Declaration

I, Manaswita Saikia, hereby declare that the thesis entitled "**Biomarker Identification for Critical Diseases using Machine Learning Techniques**" submitted to the Department of Computer Science and Engineering under the School of Engineering, Tezpur University, in partial fulfillment for the award of the degree of Doctor of Philosophy in Computer Science and Engineering is a bona-fide work carried out by me. The results presented in this thesis have not been submitted in part or in full, to any other University or Institute for the award of any degree or diploma.

Date:

Place: Tezpur University, Napaam, Tezpur

(Manaswita Saikia) Reg. no. TZ155525 of 2015 Enrollment No. CSP16105

Certificate

This is to certify that the thesis entitled "**Biomarker Identification for Critical Diseases using Machine Learning Techniques**" submitted to the Department of Computer Science and Engineering under the School of Engineering, Tezpur University, in partial fulfillment for the award of the degree of Doctor of Philosophy in Computer Science and Engineering is a record of research work carried out by Ms. Manaswita Saikia under our supervision and guidance.

All helps received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Signature of Supervisor

Signature of Co-supervisor

(Prof. Dhruba K. Bhattacharyya)	(Prof. Jugal K. Kalita)
Professor	Professor
Computer Science and Engineering	Department of Computer Science
School of Engineering	College of Engineering and Applied Science
Tezpur University	University of Colorado
Napaam, Tezpur	Colorado Springs, Colorado, USA

Acknowledgement

The tenure of my research has been an intense learning experience which does not merely extend over research skills, but also inculcates a number of social skills at the personal level. It gives me immense pleasure to take this opportunity to express my deep sense of gratitude to my esteemed supervisor Prof. Dhruba K. Bhattacharyya. He gave freedom to pursue my ideas and work at my own pace, and was always available to discuss various problems on the way. His constant support, trust, valuable feedback, encouragement, innumerable advice and guidance have provided a good basis for completion of my research work. It is my privilege to thank my co-supervisor Prof. Jugal K. Kalita, for his invaluable feedback, suggestions and guidance in shaping my research papers and PhD.the thesis.

I would like to acknowledge Dr. Bhabesh Nath, and Dr. Rosy Sharmah, members of my doctoral research committee for their valuable suggestions and feedback throughout the period of the work. I also convey my heartiest thanks to all members of the faculty, Department of Computer Science and Engineering for their constructive suggestions and encouragements in this journey.

I am grateful to the authorities of Tezpur University and the Department of Computer Science and Engineering for providing me with the facilities during the pursuit. The support will always be remembered.

The blessings, untiring moral support and constant encouraging words of my parents, family and friends boosted me enough to carry out my research work up to this level. They are the pillars behind this accomplishment. This note of acknowledgment can never be complete without a mention to members of my extended family at Tezpur University especially my dear friends, Trishna Barman, Parthajit Borah, Upasana Sarmah, Dr. Nilakshi Devi and Dr. Hussain A. Chowdhury, for their help throughout the work.

Finally, I would like to thank all those who have directly or indirectly helped me in different capacities to complete my work.

LIST OF TABLES

2.1	Summary of the microarray datasets, GSE20347 and GSE23400, and the	
	bulk RNA-Seq dataset, GSE130078 for ESCC	35
2.2	Summary of the scRNA-Seq dataset, GSE160269 for ESCC	37
3.1	Eight chosen biclustering methods: A Comparison	57
3.2	Summary of the biclusters detected by BicGenesis in all three datasets	70
3.3	Subset of Normal and Disease Biclusters	74
3.4	Preservation analysis of modules in the microarray datasets, GSE20347	
	and GS23400, and the bulk RNA-Seq dataset, GSE130078	77
3.5	Top 20 hub-genes for each extracted MoI in the two microarray and one	
	bulk RNA-Seq datasets	79
3.6	Percentages of genes in each MoT that are annotated to the Gene Ontol-	
	ogy (GO) databases and KEGG pathways	82
3.7	Summary of BCGs detected by BicGenesis in the microarray dataset,	
	GS20347, that are annotated to top 3 GO terms in the three GO databases.	86
3.8	Summary of BCGs detected by BicGenesis in the microarray dataset,	
	GSE23400, that are annotated to top 3 GO terms in the three GO databases.	88
3.9	Summary of BCGs detected by BicGenesis in the bulk RNA-Seq dataset,	
	GS130078, that are annotated to top 3 GO terms in the three GO databases	89
3.10	Summary of BCGs detected by BicGenesis in the two microarray and	
	one bulk RNA-Seq datasets that have been annotated to the top 5 KEGG	
	enriched pathways	90
3.11	Summary of potential biomarkers identified by BicGenesis	96
3.12	Summary of potential ESCC biomarkers identified by BicGenesis using	
	the biomarker criteria	100
4.1	DE methods for Microarray and bulk RNA-Seq data	112
4.2	Summary of detected DEGs by the three RNA-Seq methods and the	
	three microarray methods for three datasets 1	120
4.3	Preservation analysis of modules detected by our Integrative DEA method	
	in the two microarray and one RNA-Seq datasets 1	126
4.4	Top 20 hub-genes for each extracted MoI in the two microarray and one	
	RNA-Seq datasets	127

