ETV5)

promoted metastasis of ESCC.

• Zhu et al.[922] found that family with sequence similarity 3, member C (FAM3C)

expression was dramatically increased in ESCC and might serve as a valuable prog-

nostic indicator for ESCC patients after surgery.

• According to Iwabu et al., [273], fibroblast growth factor 5 (FGF5) methylation is a

sensitive marker of ESCC to definitive chemoradiotherapy.

• Chi et al.[97] showed that GATA-binding protein 3 (GATA3) positivity is associated

with poor prognosis in ESCC.

• Urakawa et al. [702] found that recombinant human growth differentiation factor 15

(GDF15) promotes cell proliferation and the phosphorylation of both Akt and Erk1/2

in ESCC cell lines in vitro. According to Okamoto et al. [532], GDF15 promotes

ESCC progression by increasing cellular proliferation, migration, and invasion.

• Zhou et al. [914] suggest that GINS2 acts as an ESCC promoter and can be a novel

diagnostic and prognostic marker.

• Wang et al. [745] employed Cox multivariate assay to demonstrate that glucose-6-

phosphate dehydrogenase (G6PD) was an independent prognostic factor for the pa-

tients with ESCC. Furthermore, Wang et al. [746] suggest that G6PD may function as

an important regulator in the development and progression of ESCC by manipulating

STAT3 signaling pathway.

• Results by Ren et al. [577] suggest that serum hepatocyte growth factor (HGF) may be

a useful biomarker of tumor progression and a valuable independent prognostic factor

in patients with ESCC. The results presented by Xu et al. [796] indicate that the fre-

quent overexpression of HGF proteins, secreted by esophageal epithelium and stromal

fibroblasts, promoted the progression of ESCC. Takada et al. [661] indicate that HGF

is significantly increased in ESCC and suggests the same as a useful biomarker.

• According to Zhang et al.[865] knockdown of homeobox A5 (HOXA5) suppressed

the proliferation and metastasis partly by interfering with Wnt/β -catenin signaling
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pathway in ESCC cells.

• Li et al.[373] increased insulin-like growth factor binding protein 7 (IGFBP7) may

accelerate ESCC progression by promoting the expression of TGFβ1, α-SMA, and

collagen I by activating the TGFβ1/SMAD signaling pathway.

• Jiao et al. [286] indicate that chemotherapy could promote tumor Indoleamine 2,3-

dioxygenase (IDO1) expression, and the increased tumor IDO1 expression after neoad-

juvant therapy predicted poor pathologic response and prognosis in ESCC.

• Jia et al.[282] demonstrates that interferon-induced transmembrane protein 3 (IFITM3)

expression has a close relationship with prognosis in ESCC patients.

• Huang et al.[259] demonstrated that serum IGFBP7 is a potential biomarker in the

early detection of ESCC.

• Che et al. [79] found that Interleukin-1 beta (IL-1B) is significantly linked to poor

prognosis for patients with esophageal cancer and may be a promising molecular tar-

get for therapeutic intervention for ESCC.

• Du et al. [145] suggest integrin subunit α3 (ITGA3) a potential therapeutic target

for the treatment of ESCC as they demonstrate that its knockdown suppressed cell

proliferation, invasion, migration, and autophagy in ECA109 and TE1 cells.

• According to Cheng et al. [95], KIAA0101 is emerging as a meaningful marker for

poor prognosis in EC, such as early recurrence and short survival.

• Results presented by Imai et al.[266] suggest that kinesin family member C1 (KIFC1)

plays an important role in ESCC pathogenesis.

• According to Liu et al. [442], Keratin 17 (KRT17) upregulation in ESCC cells not

only promoted cell proliferation but also increased invasion and metastasis. Haye

et al. [224] established that KRT17 is a negative prognostic biomarker for the most

common subtype of esophageal cancer.

• In their study Liao et. al [392] suggests that epithelial Lysosomal-associated mem-

brane protein 3 (LAMP3) expression is an independent prognostic biomarker for

ESCC. Furthermore, Huang et. al [254] identifies the role of LAMP3 in promoting

cellular motility and metastasis in ESCC.

