
Chapter 2

Background

2.1 Statistical Methods And Measures

Statistical methods and measures are essential for gene expression data analysis. A

mixture of various statistical tests such as t-test [761, 615], moderated t-test [637], are

employed to find differentially expressed genes (DEGs) while multiple testing correction

methods such as Benjamini-Hochberg [43, 764] are used to regulate the false discovery

rate (FDR). Fold change [443] is a simple method to measure the relative changes in

gene expression level between two conditions and is used in conjunction with p-values

[166] to identify biologically and statistically significant genes. Clustering methods such

as k-means clustering [444] and hierarchical clustering [756, 291] are used in gene ex-

pression analysis to find groups of genes or samples. By lowering their complexity while

keeping important links, dimensionality reduction techniques like principal component

analysis (PCA) [546, 292] aid in the visualization and exploration of high-dimensional

gene expression data. Various statistical measures and methods have been employed

throughout various stages of this research.

2.1.1 p-value

p-value [166] is a measure frequently used to draw a conclusion about a population

of samples or evaluate the statistical significance of an observed outcome. To evaluate

the strength of evidence for or against a hypothesis, p-value is quite useful. With the

assumption that the null hypothesis is true, p-value gives the likelihood of observing a

test statistic that is as extreme or more extreme than the observed value. Following are

the key points for p-value statistics.

(a) The probability value for the p-value ranges from 0 to 1. It measures the likelihood

that the data or a more extreme result will be observed if the null hypothesis is

accepted.



(b) The null hypothesis, H0, is a declaration that there is no relationship, difference, or

effect between the variables. The p-value aids in evaluating the opposing evidence

to the null hypothesis.

(c) The significance level, α , is a pre-determined cutoff that is set to assess the amount

of evidence needed to reject the null hypothesis, H0, the most common significance

values being 0.05 (5%) and 0.01 (1%).

(d) It is deemed statistically significant if the p-value < α . As a result, the null hypoth-

esis, H0, is rejected in favor of the alternative hypothesis, showing that the observed

result is unlikely to have happened by chance alone. In contrast, if the p-value not

greater than α , the result is not statistically significant and the null hypothesis, H0

is accepted.

(e) Based on the research problem and the kind of the hypothesis being evaluated a

one-tailed or two-tailed test is chosen In a two-tailed test, the p-value takes into

account extreme values in both distribution tails. In a one-tailed test, just one tail’s

extreme values are taken into account. The decision has an impact on how the

p-value is interpreted and where the key area is for rejecting the null hypothesis,

H0.

In other words, p-value merely conveys the degree of support for the null hypothesis, H0.

p-values are susceptible to restrictions and inherent presumptions of the statistical test

being employed. Larger sample sizes leads to more accurate estimates of the p-value.

2.1.2 False Discovery Rate

When testing several hypotheses, the False Discovery Rate (FDR) [43] statistic is

used to determine the percentage of false positives among a set of significant results.

When performing large-scale studies that simultaneously test several hypotheses, FDR

is especially important. The key points behind FDR statistics are listed below.

(a) Multiple testing problem occurs when the significance thresholds, α , are adjusted

inaccurately due to the simultaneous testing of multiple hypotheses or variables.

This leads to a higher risk of discovering false positives simply by chance.

(b) While the p-values regulate the Type I error (false positives) rate for each individ-

ual hypothesis test, FDR statistics regulates the expected fraction of false positives

among the hypotheses that are deemed statistically significant.

(c) FDR is the anticipated percentage of false positives among all the statistically sig-
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nificant results.

(d) The multiple testing issue has been addressed and several techniques have been

devised to regulate the FDR. The Benjamini-Hochberg [43, 764] approach, which

offers a step-up procedure to alter the significance levels for multiple comparisons,

is one often employed technique. It evaluates the p-values to a crucial value, ranks

them, and then modifies the significance levels accordingly.

(e) A decreased percentage of false positives among the significant results is indicated

by a lower FDR value. A desirable FDR threshold (e.g., 0.05 or 0.01) is selected to

assess the degree of confidence in the discoveries.

The underlying accuracy and inherent assumptions predicate the FDR statistics, and thus

sample sizes, distribution of the data, and the correlation between the hypotheses being

tested can have an impact on the accuracy of the FDR statistics. Although FDR relies on

accurate interpretation of the results, it provides a valuable framework for regulating the

anticipated number of false positives, thus enabling strong and reliable statistical tests.

2.1.3 q-value

FDR statistics [43], commonly referred to as q-value statistics [645], regulates the

rate of false positives (type I errors) over multiple hypotheses, while p-values regulates

the rate of false positives on a single hypothesis. The key points behind q-value statistics

are listed below.

(a) q-value is an estimation of the FDR which defines the percentage of null hypoth-

esis that were incorrectly rejected. The lowest FDR at which the test is deemed

significant is the q-value.

(b) To adjust the significance threshold for q-value, the p-values are compared to a key

threshold and sorted in ascending order.

(c) With the decrease in q-value, the likelihood that the observed result is statistically

significant (i.e, true positive) increases.

q-value enables the management of FDR , thus offering a more robust and conservative

solution to multiple testing as compared to p-value that primarily focuses on statistical

significance of individual genes. The underlying accuracy and inherent assumptions

predicate the FDR statistics, and thus sample sizes, distribution of the data, and the

correlation between the hypotheses being tested can have an impact on the accuracy of

the q-value estimations.
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2.1.4 Local False Discovery Rate

Local false discovery rate (lFDR) statistics evaluates the proportion of false positives

within the set of individual hypotheses. lFDR is also referred to as empirical Bayes

methods and gives a local measurement for FDR that takes into account the properties

unique to the data being examined. The following are the key points for lFDR statistics.

(a) Instead of regulating the overall FDR across numerous hypotheses, lFDR concen-

trates on the significance evaluation of specific hypotheses and forgoes the assump-

tion that true null hypotheses are uniformly distributed. lFDR calculates the local

FDR for each null hypothesis while considering the heterogeneity of the data.

(b) lFDR employs empirical Bayes framework and prior knowledge from the data.