4.5	Percentages of genes in each MoI that are annotated to the Gene Ontol-
	ogy (GO) databases and KEGG pathways
4.6	DEGs that are annotated to most enriched GO term in all three GO
	databases (BP, CC and MF) as well as the most enriched pathway 130
4.7	Summary of BCGs detected by Integrative DEA in the microarray dataset,
	GS20347, that are annotated to top 3 GO terms in the three GO databases. 133
4.8	Summary of BCGs detected by Integrative DEA in the microarray dataset,
	GSE23400, that are annotated to top 3 GO terms in the three GO databases.134
4.9	Summary of BCGs detected by Integrative DEA in the bulk RNA-Seq
	dataset, GS130078, that are annotated to top 3 GO terms in the three GO
	databases
4.10	Summary of BCGs detected by our method, Integrative DEA, in the
	three datasets
4.11	Summary of potential biomarkers identified by our framework, Integra-
	tive DEA
4.12	Summary of potential ESCC biomarkers identified by Integrative DEA
	using the biomarker criteria
4.13	Comparison of our method, Integrative DEA with two recent works that
	employ DEA on ESCC datasets
5.1	Centrality Measures for hub-gene finding employed in CBDCEM 157
5.1 5.2	Centrality Measures for hub-gene finding employed in CBDCEM 157 Comparison of the seven centrality measures employed by CBDCEM . 159
5.2	Comparison of the seven centrality measures employed by CBDCEM . 159
5.2 5.3	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
5.2 5.3	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
5.2 5.3 5.4	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
5.2 5.3 5.4	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
5.25.35.45.5	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
5.25.35.45.5	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
5.25.35.45.5	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
5.25.35.45.55.6	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
5.25.35.45.55.6	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
 5.2 5.3 5.4 5.5 5.6 5.7 	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
 5.2 5.3 5.4 5.5 5.6 5.7 	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
 5.2 5.3 5.4 5.5 5.6 5.7 5.8 	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm
 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 	Comparison of the seven centrality measures employed by CBDCEM . 159 Symbols used in proposed Hub-gene finding algorithm

5.12	Summary of potential ESCC biomarkers identified by CBDCEM using	
	the biomarker criteria	190
5.13	Summary of potential biomarkers detected by CBDCEM and four other	
	hub-gene finding methods	192
5.14	Summary of performance of CBDCEM vs. four other methods in terms	
	of proportion of modules	198
6.1	Centrality Measures for hub-gene finding employed in scDiffCoAM	205
6.2	Comparison of the four of the seven measures employed by scDiffCoAM.	207
6.3	Preservation Analysis (Z _{summary}) of CD45+ modules in CD45- dataset	
	and vice versa	222
6.4	Top 20 hub genes for each extracted MoIs in CD45+ and CD45- datasets	
	using our hub-gene finding algorithm	227
6.5	Percentage of genes in each MoI that are annotated in the GO databases	
	and KEGG pathways	230
6.6	Summary of hub-genes detected by scDiffCoAM that have been anno-	
	tated to the Top 20 KEGG enriched pathways in the CD45+ cell types .	231
6.7	Summary of hub-genes detected by scDiffCoAM that have been anno-	
	tated to the Top 20 KEGG enriched pathways in CD45- cell types	232
6.8	Summary of hub-genes detected by scDiffCoAM that have been anno-	
	tated to the top enriched GO terms in the three GO databases for CD45+	
	cell types	233
6.9	Summary of hub-genes detected by scDiffCoAM that have been anno-	
	tated to the top enriched GO terms in the three GO databases for CD45-	
	cell types	235
6.10	Summary of potential biomarkers candidates identified by scDiffCoAM.	
	Here, All 3 under GO databases imply all three databases, BP, CC, and	
	MF	247
6.11	Summary of potential ESCC biomarkers identified by scDiffCoAM us-	
	ing the biomarker criteria	251
6.12	Summary of potential biomarkers detected by scDiffCoAM and three	
	other hub-gene finding methods	254
6.13	Ranking all potential biomarkers for ESCC identified by all four pro-	
	posed frameworks	261