• According to the findings of Qiu et al. [563], mini-chromosome maintenance complex

component 7 (MCM7) activates the AKT1/mTOR signaling pathway leading to the

promotion of colony formation and migration of ESCC cells as well as tumor cell

proliferation. Zhong et al. [906] state that MCM7 may serve as effective prognostic
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factors and could also be used as biomarkers for predicting various clinical outcomes

of ESCC in the Chinese population. According to et al. Ahn et. al [10], MCM7

expression is associated with the invasiveness of ESCC.

• Zhou et. al. [909] Serum autoantibody levels of matrix metalloproteinase-7 (MMP-7)

may be a good diagnostic biomarker for esophageal squamous cell carcinoma. Malik

et al. [484] state that the determination of the matrix metalloproteinase-7 (MMP-

7) genotype may provide a useful genetic marker in predicting high-risk individuals

for the development of ESCC. Data presented by Miao et al. [496] illustrates that

overexpression of MMP-7 may be a suitable diagnostic biomarker for ESCC.

• Zeng et al. [850] overexpression of matrix metalloproteinase-9 (MMP-9) may be

a potential independent prognosis factor of ESCC patients in Asia. Li et al. [378]

MMP-9 may play important roles in ESCC carcinogenesis.

• Xie et al. [783] demonstrate that Metastasis suppressor-1 (MTSS1) expression in

ESCC cells significantly influenced the aggressiveness of the esophageal cancer cells,

by reducing their cellular migration and in vitro invasiveness.

• The study by Du et al.[144] suggests that MYC-associated factor X dimerization pro-

tein 1 (MXD1) is a crucial prognostic factor in ESCC patients.

• Wang et al. [725] MYL9 expression might be a promising prognostic marker and

therapeutic target in ESCC.

• Ueki et al. [700] establish that (N-myc downstream regulated gene-1) NDRG1 plays

a pivotal role in tumor progression and development of chemo-resistance in patients

with ESCC undergoing neoadjuvant chemotherapy. Ando et al. [25] suggest that up-

regulation of NDRG1 mRNA expression levels could be a good candidate for prog-

nosis markers in ESCC. Ai et al. [11] indicate the pro-oncogenic role of NDRG1 in

ESCC whereby it modulates tumor progression.

• Chen et al. [81] find that Nuclear factor, erythroid 2 like 3 (NFE2L3) affects the

radiosensitivity of ESCC cells through IL-6 transcription and IL-6/STAT3 signaling

pathway making it a putative target to regulate ESCC cell radiosensitivity.

• According to Yu et. al [837], the NLR pyrin family domain containing 3 (NLRP3) in-

flammasome is upregulated in human ESCC tissues and promotes ESCC progression.

Findings by Zhou et al. [908] indicate that Alpha-1 Type III Collagen (COL3A1)

confers a poor prognosis and malignant phenotype in ESCC, potentially representing

a novel biomarker and/or providing a new curative target for ESCC.
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• According to Matsuura et al., [493], NOTCH3 may serve as a novel biomarker to

predict better clinical outcomes in ESCC patients. Pramanik et al.[555] indicate that

the NOTCH3 H score is an independent predictor of survival in ESCC.

• Guan et al. [200] establish that suppression of nucleolar spindle-associated protein 1

(NUSAP1) inhibited cellular proliferation and invasion, and induced cell cycle arrest

and apoptosis in vitro.

• Tan et al.[666] identifies paired box 9 (PAX9) as an independent prognostic factor for

the surgical treatment of ESCC and a possible predictor of radiation sensitivity.

• Ren et al. [575] suggest that phospholipase A2 group IIA (PLA2G2A) may serve as a

useful marker for the prognostic evaluation of ESCC patients. Zhai et al. [851] show

that in patients with ESCC, PLA2G2A overexpression and PLA2G2A co-expression

with COX-2 is significantly correlated with the advanced stage.

• Yokobori et al. [829] suggest that high expression of prospero homeobox 1 (PROX1)

in ESCC could be used as an indicator of poor prognosis and as such it is a promising

candidate molecular target for ESCC treatment.