(c) lFDR increases sensitivity to identify both strong and weak signals by concentrat-

ing on measuring the FDR for each distinct hypothesis. Global FDR statistics, on

the other hand simultaneously regulate the overall false discovery rate across all

hypotheses.

For a given hypothesis, a lower lFDR signifies a reduced percentage of false positives.

Under certain circumstances lFDR more precise estimates when compared to FDR.

lFDR makes certain assumptions about the distribution of the data and as such the qual-

ity and heterogeneity of the data can have an impact on lFDR estimates. It is crucial to

verify the findings and take the statistical model’s constraints into account.

2.1.5 Heirarchical Clustering

Hierarchical clustering [756, 291, 47] groups similar data points into clusters based

on their pairwise similarity or dissimilarity and represents the relationships among the

data points as a hierarchical structure known as a dendrogram. Agglomerative (bottom-

up) and divisive (top-down) hierarchical clustering are the two primary approaches.

Agglomerative hierarchical clustering starts by treating each data point as a separate

cluster. The similarity and dissimilarity between all pairs of clusters is determined us-

ing a distance metric and the clusters that are most comparable are combined into one

cluster. The similarity or the dissimilarity of the new clusters and the other remaining

clusters are repeated. The process of merging and recalculation is repeated iteratively

until either the estimated number of clusters is attained or each data point belongs to a

single cluster. The resulting dendrogram represents the hierarchical links of the clusters
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as well as their merging order. For divisive hierarchical clustering, the initial cluster

consists of all the data points. The similarity or dissimilarity of the data points within

the cluster is determined, and a data point or a group of data points is chosen that di-

vides the cluster into two new clusters. The similarity or dissimilarity within the new

clusters is recalculated. The splitting and recalculation process is repeated until either

the estimated number of clusters is attained or each data point belongs to a single cluster.

The resulting dendrogram represents the hierarchical links of the clusters as well as their

splitting order.

The choice of distance measure and linking criterion is critical for both approaches.

The cluster structure that is produced depends on the linking criterion, which also con-

trols how similarity or dissimilarity between clusters is calculated. Single-linkage cri-

teria (minimum distance between any two data points in separate clusters), complete-

linkage criteria (maximum distance), and average-linkage criteria (average distance) are

common linkage criteria. The number of clusters should not be specified in advance

when using hierarchical clustering, which also offers a hierarchical representation that

enables exploration at various granularity levels. The dendrogram also makes links and

clusters between data points graphically apparent. Hierarchical clustering is sensitive

to the choice of distance metric and linking criterion, and it can be computationally

demanding, especially for big datasets. It might also have trouble scaling to highly di-

mensional data.

2.1.6 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [546, 292] is a statistical method that is used

for exploration of the data, extraction of features and reduction of the dimensionality of

the data. PCA seeks to change a group of correlated variables into a group of variables

that have no correlation. Following gives a summary of the key steps involved in PCA.

(a) To ensure that each variable in the dataset has similar weights PCA standardizes

the variables by removing the mean and dividing by the normal deviation.

(b) To analyze the connections between two variables with correlations, the standard-

ized covariance matrix is determined while eigen analysis methods are employed

to determine the eigenvectors and eigenvalues of the covariance matrix.

(c) The principal components (PCs) are represented by the eigenvectors, and the vari-

ance explained by each component is quantified by the corresponding eigenvalues.

18



(d) The eigenvalues are arranged in descending order with the highest eigenvalues cor-

responding to the PC that accounts for the majority of the variations in the data.

A cumulative variance plot is frequently employed for the choice of the number of

PCs to be retained.

(e) For the creation of a matrix of the chosen PCs the original standardized data are

multiplied by the eigenvector matrix. Each PC also represents a linear combination

of the original variables.

PCA can aid in identifying crucial variables, removing background noise, and identify-

ing clusters in the data that exhibit hidden patterns. PCA makes the assumption that the

data is linear, and as such, it is not appropriate for non-linear datasets. Pre-processing

and removal of outliers is a crucial step before PCA, as outliers can significantly impair

PCA.

2.1.7 Benjamini-Hochberg

Benjamini-Hochberg [43, 764] is a statistical method to manage the FDR (Section

2.1.2) in multiple hypothesis testing. It aims to limit the percentage of false positives

that arise from running several statistical tests simultaneously. The Benjamini-Hochberg

approach is described below.

• For each hypothesis test, the p-value associated with strength of evidence against the

null hypothesis is calculated (Section 2.1.1). This is then followed by the listing of

the p-value in ascending order.

• Thresholds for significance are established based on the required FDR.

• The largest p-value that is smaller than or equal to the crucial value corresponding to

its rank (k) in the sorted list of p-values is identified and denoted by the notation p(k).

• The p-values ≤ p(k) result in the rejection of all corresponding null hypotheses and

these findings are deemed as statistically significant.

• The p-values of the rejected hypotheses. The step-up approach outlined by Benjamini-

Hochberg is frequently employed to adjust the p-values of the rejected null hypothe-

ses (false positives) with the aim to control the FDR. All hypotheses that are found

significant after the adjustment are deemed statistically significant.
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2.1.8 T-test

A t-test [761, 615] is a statistical method used to compare the means of two groups

and determine if there is a significant difference between them. The key points behind

the t-test are listed below.

(a) With the assumption that a) the observations within each group are independent of

each other, b) the data within each group are approximately normally distributed,

and c) the variances of the two groups are approximately equal, the two hypotheses

are formulated. The null hypothesis (H0) states that the means of the two groups are

not significantly different from one another. In contrast, the alternative hypothesis

(Hα ) states that the means of the two groups are significantly different from one

another.

(b) Depending on the presence or absence of correlation among the two groups being

compared, paired t-test and independent samples t-test are utilized.

(c) The t-statistic is calculated for independent samples t-test using the following for-

mula.

t =
mean1 −mean2√

s1/n1 + s2/n2
(2.1)

where, s1 and s2 are the sample standard deviations, n1 and n2 are the sample sizes,

and mean1 and mean2 are the means of the two groups. The formula for the paired

samples t-test is as follows.

t =
mean of the differences

standard deviation of the differences/
√

n
(2.2)

where, n is the number of paired observations and the standard deviation of the

differences is the standard deviation of the paired differences.