LIST OF FIGURES

1.1	Steps involved in the Central Dogma of molecular biology	2
2.1	Pre-processing pipeline employed by our proposed frameworks for the three types of gene expression data	37
2 1		42
3.1	Biclustering Approaches: A Taxonomy	43
3.2	Proposed Biclustering Analysis Framework	61
3.3	Pipeline for DCA	64
3.4	Hierarchical trees for normal and disease in the microarray datasets GSE203	
	and GSE23400, and bulk RNA-Seq dataset GSE130078 for ESCC	71
3.5	Soft thresholds for normal and disease in the microarray datasets GSE20347	
	and GSE23400, and bulk RNA-Seq dataset GSE130078 for ESCC	72
3.6	Dendrograms for normal and disease in the microarray datasets GSE20347	
	and GSE23400, and bulk RNA-Seq dataset GSE130078 for ESCC	75
3.7	Zsummary plots for normal and disease in the microarray datasets GSE2034	7
	and GSE23400, and bulk RNA-Seq dataset GSE130078 for ESCC	76
3.8	GRN for normal modules a) <i>skyblue</i> and b) <i>white</i> in GSE20347, disease	
	modules c) yellowgreen, d) white e) salmon4, and f) purple in GSE20347	84
3.9	GRN for normal modules a) brown2 in GSE23400 and b)lightcyan in	
	GSE130078	85
3.10	GRN for disease module <i>orange</i> in GSE130078	85
4.1	Proposed Integrative Differential Expression Analysis Framework	115
4.2	Pipeline for DCA	17
4.3	Dendrograms for normal and disease in the microarray datasets, GSE20347	
	and GSE23400, and bulk RNA-Seq dataset, GSE130078 for ESCC \square	123
4.4	Zsummary plots for normal and disease in the microarray datasets GSE2034	7
	and GSE23400, and bulk RNA-Seq dataset GSE130078 for ESCC	125
4.5	GRN for normal module a) <i>pink</i> and disease modules b) <i>greenyellow</i> in	
	GSE20347, disease modules c) darkgreen, d) lightsteelbluel e) black in	
	GSE20347. GRN for disease module f) magenta in GSE23400	131
4.6	GRN for normal modules a) <i>purple</i> and b) <i>greenyellow</i> in GSE20347,	
	and disease modules c) <i>blue</i> in GSE23400. GRN for disease modules d)	
	lightyellow e) violet, and f) steelblue in GSE130078	132