• Li et al. [362] suggest that plasmacytoma variant translocation 1 (PVT1) promotes

ESCC progression via functioning as a molecular sponge for miR-203 and LASP1.

Similarly, Hu et al. [248] establish that PVT1 promoted ESCC progression via the

miR-128/ZEB1/E-cadherin axis. According to Li et al.[345], up-regulated PVT1 can

induce ESCC tumorigenesis by regulating the cell cycle and Wnt signaling pathway.

• Through multivariate Cox regression analyses, Yu et al. [834] validates that RAB27B

expression is an independent prognostic factor for unfavorable overall survival in

ESCC.

• Hu et al. [252] results demonstrated that RAD51-associated protein 1 (RAD51AP1)

silencing significantly inhibited cell proliferation and invasion in ESCC, thereby high-

lighting its potential as a novel target for ESCC treatment.

• Ming et al.[498] supports the notion that RHCG is a novel tumor suppressor gene that

plays an important role in the development and progression of ESCC.

• Findings by Zhang et al. [868] suggest that serpin family E member 2 (SERPINE2)

promotes tumor metastasis by activating BMP4 and could serve as a potential thera-

peutic target for clinical intervention in ESCC.

• Tang et al. [673] suggest that semaphorin 3B (SEMA3B) is an important tumor-

suppressor gene in the malignant progression of ESCC, as well as a valuable prog-
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nostic marker for ESCC patients. Dong et al. [142] suggests SEMA3B as tumor

suppressors and may serve as potential targets for antitumor therapy.

• As in the case of NDRG1, Ueki [700] found that serum-and glucocorticoid-regulated

kinase 1 (SGK1) also plays a pivotal role in tumor progression and development of

chemo-resistance in patients with ESCC.

• Zhu et al. [923] provides evidence that elevated serum SRGN has prognostic sig-

nificance in ESCC patients, and sheds light on the molecular mechanism by which

elevated circulating serglycin (SRGN) in cancer patients might promote cancer pro-

gression.

• He et. al [226] suggested that deregulation of T cell transcription factor-4 (TCF4)

isoform may contribute to the tumorigenesis of ESCC.

• Yu et al.[839] identify that the expression level of tubulin beta 3 class III (TUBB3)

and 4 other genes is closely associated with the clinical characteristics of patients with

ESCC. Gong et al.[194] show that TUBB3 negative expression prior to treatment and

pCR may indicate a better prognosis for stage II and III ESCC patients.

• According to et al., ubiquitin-conjugating enzyme E2 T (UBE2T) is involved in the

development of ESCC, and gene signatures derived from UBE2T-associated genes are

predictive of prognosis in ESCC.

• Wang et al.[724] highlight that ubiquitin carboxyl-terminal esterase L1 (UCH-L1)

expression significantly increased with the progression of ESCC, implying the impor-

tance of UCH-L1 as a potential biomarker in cancer diagnosis and treatment.

• Ninomiya et al. [523] suggest that high Vasohibin-2 (VASH2) expression may be

novel independent predictors of a poor prognosis in patients with ESCC. Furthermore,

according to [799], high plasma concentrations were associated with poor clinical

outcomes for both VASH1 and VASH2.

From all hub-genes detected in nineteen MoIs, we first identify the hub-genes that have

previous literature traces of association with ESCC and five other previously mentioned

SCCs. In Table 6.10 we summarize all hub-genes with literature trace to all six SCCs and

can be termed as candidates for ESCC potential biomarkers. This is then followed by the

establishment of the biological relevance of these candidates. Table 6.10 summarizes

the literature evidence associated with hub genes (candidates) and corresponding GO

databases they are annotated to, the associated enriched pathways as well as whether

they exhibit regulatory behavior (TF).
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Tab. 6.11: Summary of potential ESCC biomarkers identified by scDiffCoAM using the
biomarker criteria (Section 2.5).