(d) The degrees of freedom for the independent samples t-test is calculated using d f =

(n1+n2)−2, where n1 and n2 are the sample sizes of the two groups. The degrees

of freedom for the paired samples t-test is equal to the number of paired observa-

tions minus 1.

(e) To determine the crucial value corresponding to the critical value of significance

(e.g., α = 0.05), a t-distribution table is consulted. Alternately, the t-distribution is

calculated to determine the p-value associated with the t-statistic.

(f) If the t-statistics ≥ crucial value or p-value ≤ α , the null hypothesis, H0, is rejected
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and it can be established that the means of the two groups are significantly differ-

ent from one another (alternate hypothesis, Hα ). Otherwise, the null hypothesis,

H0 is accepted and it can be established that the means of the two groups are not

significantly different from one another.

2.1.9 Preservation Analysis

Module preservation analysis is a statistical analysis method to evaluate the module

or cluster preservation across various datasets or conditions. Module preservation anal-

ysis is frequently used in network analysis as well as biclustering approach. Through

module preservation analysis, the conservation of the modular structure seen in one con-

dition or dataset (reference) is ascertained in another condition or dataset (test). In other

words, with the assumption that control condition is the reference dataset and disease

condition is the test dataset, preservation analysis ascertains the conservation of control

modules in the test dataset. Similarity of preservation of modules is quantifies so as to

determine whether the observed preservation is substantial.

With the Zsummary statistic [327, 329], a summary statistic is computed, such as the

mean or median of connectivity among modules, and it is compared to the null distribu-

tion created by permuting the module labels. The observed module structure’s preserva-

tion versus random expectations is shown by the Zsummary statistic. The module labels

are permuted across samples in permutation-based testing, and the preservation statistics

are assessed for each permutation. Statistical significance is then determined by compar-

ing the observed preservation measure to the null distribution. By randomly selecting

subsets of the original data, consensus module preservation [329, 328, 574] includes

creating numerous datasets and computing preservation statistics for each subset. After

combining the outcomes from various iterations, the consensus statistic is calculated,

giving a more reliable estimate of module preservation.

2.1.10 Z-summary Statistics

The Zsummary statistic [327, 329] is a statistical method that is used in module preser-

vation analysis to assess how well modules or clusters are preserved across various

datasets or conditions. To determine the statistical significance of the preservation it

quantifies the conservation and similarity of the module structure between two condi-

tions or datasets. The following discusses the key points of the Z-summary statistic.
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(a) To measure how well the test dataset preserves the observed modular structures of

the reference dataset, the module labels are permuted resulting in the creation of a

null distribution by the Zsummary statistic. This is then followed by comparison to

the summary measure of within-module connectivity in the reference dataset.

(b) By random permutation of the module labels across samples in the test dataset the

original modular structures are disrupted and the observed module preservation is

ascertained. Through computation of Zsummary statistic for each permutation , the

observed statistic is compared to the null distribution.

(c) Typically, the within-module connectivity of the reference dataset is compared to

the null distribution to compute the Zsummary statistic. It shows how many standard

deviations the observed within-module connection deviates from the null distribu-

tion’s mean.

(d) While high positive Zsummary statistic can be interpreted as the preservation of mod-

ule structures between the two conditions or datasets, a low or negative Zsummary

statistic, on the other hand, can be interpreted as poor preservation of the modules

structures between the conditions and datasets.

(e) The Zsummary statistic is compared to the null distribution to ascertain its statistical

significance. If the observed Zsummary value exceeds a particular percentile of the

null distribution or falls outside the range of values predicted by chance alone, it is

deemed statistically significant and suggests that the module structure has changed

or been preserved.

2.2 Gene Expression Analysis Programming/Tools

Various platforms and tools are used at various stages of this research. In essence,

these tools are employed to implement proposed frameworks or to evaluate the results.

This section discusses some of the key platforms and tools used in this research.

2.2.1 R

R [68] 1 is an open-source software environment and programming language made

primarily for statistical computing and graphics. It offers an extensive selection of tools

and libraries for manipulating, analyzing, visualizing, and modeling data. Statistical

experts, data scientists, and researchers have embraced R because of its robust features

1 https://www.r-project.org
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and active user base. Some of the key features of R are discussed below.

(a) Numerous tools in R make it simple to do effective data wrangling operations like

filtering, converting, summarizing, and merging datasets.

(b) Descriptive statistics, hypothesis testing, regression analysis, time series analysis,

survival analysis, and other statistical analysis tools are all included in the extensive

set of functions and packages that R offers.

(c) For producing excellent visualizations, such as scatter plots, bar charts, histograms,

box plots, heat-maps, and interactive visualizations, R includes robust libraries.

(d) Machine learning methods are well supported in R and the tasks of classification,

regression, clustering, and dimensionality reduction can be carried out by users.

(e) R provides tools to help with reproducible research and with the help of which users

may produce dynamic documents that incorporate code, analysis, visualizations,

and narratives, making it simple to share research findings.

(f) Users of R may build customized plots and graphs of publication quality using the

language’s built-in graphics features and packages which provide granular control

over aesthetics, making data discovery and presentation easier.

(g) Because of R’s extensibility, users can create custom functions and packages to

expand their functionality and meet particular needs. Access to thousands of ex-

tra functionalities is made possible by the enormous repository of user-contributed

packages.

(h) Other programming languages like Python, C++, and Java can easily be integrated

with R. Data interchange, interoperability, and utilizing the advantages of many

programming languages are all made possible.

A complete and adaptable environment is offered by R for data analysis, statistical mod-

eling, and visualization. It is a well-liked solution for statistical computing and data

analysis jobs due to its huge package ecosystem, interactive development environment

(IDE) options like RStudio 2, and rich collection of tools.

2.2.2 Bioconductor

For the analysis and comprehension of high-throughput genomic data, Bioconductor

[186] 3 is a widely used open-source software project and platform. Various types of

2 https://posit.co/products/open-source/rstudio/
3 https://www.bioconductor.org/
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gene expression data can be processed, analyzed, and interpreted with the help of this

tool. Key features and components of Bioconductor are discussed below.