5.1	Proposed Centrality Based DCA Framework, CBDCEM	161
5.3	Dendrograms for normal and disease in the microarray datasets GSE20347	
	and GSE23400, and bulk RNA-Seq dataset GSE130078 for ESCC	
5.4	Heiarchical trees for module detection for normal and disease in the mi-	
	croarray datasets GSE20347 and GSE23400, and bulk RNA-Seq dataset	
	GSE130078 for ESCC	172
5.5	Zsummary plots for normal and disease in the microarray datasets GSE2034	47
	and GSE23400, and bulk RNA-Seq dataset GSE130078 for ESCC	173
5.6	GRN for normal module a) <i>paleturquoise</i> , disease modules b) <i>dark</i> -	
	turquoise and c) orange in GSE20347. GRN for disease module d)	
	<i>grey60</i> in GSE23400	179
5.7	GRN for disease module a) <i>lightcyan</i> , d) <i>tan</i> e) <i>green</i> in GSE23400, and	
	disease module f) <i>salmon</i> in GSE130078	180
6.1	Steps involved in WGCNA analysis for high dimensional data using hd-	
	WGCNA	
6.2	Proposed framework for DCA on scRNA-Seq Dataset, scDiffCoAM	
6.3	Violin Plots for CD45+ and CD45	
6.4	Elbow Plots for CD45+ and CD45	
6.5	Soft Thresholds for three CD45+ and three CD45- cell types	219
6.6	Dendrograms for three CD45+ cell types and one CD45- cell type	220
6.7	Dendrograms for two CD45- cell types	221
6.8	$Z_{summary}$ plot for Tcell (CD45+) in Epithelial (CD45-) and Endothelial	
	(CD45-) and vice versa	223
6.9	Z _{summary} plot for Tcell (CD45+) in Fibroblast (CD45-) and Bcell (CD45+)	
	in Epithelial (CD45-) and Endothelial (CD45-), and vice versa	224
6.10	Z _{summary} plot for Bcell (CD45+) in Fibroblast (CD45-) and Myeloid	
	(CD45+) in Epithelial (CD45-) and Endothelial (CD45-), and vice versa.	225
6.11	$Z_{summary}$ plot for Myeloid (CD45+) in Fibroblast (CD45-) and vice versa.	226
6.12	GRN for two modules in CD45+ cell type, Tcell	237
6.13	GRN for one, two, and two modules in CD45+ cell types, Tcell, Bcell,	
	and Myeloid and one module CD45- cell types, Epithelial	238
6.14	GRN for three and one modules in CD45- cell types, Endothelial and	
	Fibroblast	239
6.15	GRN for module <i>turquoise</i> in CD45- cell type, Fibroblast	239
6.16	Summary of performances of scDiffCoAM vs. four other methods	258

Glossary

BC	Bcell
BCG	Biomarker Candidate Gene
CEN	Co-expression Network
СРМ	Counts Per Million
DAVID	Database for Annotation, Visualisation, and Integrated Dis-
	covery
DCA	Differential Co-expression analysis
DCE	Differential Co-Expression
DCG	Differentially Co-expressed Gene
DEA	Differential Expression Analysis
DEG	Differentially Expressed Gene
DNA	Deoxyribonucleic Acid
EBAM	Empirical Bayes analysis of Microarrays
EN	Endothelial
EP	Epithelial
ESCC	Esophageal Squamous Cell Carcinoma
FDR	False Discovery Rate
FI	Fibroblast
GO	Gene Ontology
GO_BP	Gene Ontology Biological Processes
GO_CC	Gene Ontology Cellular Componenets
GO_MF	Gene Ontology Molecular Funxtions
GRN	Gene Regulatory Network
GSEA	Gene Set Enrichment Analysis
HNSCC	Head and Neck Squamous Cell Carcinoma
KEGG	Kyoto Encyclopedia of Genes and Genomes
LaSCC	Laryngeal Squamous Cell Carcinoma
IFDR	Local False Discovery Rate
lgEGo	List of Enriched GO Terms
lgEP	List of Enriched Pathways
LSCC	Lung Squamous Cell Carcinoma

MoI	Module of Interest
MY	Myeloid
MSR	Mean Squared Residue
OSCC	Oral Squamous Cell Carcinoma
PCA	Princpal Component Analysis
PCC	Pearson Correlation Coefficient
PEGoT	Percentage of Enriched GO Terms
PEP	Percentage of Enriched Pathways
RNA	Ribonucleic Acid
RNA-Seq	RNA Sequencing
SAM	Significance Analysis of Microarrays
SCC	Squamous Cell Carcinoma
scRNA-Seq	Single cell RNA-Sequencing
TC	Tcell
TED	Top Enriched DEG
TF	Transcription Factor
TG	Target Gene
TOM	Topological Overlap Matrix
TSCC	Tongue Squamous Cell Carcinoma
WGCNA	Weighted Gene Co-expression Network Analysis