Cell

Type

Case 1 Case 2 Case 3 Case 4
C

D
45

+ TC MCM7 CCNB2, CDH1,

LAMP3, NLRP3

ATF5, TCF4, RAD51AP1

BC TUBB3 CDCA7, IFITM3, MXD1

MY GATA3 CAV1, UCHL1 FAM3C,KIFC1, IGFBP7

C
D

45
- EP G6PD, LAMP3, FGF5 RAB27B, MTSS1, CRABP2,

SERPINE2, SRGN

EN NOTCH3 EPHA2, EGFR, DSC2,

IDO1, ITGA3, SEMA3B

NDRG1, PROX1, CSTA,

GINS2, NFE2L3, ESM1,

FXYD3, NUSAP1, UBE2T

FI ETV5 MMP7, SGK1, CXCL14,

CDKN2B, CLDN4

ECT2, PAX9, ATF5, GDF15 MCM5, CDC6,

MCM3

All hub-genes that belong to Cases 1 and 2 can be considered potential biomarkers

for ESCC as discussed in the biomarker criteria (Section 2.5). This is because aside

from the existing literature evidence of association to ESCC itself, these hub-genes

are biologically relevant as they are annotated to highly enriched GO terms and path-

ways. Table 6.11 summarizes the cases of all hub-genes (candidates) that has litera-

ture trace of association to the ESCC and the other five SCCs fall under. Four hub-

genes MCM7, GATA3, NOTCH3 and ETV5 fall under case 1 and thus are potential

biomarkers for ESCC. These four hub-genes are also TFs and their corresponding GRNs

are shown in fig 6.13a (MCM7), fig 6.13d (GATA3), fig 6.14b (NOTCH3), fig 6.14d

(ETV5). Even though twenty hub-genes, CCNB2, CDH1, LAMP3, NLRP3, TUBB3,

CAV1, UCHL1, G6PD, FGF5, EPHA2, EGFR, DSC2, IDO1, ITGA3, SEMA3B, MMP7,

SGK1, CXCL14, CDKN2B, and CLDN4, do not exhibit regulatory behavior, they are bi-

ologically relevant due to their annotation to enriched GO terms and enriched pathways

as well as associated to ESCC and other five SCCs

Twenty six hub-genes, ATF5, TCF4, RAD51AP1, CDCA7, IFITM3, MXD1, FAM3C,

KIFC1, IGFBP7, RAB27B, MTSS1, CRABP2, SERPINE2, SRGN, NDRG1, PROX1,

CSTA, GINS2, NFE2L3, ESM1, FXYD3, NUSAP1, UBE2T, ECT2, PAX9 and GDF15

fall under Case 3. Although there exists strong literature on their association with the

ESCC and the other five SCCs, none of them have enriched pathways even though many

of them are TFs (ATF5, TCF4, CDCA7, MXD1, CRABP2, PROX1, NFE2L3 and PAX9).
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Thus, they can be said to be probable potential biomarkers for ESCC but require fur-

ther in-depth analysis. Three hub-genes , MCM5, CDC6, and MCM3 fall under case

4. These three hub-genes exhibit regulatory behavior and are annotated highly enriched

GO terms and pathways establishing their biological relevance. However, they do not

have literature evidence of association to ESCC but are associated with the five previ-

ously mentioned SCCs. Thus, these hub-genes require further in-depth analysis to be

potential biomarkers of ESCC.

Finally, we conclude that twenty-four hub-genes, MCM7, GATA3, NOTCH3, ETV5,

CCNB2, CDH1, LAMP3, NLRP3, TUBB3, CAV1, UCHL1, G6PD, FGF5, EPHA2,

EGFR, DSC2, IDO1, ITGA3, SEMA3B, MMP7, SGK1, CXCL14, CDKN2B, and CLDN4,

are identified by scDiffCoAM as potential biomarkers for ESCC. Furthermore, twenty-

six hub-genes, ATF5, TCF4, RAD51AP1, CDCA7, IFITM3, MXD1, FAM3C, KIFC1,

IGFBP7, RAB27B, MTSS1, CRABP2, SERPINE2, SRGN, NDRG1, PROX1, CSTA, GINS2,

NFE2L3, ESM1, FXYD3, NUSAP1, UBE2T, ECT2, PAX9 and GDF15 have moderate

evidence of association to ESCC and requires further in-depth analysis but can be con-

sidered probable potential biomarkers for ESCC.