(a) For the analysis of genetic data, Bioconductor offers a huge selection of packages

(software libraries). Numerous activities, including data pre-processing, quality

assurance, statistical analysis, visualization, and functional annotation, are covered

by these packages. Within the R programming environment, users can install and

use these packages.

(b) The R programming language, a potent and well-known statistical computing and

graphics environment, serves as the foundation for Bioconductor. Users can take

advantage of R’s vast ecosystem of statistical and data manipulation tools as well as

the specialized genomics packages offered by Bioconductor thanks to its seamless

integration with R.

(c) To effectively handle and manipulate genomic data, Bioconductor includes spe-

cialized data structures and classes. These consist of classes that can display in-

formation about gene expression, genomic coordinates, DNA sequences, protein

structures, and other things. Users can easily execute intricate computations on

genetic data thanks to these frameworks.

(d) Comprehensive annotation resources, like as packages for different genomes, are

available through Bioconductor. These sites offer details on the symbols for genes,

genomic coordinates, functional annotations, pathway data, and other pertinent

metadata for genes, transcripts, and genomic areas.

(e) Workflows and pipeline frameworks are provided by Bioconductor to help users

through the analysis process. These workflows provide best practices and step-

by-step guidance for particular analysis activities, improving reproducibility and

making it easier to adopt common analysis techniques.

2.2.3 DAVID

A popular bioinformatics tool called DAVID (Database for Annotation, Visualiza-

tion, and Integrated Discovery) [628, 253] 4 enrichment analysis aids researchers in

understanding lengthy gene lists by highlighting biological themes and functional anno-

tations connected to the genes. It helps users to comprehend the underlying biological

processes, pathways, and molecular activities represented within those gene sets and ac-

4 https://david.ncifcrf.gov
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quire insights into the biological importance of those gene sets. Following discusses the

key features of DAVID enrichment analysis tool.

(a) Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG),

pathways, protein domains, disease associations, and many more biological and

functional annotation databases are integrated by DAVID. Functional annotations

are assigned to genes, and enrichment analysis is performed utilizing these annota-

tions.

(b) DAVID users can enter lists of interesting genes, such as genes with differential ex-

pression or genes connected to a particular trait or experimental situation. Both the

statistical significance of the enrichment and the over-representation of functional

words or annotations in these gene lists are evaluated.

(c) DAVID offers a number of statistical methods for enrichment analysis, including

the gene set enrichment analysis (GSEA) [651]. By comparing the input gene list

to the background set, these approaches identify functional categories that are dis-

proportionately over-represented.

(d) Based on how semantically similar related phrases or annotations are, DAVID em-

ploys a clustering approach to group them together. The clustering, which helps to

arrange and summarize the enhanced functional words, makes it easier to compre-

hend and visualize the results.

(e) DAVID provides interactive visualizations such as bar plots, pie charts, and heat

maps to represent richer functional concepts and their relationships. These visual-

izations, which also aid users in understanding the enrichment findings, can be used

to identify the most pertinent and significant functional categories.

(f) DAVID offers further tools and functionalities so that users can analyze the func-

tional annotations in more detail. Users can categorize genes based on their func-

tional properties, browse gene lists connected to particular terms, connect enriched

terms to external databases for extra data, and even view functional annotation net-

works.

(g) It is simple for DAVID users to combine their results with those from other bioinfor-

matics tools and resources. It provides options for exporting the results in various

formats for additional analysis or external software-based visualization.

The DAVID enrichment analysis tool is a helpful tool that helps scientists working with

gene lists understand vast volumes of biological data. It aids users in understanding the
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biological meaning and functional context of their gene sets by providing users with

insights on the underlying biological processes and pathways linked to the genes of

interest.

2.2.4 GENIE3

A computational approach called GENIE3 (Gene Network Inference with Ensemble

of Trees) [264] 5 is used to infer gene regulatory networks from data on gene expression.

By utilizing gene expression data, GENIE3 tries to identify the regulatory connections

between genes. It seeks to reconstruct the underlying gene regulatory network, which

depicts how genes interact and regulate the levels of their expression.

To determine the regulatory relationships, GENIE3 uses a collection of regression

trees. The two stages of the algorithm’s operation are feature selection and network

creation. a) GENIE3 evaluates each gene’s importance as a possible regulator for each

target gene (TG) in this stage. Using tree-based techniques, it evaluates how well a

gene’s expression profile predicts the expression of the TG. b) GENIE3 builds the gene

regulatory network by giving regulatory weights to the edges linking the regulators and

their TG after it has determined the pertinent regulators for each TG. The weights are

determined by how crucial the regulators are for foretelling the expression of the TG.

GENIE3 is suited for analyzing intricate regulatory interactions because it can cap-

ture both linear and nonlinear links between genes.The technique can handle massive

gene expression datasets with thousands of genes and samples and is scalable. Each

TG’s possible regulators are ranked by GENIE3, which aids in determining the net-

work’s most significant regulators. To increase the precision and resilience of the esti-

mated network, GENIE3 can combine diverse datasets, such as gene expression profiles

under various experimental circumstances or perturbations. In benchmark experiments,

GENIE3 was found to perform better than other available techniques for inferring gene

regulatory networks. It captures known regulatory linkages with reasonable accuracy

and offers insightful information about the regulatory structure of biological systems.

2.3 Knowledge Repositories

Biological knowledge bases, often referred to as biological databases, are collections

of structured information and data pertaining to diverse biological study topics, such as

5 https://bioconductor.org/packages/GENIE3/
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genes, proteins, pathways, diseases, and species. These databases are often made to

be searchable and interoperable, enabling researchers to access and integrate data from

various sources for a variety of purposes, including hypothesis creation, experimen-

tal design, and data analysis. Based on the kind of information they include and their

breadth, biological knowledge bases can be divided into a number of categories.

(a) Genomic and sequence databases: In addition to information regarding sequence

variation, such as single nucleotide polymorphisms (SNPs), these databases also

contain information about DNA and RNA sequences, including the sequence itself,

annotations of genes, and functional elements.