6.7 Discussion

We contrast our method with four other widely used hub-gene finding methods. Two

frequently used hub-gene discovery methods, Weighted Gene Score (WGS) and p-value

Cut Off (PCO), were proposed by Das et al. [120] in their work Differential Hub Gene

Analysis (DHGA). In WGCNA[327], intramodular connectivity (IMC), which deter-

mines how connected nodes are to other nodes inside the same module. In in hdWGCNA

[509, 510], using eigengene-based connectivity, also known as kME (HWH), of each

gene, hub-genes are computed. We give a brief comparison of these four hub-gene dis-

covery techniques with scDiffCoAM. It is unfair to compare these four hub-gene finding

techniques with scDiffCoAM. As a result, we use the pipeline below to compare our

hub-gene discovery method WGS, PCO, IMC, and HWH.

• We consider the MOIs identified by the framework while preserving the entire pipeline

in scDiffCoAM, from pre-processing to preservation analysis.

• On all nineteen MOIs, we apply the other four methods and identify the corresponding

lists of the top 20 hub-genes.

• We identify the hub-genes associated with the following cancers: a) ESCC, b) HN-
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SCC, c) LaSCC, d) LSCC, e) OSCC, and f) TSCC based on literature evidence for

each of the other four methods.

Table 6.12 summarizes the hub-genes detected by a) our hub-gene finding algorithm

[592], b) WGS: DHGA[120] weighted gene-score, c) PCO: DHGA[120] p-value Cut

Off d) IMC: WGCNA [327] Intramodular-Connectivity and e) HWH: hdWGCNA [510,

509] kME hub-gene finding algorithm. All hub-genes with existing literature associat-

ing them as potential biomarkers for ESCC itself (as well as the other five SCCs) are

highlighted in red.

From the analysis summarized in Table6.12, we make the following observation.

Except for module brown in myeloid cell type, our method can detect at least one hub-

gene with association to ESCC and other five SCCs in the form of existing literature. Our

method can detect at least one hub-gene that has also been suggested in the literature as

a potential biomarker for ESCC in most MoIs. The exceptions are modules brown in

Tcell, brown, and yellow in myeloid. The other four methods on the hand were able to

detect at least one such hub-gene. With the exception of a few modules, most modules

extracted by scDiffCoAM include hub-genes that were not detected by the other four

methods for that particular module. For the other four methods, in many modules, a few

hub-genes are commonly detected by all methods. For example in blue in Tcell, FOXP3

is detected by WGS, IMC and HWH. However, none of the hub-genes detected by our

method was detected by WGS, PCO, IMC, or HWH for that module. It is noteworthy

that some hub-genes detected by our method in one module may be detected by our

method or by another method but in a different module. For example, LAMP3 detected

by our method in blue (Tcell) is further by our method in turquoise (Epithelial) and by

IMC in turquoise (Endothelial).
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Unlike the other four methods, our method can identify 44 unique hub-genes with

reference to existing literature that establishes them as potential biomarkers for ESCC.

These hub-genes, ALDH1A2, ATF5, CCNB2, VASH2, NLRP3, KIAA0101, RAD51AP1,

CDCA7, TUBB3, MMP10, UCHL1, KIFC1, ANGPTL4, HOXA5, RHCG, SLC7A11,

G6PD, RAB27B, MTSS1, CRABP2, FGF5, MMP9, EPHA2, NDRG1, EGFR, PLA2G2A,

PROX1, NOTCH3, CCL5, GINS2, ITGA3, NFE2L3, SEMA3B, ESM1, NUSAP1, UBE2T,

ECT2, MMP7, ETV5, HGF, PAX9, CDKN2B, GDF15 and PVT1, were detected by our

method but not by other four methods. Fourteen hub-genes, CCNB2, NLRP3, TUBB3,

UCHL1, G6PD, FGF5, MMP7, ETV5, CDKN2B, EPHA2, EGFR, NOTCH3, ITGA3,

and SEMA3B, are among the twenty-four hub-genes further validated by scDiffCoAM

as potential biomarkers for ESCC (Table 6.11). Like the other four methods, our method

also identifies and validates ten hub-genes such as potential biomarkers, CDH1, LAMP3,

MCM7, CAV1, GATA3, SGK1, CXCL14, CLDN4, DSC2 and IDO1, validated by scDif-

fCoAM as potential ESCC biomarkers are also detected by other four methods in other

modules across cell types.

We analyze the performance of our method against each of the four methods in

terms of two parameters: a) Quantity, which measures the number of potential biomark-

ers identified by a method for the six previously mentioned categories of SCC in gen-

eral, and b) Quality, which measures the number of potential biomarkers identified by a

method for ESCC in particular. A method’s overall performance should be favorable for

both parameters. We provide a complete assessment of our method’s performance in

comparison to WGS, PCO, IMC, and HWH in all cell types in terms of two parameters,

quality, and quantity, in Fig. 6.16. In terms of both quantity and quality, our method

outperforms other methods.

6.7.1 Comparison with WGS, PCO,IMC, and HWH

Comparing the performance of our proposed framework, scDiffCoAM with the ex-

isting schemes we can make the following observations:

• In nine and eight modules, respectively, scDiffCoAM outperforms WGS in terms of

quantity and quality, while performing similarly to WGS in one module in terms of

both quantity and quality.

• In ten and eight modules, respectively, scDiffCoAM outperforms PCO in terms of

quantity and quality, and in four modules, scDiffCoAM performs similarly to PCO in
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terms of quantity and quality.

• In eleven and nine modules, respectively, scDiffCoAM outperforms IMC in terms

of quantity and quality, while for one and three modules, respectively, scDiffCoAM

performs similarly to IMC in terms of quantity and quality.

(a) Quality

(b) Quantity

Fig. 6.16: Summary of performances of scDiffCoAM vs. three other methods. We compare
these methods on MoIs in various cell types. Here, WGS: DHGA [120] Weighted
Gene Score, PCO:DHGA [120] p-value Cut Off, IMC: WGCNA [327] Intramodular-
connectivity and HWH: hdWGCNA [510, 509] kME hub-gene finding algorithm.
Quantity measures the number of potential biomarkers identified by a method for the
six previously mentioned categories of SCC in general and Quality measures the num-
ber of potential biomarkers identified by a method for ESCC, in particular.

• In most modules, scDiffCoAM performs better than HWH. In eleven and nine mod-

ules, respectively, scDiffCoAM outperforms HWH in terms of quantity and quality,

while in two modules, scDiffCoAM outperforms HWH in terms of both quantity and

quality. HWH outperforms scDiffCoAM in six and eight modules, respectively, in

terms of quantity and quality.

• When compared to the other four methods, the performance of scDiffCoAM in Tcell
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also stays consistent. In two of the three modules, scDiffCoAM outperforms WGS,

PCO, IMC, and HWH in terms of both quantity and quality.

• In all modules extracted in Bcell, WGS outperforms scDiffCoAM in terms of quantity

and quality. However, PCO performs similarly to scDiffCoAM in terms of quantity

while performing similarly or better in terms of quality. In one module, scDiffCoAM

outperforms IMC in terms of both quality and quantity, while IMC outperforms scD-

iffCoAM in the other. While HWH performs better in some modules and worse in

others when in terms of quantity, scDiffCoAM outperforms or performs similarly with

HWH in terms of quality.

• In terms of quantity and quality, all four methods perform better than scDiffCoAM in

the majority of modules. It is to be noted that, in contrast to the majority of other cell

types where we discovered two to four modules with varied sizes, in myeloid cells we

detected nine modules, the majority of which were less than 200, with turquoise being

the only exception.

• In most cases, scDiffCoAM outperforms all four methods in terms of quantity. In

terms of quality, WGS performs better than or on par with scDiffCoAM, scDiffCoAM

performs better than or similarly to PCO and IMC in every case, and scDiffCoAM per-

forms better than or similarly to HWH in two out of the three modules. Even though

epithelial detects more modules (eight) than other cell types, similar to myeloid, all

MoIs are sizeable as compared to myeloid.