(b) Protein databases: These databases include data on proteins’ sequence, structure,

interactions, and post-translational modifications and variants, as well as informa-

tion on their function and relationships.

(c) Pathway and network databases: These databases include details on gene regulatory

networks, including transcriptional and post-transcriptional networks, as well as

biological processes, including metabolic and signalling pathways.

(d) Disease and phenotype databases: These databases include data on phenotypes, in-

cluding traits, relationships, and genetic underpinnings, as well as data on diseases,

including clinical characteristics, genetics, and treatments.

(e) Taxonomy and organism databases: In addition to information about biodiversity,

such as species distributions and genetic diversity, these databases also contain in-

formation about organisms, such as their taxonomy, evolutionary relationships, and

features.

The most important sources for biological research are biological knowledge bases,

which offer a plethora of information and data that can be utilized to develop new hy-

potheses, test old ones, and acquire understanding of biological systems and processes.

Many of these databases are freely accessible and available online, and the scientific

community maintains and updates them to guarantee their relevance and accuracy.

2.3.1 Entity Identifiers

Entity identifiers are specific labels or codes that are given to various biological enti-

ties in genomics and transcriptomics in order to aid in their identification, organisation,

and retrieval. These identities are essential for the integration, annotation, and exchange

of data among different databases and research projects. Here are a few entity identifiers

27



that are frequently used in genomics and transcriptomics.

• Gene Identifiers: Gene identifiers are special labels that have been given to certain

genes in a genome. Entrez, Ensembl, RefSeq, and UniProtKB Gene IDs are a few

examples. Through the use of gene identifiers, genes can be precisely and consistently

referenced in various databases and analysis.

• Transcript Identifiers: Generated from genes, RNA transcripts are given distinctive la-

bels called transcript IDs. Transcript IDs from Ensembl, RefSeq, and UniProtKB are

a few examples. With the help of transcript identifiers, individual transcript isoforms

or variations can be accurately identified and analyzed.

• Protein Identifiers: Protein products that have been encoded by genes are given dis-

tinctive names called protein IDs. UniProtKB Accession numbers, RefSeq Protein

IDs, and Ensembl Protein IDs are a few examples. The identification and study of

proteins as well as their properties are made easier by protein IDs.

• Variant Identifiers: The identification of particular genetic variants, such as SNPs or

structural differences, is done using variant identifiers. Examples include ClinVar

Variation ID, COSMIC ID, and dbSNP ID. The tracking and study of genetic varia-

tions in populations and illnesses is made possible by variant identifiers.

• Probe Identifiers: The distinct labels given to each probe on a microarray are known

as probe identifiers. Affymetrix Probe ID, Agilent Probe ID, and Illumina Probe ID

are a few examples. The identification and interpretation of gene expression data from

microarray experiments is made possible by probe identifiers.

• Sequence Identifiers: Unique labels known as sequence IDs are applied to certain

DNA or RNA sequences. GenBank accession numbers and FASTA sequence numbers

are two examples. The retrieval and analysis of particular sequences in databases is

made easier by sequence identifiers.

These entity identifiers provide standardized and unique labels for genes, transcripts,

proteins, variants, probes, and sequences in genomics and transcriptomics research.

They play a vital role in data integration, interoperability, and communication among

researchers and databases, enabling accurate identification, comparison, and annotation

of biological entities across different studies and resources.

Gene names and symbols, usually referred to as gene symbols or gene names, are

frequently used names for genes that are readable by humans. Gene symbols, which

are frequently taken from the official gene nomenclature criteria, give genes a clear and
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recognizable representation. Gene symbols, which are frequently used to refer to genes

in research publications, databases, and annotations, are typically made up of uppercase

letters and digits (for example, TP53, BRCA1, and EGFR). Gene symbols may be shared

by several genes in various species, therefore they are not always unique. To ensure

accurate gene identification in these circumstances, additional identifiers are needed.

Entity Identifiers are an integral part of interesting gene expression analysis results

and their biological relevance against knowledge repositories. In the process of validat-

ing the results presented by each proposed framework we employ the following knowl-

edge repositories.

2.3.2 Gene Ontology (GO)

The widely used Gene Ontology (GO) [30] standard vocabulary offers a common

language for describing the biological processes, functions, and cellular components

of genes and proteins. GO classifies concepts and their links into three basic groups:

biological process, molecular function, and cellular component. Access to GO keywords

and annotations can be found in the following databases.

• Gene Ontology Consortium: The GO database is created and maintained by the Gene

Ontology Consortium (GOC) [105] 6, which is the primary source for GO annotations.

The GOC compiles and maintains GO annotations from a variety of sources, including

direct inputs from researchers, computational techniques, and literature curation.

• UniProt:A comprehensive database of protein sequences and functional details is

called UniProt [1] 7. Based on a review of the literature and computer projections,

UniProt offers GO annotations for proteins.

• Ensembl: Ensembl [489] 8 is a database of genomic annotations that offers thorough

annotations for a variety of species. Based on data gathered through the curation of

literature, homology, and computational techniques, Ensembl gives GO annotations

for genes and proteins.

• DAVID: DAVID (Database for Annotation, Visualization and Integrated Discovery)

[628, 253] 9 offers functional annotation and enrichment analysis for genes and pro-

teins. GO annotations from different sources are one of the gene annotation resources

6 http://geneontology.org/
7 https://www.uniprot.org/
8 http://asia.ensembl.org/
9 https://david.ncifcrf.gov
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that DAVID includes.

• PANTHER: PANTHER (Protein ANalysis THrough Evolutionary Relationships) [682,

681] 10 is an extensive tool for classifying and analyzing proteins. PANTHER gives

GO annotations for proteins based on evidence from homology, phylogenetic analy-

sis, and the curation of relevant literature.

2.3.3 Kyoto Encyclopedia of Genes and Genomesm(KEGG)

A comprehensive database of biological pathways, networks, and functional annota-

tions is called Kyoto Encyclopedia of Genes and Genomes (KEGG) [297]. The molecu-

lar interaction and reaction networks of cells, as well as metabolic pathways and disease-

related pathways, are all covered in great detail by KEGG. There are three primary parts

of KEGG.

• KEGG Pathway: In-depth details on metabolic, signaling, and other biological path-

ways in many organisms are provided in this component. Maps and diagrams are just

a couple of the visual representations of pathways offered by KEGG Pathway.

• KEGG BRITE: This component includes functional annotations for genes and pro-

teins, which may include details on cellular elements, molecular processes, and bi-

ological processes. Additionally, KEGG BRITE offers hierarchical categories for

biological processes and pathways.

• KEGG Orthology: The evolutionary connections between genes and proteins in vari-

ous animals are discussed in this component. According to their orthologous relation-

ships, KEGG Orthology assigns K numbers to genes and proteins, enabling compar-

isons of function and regulation among other animals.

In order to understand how genes and proteins are regulated and function in many ani-

mals and biological processes, researchers in the fields of bioinformatics, genomics, and

systems biology frequently consult the KEGG database.

2.3.4 Hgu133plus2.db

A database file called hgu133plus2.db [235] 11 is connected to the GeneChip Human

Genome U133 Plus 2.0 Array, a microarray device for gene expression profiling. The

database file includes details about the many probesets, or short DNA sequences, that

make up the array and are specific to particular genes or gene areas. The probesets’ an-

10 http://www.pantherdb.org/
11 https://bioconductor.org/packages/hgu133plus2.db/
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notation data, including the gene symbols, gene descriptions, and other pertinent details,

are provided in the hgu133plus2.db file. It enables the interpretation of the outcomes of

gene expression tests carried out using the U133 Plus 2.0 Array and the mapping of the

probe sets to specific genes. This database file is frequently used in bioinformatics anal-

ysis and is compatible with a number of software programmes and coding languages,

including R and Bioconductor, allowing researchers to carry out gene expression anal-

ysis, find differentially expressed genes, and gain understanding of biological pathways

and processes.

2.3.5 Org.Hs.eg.db

Bioconductor, a popular software platform for the analysis of genomic data, has a

database package called org.Hs.eg.db [66] 12. The annotation of the human genome is

especially mentioned. An extensive database of data on human genes and the charac-

teristics linked to them is available as part of the "org.Hs.eg.db" package. Data on gene

names, genomic locations, functional annotations, gene identifiers, gene symbols, and

other pertinent information for human genes are included in this database package. Re-

searchers in the fields of genomics and bioinformatics can use it to integrate experimen-

tal data with gene annotations and carry out a variety of downstream analysis, making it a

valuable resource. For gene-centric analyses including pathway analysis, gene ontology

analysis, and gene set enrichment analysis, the org.Hs.eg.db package is frequently used

in conjunction with other Bioconductor packages and the R programming language. It

helps in the analysis of genomic data and the elucidation of interesting genes by pro-

viding researchers with insights into the biological processes, pathways, and regulatory

mechanisms connected to human genes.

2.4 Biological Analysis

Genes identified by each of our four proposed frameworks as candidates for potential

biomarkers for a disease of interest are validated biologically. We achieve this through

functional enrichment analysis and regulatory behavior analysis. These methods are

disscused in brief.
12 https://bioconductor.org/packages/org.Hs.eg.db/
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2.4.1 Functional Enrichment analysis

A bioinformatics method known as functional enrichment analysis is employed to

identify functional categories, such as pathways or Gene Ontology (GO) terms, that are

over-represented in a set of genes or proteins relative to what would be predicted by

chance. A popular technique to learn more about the biological processes and pathways

that a group of genes or proteins affect is functional enrichment analysis. Functional

enrichment analysis typically involves the following steps.

1. The background set refers to the group of genes or proteins that are being studied;

typically, they are the ones that exhibit differential expression or are otherwise rele-

vant to a given experimental setting.

2. To establish which functional categories are deemed highly enriched, a statistical sig-

nificance criterion is chosen. The desired level of significance, which is commonly

expressed as a p-value or FDR, can be taken into account while adjusting this thresh-

old.

3. By comparing the frequency of functional category members in the background set

to the frequency anticipated by chance, enriched functional categories are identified.

4. Multiple testing correction techniques can be used to alter the significance level in

order to take into account the numerous functional categories being tested concur-

rently. The Bonferroni adjustment [49], FDR correction, and Benjamini-Hochberg

[43, 764] correction are most widely used techniques.

Various functional databases, including Gene Ontology (GO) [30] , KEGG pathways

[297], Reactome [110], and WikiPathways [551], can be used to do functional enrich-

ment analysis. Functional enrichment analysis can be carried out using a variety of soft-

ware packages and tools, including R and Python libraries as well as online platforms

like DAVID [628, 253], and Enrichr [74].

2.4.1.1 GO Enrichment

GO enrichment analysis [30, 17] is a computational method that is used to examine

whether a group of genes or proteins is noticeably over-represented for a given collec-

tion of GO terms in comparison to a chance expression. A certain group of genes or pro-

teins may be enriched in certain biological processes (BP), molecular functions (MF),

or cellular components (CC). By identifying these processes, molecular functions, and

cellular components, this type of analysis can shed light on their functional roles and
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relationships. The functional analysis of genes and proteins can be aided by the strong

tool of GO enrichment analysis, which also aids in the identification of important bio-

logical pathways and processes linked to specific phenotypes, illnesses, or experimental

situations.

2.4.1.2 Pathway Enrichment

Biological pathways that are considerably enriched in a group of genes or proteins

when compared to what would be predicted by chance are found using the bioinfor-

matics technique known as pathway enrichment analysis. Finding out which biological

processes are influenced by the target genes or proteins can be done with the use of a

pathway enrichment study. Pathway enrichment analysis can be performed using vari-

ous pathway databases, such as KEGG [297], Reactome [110], and WikiPathways [551].

Pathway enrichment analysis is an effective method for determining functional relation-

ships between genes and proteins, and it can aid researchers in developing ideas about

the underlying biological processes that underlie phenotypic variations or disease states.