• In terms of quality, scDiffCoAM outperforms WGS and PCO in all modules while

outperforming IMC and HWH in the majority of modules (two out of three). In terms

of quantity, scDiffCoAM outperforms PCO and HWH in each of the three modules

and outperforms IMC in the majority of the modules. In two out of three modules,

WGS performs better or similarly to scDiffCoAM.

• In all three modules, scDiffCoAM outperforms HWH in terms of quantity, and in two

of the three modules, it outperforms PCO and IMC. scDiffCoAM outperforms WGS

in the majority of modules, although WGS performs better than scDiffCoAM in one

module. In most modules (two out of three) scDiffCoAM outperforms WGS, IMC,

and HWH in terms of quality, with the exception of one module where WGS, IMC,

and HWH perform better than scDiffCoAM. On the other hand, in one module PCO

performs better than scDiffCoAM, and in another module scDiffCoAM outperforms

PCO.
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6.7.2 Biomarker Ranking

We present a ranking method for all potential biomarkers identified by all our frame-

works. By ranking these biomarkers, we aim to identify the genes that are most likely to

play a crucial role. Our biomarker criteria discussed in Section 2.5 biologically validates

the BCGs as potential biomarkers for ESCC based on fulfillment of minimum require-

ments. The minimum requirement for a BCG to be identified as a potential biomarker

for ESCC are (Biomarker Citeria discussed in Section 2.5): a) at least one literature

that establishes the BCG as an ESCC biomarker, b) annotated to at leat one enriched

pathway, c) annotated at least one enriched GO term in two out of three GO databases

(BP, CC, and MF). Taking this minimum requirement as the basis we add further signif-

icance to the identified potential biomarker. To rank all potential biomarkers for ESCC

identified by the four frameworks we score them as follows.

(a) For every additional literature evidence found that associates that gene with ESCC,

add 1.

(b) If enriched pathway the gene is annotated to a cancer pathway, we add 1 to the

score. If the gene is annotated to more than 5 enriched pathways we add 2 while

we add 3 when they are annotated to more than 10 enriched pathways.

(c) If the gene is annotated to an enriched GO term in all three GO databases as opposed

to minimum requirement of two, we add 1 to the score.

(d) If the gene exhibits regulatory behavior in a GRN,i.e, it is a TF, we add 1 to the

score.

(e) A gene detected as a potential biomarker by more than framework are genes very

relevant to ESCC as they are significant enough to be detected by multiple analysis

that target varying behavior of a gene. If a gene is detected by more than one

framework, we add the number of frameworks to the score.

Table 6.13 gives a summary of all potential biomarker rankings. We have not included

the genes that has a score < 3. Following are the observations made after ranking the

seventy six potential biomarkers for ESCC identified by all four frameworks.

• Two genes PSAT1, and SEL1L only qualify the the minimum requirement with a

score of 0 and thus are not considered significant.

• Thirty one genes score 1 as they are annotated to GO enriched terms in all three GO

databases (BP, CC, and MF) and as most highly ranked genes with the exception of
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FGF5 do fulfil this requirement these genes cannot be considered significant.

Tab. 6.13: Ranking all potential biomarkers for ESCC identified by all four proposed frameworks

Gene Literature Cancer Path-

ways (CPs)

GO

databases

TF? > Frame Score

CAV1 +2 [26, 301,

283]

+1 (1 CP) +1 (All) No +3 (3 FWs) 7

MCM7 +2 [563, 102,

906]