2.4.2 Regulatory Network Behavior Analysis

Proteins called transcription factors (TFs) [278] attach to the DNA [758] with the

aim to control the transcription of genes into mRNA as described in the central dogma

of molecular biology (Section 1.1. TFs play a significant role in the process of tran-

scription by controlling when and how much gene is translated into RNA thus having an

impact on the quantity and activity of the protein that is generated. RNA polymerase is

activated or repressed by the action of TFs. TFs play a key role in a variety of crucial bio-

logical processes, including differentiation, development, and reaction to environmental

cues. Cancer and developmental abnormalities are just two examples of the diseases

that might occur as a result of TF mutations or dysregulation. The human genome has

hundreds of different TFs, each with a distinct DNA binding specificity and regulatory

function. Changes in the activity of one TF can have a cascade impact on the expression

of numerous downstream genes. Many TFs collaborate in intricate networks to govern

the coordinated expression of genes. The understanding of the regulatory networks that

govern gene expression is crucial for creating novel treatments for diseases and for ex-

panding our knowledge of fundamental biological processes, making research into TFs

an important topic of study in both basic and practical biomedical research.
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A gene regulatory network (GRN) [278, 122] is an intricate network of genes, tran-

scription factors, and other molecular components that collaborate to regulate cellular

functions and gene expression. Gene regulatory interactions, which can either be activat-

ing or inhibitory, connect genes in a GRN and work together to control the coordinated

expression of genes. GRNs are crucial for cells to operate normally and are important

for growth, differentiation, and disease. They can be applied to simulate the intricate

regulatory mechanisms that underlie biological systems and comprehend the processes

that give rise to various cellular phenotypes. A GRN can be developed and then exam-

ined to locate important regulatory hubs and subnetworks involved in particular cellular

processes.

2.5 Biomarker Criterion

For each proposed framework, we identify a set of genes that are candidates for

potential biomarkers . We term these genes as Biomarker Candidate Genes (BCGs).

Through biological analysis of the BCGs identified by each framework we establish their

relevance to their respective datasets. We achieve validation through a) GO enrichment

analysis, b) KEGG pathway enrichment analysis, c) gene regulatory network (GRN)

analysis , and d) tracing literature evidence that associate the BCG with corresponding

disease and other diseases associated with it. The biological relevance of a BCG to its

respective dataset is considered based on the following three criteria.

(a) Annotated to at least one GO term in two out of three GO databases (BP: Biological Process,

CC: Cellular Process, and MF: Molecular Function) with p-value ≤ 0.05, i.e. significant

with 5%,

(b) Annotated to at least one KEGG pathway with p-value ≤ 0.05, i.e. significant with 5%, and

(c) It’s a TF and thus exhibits regulatory behavior towards other genes in the network.

For a BCG to be considered a potential biomarker for the corresponding disease (Here

we consider, ESCC), we consider following four cases.

Case 1: Strong literature evidence of association of the BCG with the disease (here, ESCC)

and biologically relevant to the corresponding dataset where the BCG was detected based on

all three criteria a,b and c (i.e., a∩b∩ c),

Case 2: Strong literature evidence of association of the BCG with the disease (here, ESCC)

and biologically relevant to the corresponding dataset where the BCG was detected based on

criteria a and b but not c (i.e, a∩b ̸ c),
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Case 3: Strong literature evidence of association of the BCG with the disease (here, ESCC)

and biologically relevant to the corresponding dataset where the BCG was detected based on

criteria a or b (and/or c) (i.e, a∪b(∩/∪)c),

Case 4: Biologically relevant to the corresponding dataset where the BCG was detected

based on all three criteria a,b and c, (i.e., a∩b∩ c) and has literature evidence of association

of the BCG with a few prominent diseases strongly related to the disease but has no literature

evidence of association of the BCG with the disease (here, ESCC).

We employ this biomarker criteria across all four of our proposed frameworks to identify

BCGs and potential biomarkers for a critical disease of interest.

2.6 Datasets Used

Esophageal Squamous Cell Carcinoma (ESCC) is known to originate in the cell

lining of the esophagus. The esophagus is a muscular tube that connects the throat

to the stomach. ESCC is the most prevalent type of esophagus cancer throughout the

world, particularly in the developing nations, an notably in the North-East of India.

Development of ESCC is frequently attributed to risk factors such as the use of tobacco

or betel nut chewing, specific dietary factors, such as consuming hot beverages and foods

with high nitrosamine levels., and chronic inflammation brought on by some disease.

2.6.1 Microarray Data

We have chosen two ESCC microarray datasets , GSE20347 and GSE23400 to ana-

lyze three proposed frameworks. The datasets are discussed in brief below.

Tab. 2.1: Summary of the microarray datasets, GSE20347 and GSE23400, and the bulk RNA-
Seq dataset, GSE130078 for ESCC

Dataset No. Of

Genes

Normal

Samples

Tumor

Samples

Data Type Public On

GSE20347 22,277 17 17 Expression Data Mar 15, 2011

GSE23400 22,283 53 53 Expression Data Sep 1, 2010

GSE130078 57,783 23 23 Count Data Oct 28, 2019

Dataset GSE20347 13 titled "Analysis of gene expression in esophageal squamous cell

carcinoma (ESCC)" proposed by Hu et al. [249] characterize gene expression in ESCC.

13 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE20347
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They achieved this through the examination of gene expression in tumor and matched

normal adjacent tissue from 17 ESCC patients from a high-risk region of China. The

rows of the dataset represent the genes. For each gene, the first 17 columns represent the

gene expression for that gene in samples for normal while the last 17 columns represent

the expression for that gene in samples for disease. Probe IDs are used as unique gene

(row) identifiers.

Dataset GSE23400 14 titled "Global gene expression profiling and validation in

esophageal squamous cell carcinoma (ESCC)" was proposed by Su et al. [648] with

the aim towards understanding molecular changes in ESCC. For each gene, each pair of

columns represent the normal and disease sample pairs for each of the 53 patients which

results in 106 columns. Probe IDs are used as unique gene (row) identifiers.

2.6.2 BulkRNAseq data

Alongside the two microarray datasets previously discussed, we have chosen a ESCC

bulk RNA-Seq dataset, GSE130078 to analyze three of the proposed frameworks. Dataset

GSE130078 15 titled "A Novel LincRNA HERES Epigenetically Regulates Wnt Signal-

ing Pathway via Interaction with EZH2 in Esophageal Squamous Cell Carcinoma" was

proposed by You et al. [832] with the aim to identify ESCC-driving lncRNAs in the

transcriptome level and exploit a therapeutic target with understanding their modes of

action. For each gene, each pair of columns represent the normal and disease sample

pairs for each of the 23 patients which results in 46 columns. Ensembl IDs are used as

unique gene (row) identifiers.

2.6.3 ScRNAseq data

To analyze our single cell RNA-Seq (scRNA-Seq) analysis framework, we have cho-

sen an ESCC scRNA-Seq dataset, GSE160269. Dataset GSE160269 16 titled "Dissect-

ing esophageal squamous-cell carcinoma ecosystem by single-cell transcriptomic analy-

sis" was proposed by Zhang et al. [877]. Zhang et al.[877] performed scRNA-seq on 60

ESCC tumors and 4 adjacent normal tissue samples obtained from 60 individuals using

the 10X Genomics platform. Single-cell suspension was stained with CD45-FITC and

sorted into immune (CD45+) or non-immune (CD45-) cells.

14 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23400
15 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130078
16 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE160269
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Tab. 2.2: Summary of the scRNA-Seq dataset, GSE160269[877] for ESCC

Subset dataset Cell Types No. of Cells (Samples)

CD45+ (No. of Genes: 15,175)

Tcells 69,278

Bcell 22,477

Myeloid 19, 273

CD45+ (No. of Genes: 17,012)

Epithelial 44,730

Endothelial 11,267

Fibroblasts 37,213

Pericytes 3,102

Fibroblastic Reticular Cells 1,319

2.7 Pre-processing Of Gene Expression Data
In this section we discuss in brief the pipelines we have employed to pre-process all

three types of datasets, namely microarray, bulk RNA-Seq , and scRNA-Seq across all

the proposed frameworks.

(a) Microarray (b) Bulk RNA-Seq (c) ScRNA-Seq

Fig. 2.1: Pre-processing pipeline employed by our proposed frameworks for the three types of
gene expression data, microarray, RNA-Seq, and scRNA-Seq data.

2.7.1 Pre-processing of Microarray Data

The general pipeline involved in pre-processing of microarray data is illustrated in

Fig 2.1a and discussed in brief below.

1. Filtering helps in removing irrelevant or noisy data from the dataset, reducing noise

and increasing the signal-to-noise ratio.

2. Normalization aims to remove technical variations that may arise during the exper-

imental process, such as differences in labeling efficiency, hybridization efficiency,

and scanning intensity, so that the biological variations can be accurately detected.
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Rescaling the data so that it falls within a specific range, usually between 0 and 1.

3. Scaling is used to adjust the range of expression values so that they are comparable

across different genes and samples. This step is necessary because the expression

levels of different genes may vary over several orders of magnitude, and the scale of

measurement may also differ between samples.Transforming the data so that it has a

mean of 0 and a standard deviation of 1.

4. Microarray data may contain missing values due to various reasons, such as low

signal intensity, poor probe quality, or experimental failure. We can estimate missing

values before performing some of the common methods such as K Nearest Neighbor

(KNN) [169], PCA [546, 292], etc.

2.7.2 Pre-processing of bulk RNA-Sequencing (Bulk RNA-Seq) Data

The general pipeline involved in pre-processing of bulk RNA-Seq data is illustrated

in Fig 2.1b and discussed in brief below.

1. Low read count RNA sequencing data refers to RNA sequencing data that has a

low number of reads per sample. Low read count can arise due to various reasons,

such as low RNA input, poor sequencing quality, or technical variation during library

preparation and sequencing. DESeq normalization and edgeR can inherently handle

low read counts.

2. Batch effects refer to systematic variations in gene expression data that arise due to

technical factors, such as differences in sample processing, sequencing, or labeling.

PCA [546, 292], Limma [637, 638] empirical Bayes framework are effective in batch

effect removal.

2.7.3 Pre-processing of Single Cell RNA-Sequencing (scRNA-Seq) Data

The general pipeline involved in pre-processing of scRNA-Seq data is illustrated in

Fig 2.1c and discussed in brief below.

1. Quality control identifies and removes low-quality cells and genes. Quality control

metrics can include gene count, mitochondrial gene content, and ribosomal gene con-

tent.

2. Genes that exhibit high levels of expression variation across cells. Variable features

characterize cell types and can identify genes that drive cell differentiation.

3. Reducing the high-dimensional gene expression data into a lower-dimensional space
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while preserving the major sources of variation in the data. It can help to identify cell

types and states, visualize the data, and reduce the noise in downstream analyses.

2.8 Discussion

In section 2.1 of this chapter, we discuss all statistical methods and measures em-

ployed across various stages of all our proposed frameworks. Section 2.2 gives a sum-

mary of the R programming platform where all our experiments were conducted as well

as various other tools used for implementation of our proposed frameworks and valida-

tion of the results of our analysis. In section 2.3 we give a brief summary of all biological

knowledge repositories utilized through various stages of all our proposed frameworks.

In section 2.4 we give a summary of the methods employed for biological analysis of the

results of each framework. We have proposed a criteria employed by all our frameworks

that identifies a BCG as potential biomarker for the corresponding critical disease which

is discussed in detail in section 2.5. Section 2.6 gives a summary of the two microarray

datasets and one bulk RNA-Seq datset for ESCC used by the first three contributions as

well the scRNA-Seq dataset for ESCC used by the final contribution. Finally, we discuss

the pre-processing employed by our frameworks for all three types of gene expression

datasets, namely, microarray, bulk RNA-Seq and scRNA-Seq.

Next chapter explores the biclustering approach for gene expression data analysis.

We review the pros and cons of various biclustering methods presented throughout the

years. We have chosen eight biclustering methods that span across multiple approaches

and incorporate them into our proposed bicluster analysis framework. We employ the

chosen eight biclustering algorithms to generate biclusters and using a selection criteria

filter relevant biclusters for subsequent analysis and validation.
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