NULL +1 (All) +1 (Fig. 4.13b, 5.19a, 6.21a) +3 (3 FWs) 7

E2F1 +1 [146, 361] + 3 (13 CPs) +1 (All) +1 (Fig. 3.17b) No 6

KPNA2 +1 [475, 596] +1 (1 CP) +1 (All) No +2 (2 FWs) 5

DGKA [76] +1 (1 CP) +1 (All) No +2 (2 FWs) 4

EPHA2 +1 [504, 660] NULL +1 (All) No +2 (2 FWs) 4

EGFR [505] +3 (17 CPs) +1 (All) No No 4

HIF1A +1 [619, 251] +1 (2 CPs) +1 (All) +1 (Fig. 4.16b) No 4

HSF1 +1 [694, 396] +1 (1 CPs) +1 (All) +1 (Fig. 5.18b) No 4

NOTCH3 +1 [493, 555] +1 (2 CPs) +1 (All) +1 (Fig. 6.24b) No 4

SEMA3B +1 [673, 142] NULL +1 (All) No +2 (2 FWs) 4

CDH1 +1 [270, 338] +1 (4 CPs) +1 (All) No No 3

CTTN +1 [460, 243] +1 (1 CP) +1 (All) No No 3

ETV5 [655] +1 (2 CPs) +1 (All) +1 (Fig. 6.25b) No 3

FGF5 [273] +1 (5 CPs) (BP,CC) No +2 (2 FWs) 3

GSK3B +1 [52, 182] +1 (5 CPs) +1 (All) No No 3

G6PD +1 [745, 746] +1 (1 CPs) +1 (All) No No 3

HMGA2 [538] +1 (1 CP) +1 (All) +1 (Fig. 3.18b) No 3

MMP7 +2 [909, 484,

496]

NULL +1 (All) No No 3

PML [825] +1 (1 CPs) +1 (All) +1 (Fig. 5.20b) No 3

STAT1 [884] +1 (1 CPs) +1 (All) +1 (Fig. 4.15b) No 3

TGFA [384] +2 (7 CPs) +1 (All) No No 3

VEGFC +1 [670, 305] +1 (1 CPs) +1 (All) No No 3

• Two genes CAV1 and the TF MCM7 are the highest potential biomarkers for ESCC

detected by three of our frameworks. While most potential biomarkers with high

scores such as KPNA2, DGKA, and EPHA2 are identified by more than one frame-

work, the gene E2F1 ranks high as they are annotated to thirteen cancer pathways and

exhibits regulatory behavior in a GRN.
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• Similarly, the gene EGFR are annotated to seventeen cancer pathways and thus ranks

high with a score of 4. On the other hand, HIF1A, HSF1, and NOTCH3 are highly

ranked with a score of 4 because they exhibit regulatory behavior, are annotated to

cancer pathways and have two literature evidence that associates them with ESCC.

SEMA3B also has a score 4 as it is identified by two frameworks as potential biomarker.

6.8 Chapter Summary

The scDiffCoAM framework for differential co-expression analysis (DCA) on single

cell RNA-seq data has been proven to be successful in extracting biologically relevant

modules as well as discovering interesting hub-genes. We validated our framework,

scDiffCoAM, on the scRNA-Seq ESCC dataset, GSE160269, which includes eight cell

types. DCA has been performed by the framework on six of the eight cell types, three

immune (CD45+), and three non-immune (CD45-). It can extract nineteen biologi-

cally significant modules, i.e., ‘modules of interest’ (MoI). The proposed framework

is proven to be efficient in identifying potential biomarkers after further investigation of

these nineteen MoIs. On scRNA-Seq data, the hub-gene finding method described in

CBDCEM by Saikia et al. [592] is found to be effective when the choice of the seven

measures is made based on the network properties. Twenty-four hub-genes have been

identified to be potential biomarkers for ESCC by scDiffCoAM with strong evidence of

association.

In most cases, scDiffCoAM performs better than or similarly to the four other hub-

gene finding methods, which include weighted gene score [120], p-value cutoff [120],

WGCNA [327] intra-modular connectivity, and hdWGCNA [510, 509] kME score. Fur-

thermore, the framework can identify forty-four distinct potential biomarkers that none

of the other four methods that were considered could. Fourteen of the twenty-four po-

tential biomarkers found and verified by scDiffCoAM were among these forty-four hub-

genes. Ten of the remaining twenty-four hub-genes that were identified and verified

by scDiffCoAM as potential biomarkers are also detected by the other four methods

in different modules across cell types.

Next chapter is the final chapter of the thesis that summarizes the concluding remarks

for all four contributions of our work. Furthermore, we summarize few of the shortcom-

ings observed in each framework and further suggest future directions for improvements

of the same.
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