Chapter 3

Biclustering Approach

3.1 Introduction

Gene expression data analysis techniques such as clustering and biclustering are
used with the aim to find patterns or groupings. Clustering of genes identifies groups of
co-expressed genes based on the expression levels they exhibit under all experimental
conditions. In other words, two different genes that have similar experimental tenden-
cies across samples (or conditions) tend to exhibit common patterns of regulation and
thus reflects relations or interaction between their functions. A subset of co-expressed
genes under certain experimental conditions may behave almost independently over an-
other set of conditions. Thus, a two mode clustering approach known as biclustering
[96] that clusters genes over a subset of conditions and operates in both dimensions
simultaneously was introduced. While biclustering groups genes and features simulta-
neously thus identifying subsets that exhibit coherent patterns within particular context
or setting, clustering primarily focuses on grouping similar genes together based on their
feature similarity. Thus, biclustering is very useful for identifying context specific pat-
terns as well as subsets of characteristics that behave consistently in different subsets
of samples. While biclustering seeks to concurrently identify subgroups of samples and
characteristics that exhibit comparable patterns, clustering does not take into account the
context and seeks to identify homogeneous groups typically based on similarity of their
features. Clustering does not always consider whether the similarity within the cluster
is due to the same group of attributes.

Major limitations with clustering are mentioned below.

e Clustering results in creation of groups with no contextual or biological significance
as clustering methods treat all features without consideration of the context or feature
subsets under which they exhibit distinct patterns.

e When working with high dimensional data, noise or irrelevant features may impact



clustering outcomes as all features are treated similarly.

e Clustering is limited in it’s capacity to recognize more intricate patterns that require
connections between different feature subsets or characteristics as it operates on sin-
gle dimension and primarily focuses on patterns exhibited by particular feature or
variable.

e Specification of initialization parameters are often essential for clustering algorithms.
However, different initialization parameter selection may lead to varying clustering
results.

By explicitly taking context specific patterns into account, biclustering identifies sub-
sets of samples and features that behave coherently. It makes feature selection easier and
reduces dimensions by discovering feature subsets specifically associated with particu-
lar samples. Furthermore, biclustering has the ability to find subsets of attributes and
samples that exhibit similar patterns making management of overlapping clusters easier.
Like clustering, biclustering methods often require parameter setting but these parame-
ters are often context specific and may not be sensitive to changes. Due to their partici-
pation in more than one function, genes tend to exhibit varying regulation patterns under
varying conditions. In cases such as cellular processes that are active only under spe-
cific conditions or genes that participate in differentially regulated multiple pathways,
traditional clustering often falls short. Co-regulated genes involved in specific cellular

pathways or biological processes can be identified through biclustering analysis.

3.1.1 Biclustering Analysis

With the aim to identify subsets of genes that are co-expressed across a subset of
samples or genes, the computational technique for gene expression data analysis, bi-
clustering analysis is very useful. While traditional clustering methods identify groups
of genes based on their expression profiles across all samples or conditions, biclustering
simultaneously considers both genes and conditions to identify subsets of genes such
that they exhibit similar expression patterns across a subset of samples or conditions.
Some of the advantages of biclustering are noted below.

(a) By identifying sets of genes that exhibit similar expression patterns across a subset
of samples and are co-regulated, biclustering can provide crucial insight into the
underlying biological processes.

(b) By identifying subsets of samples that exhibit similar expression patterns, biclus-
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tering can provide crucial insight into the different disease states or phenotypes
corresponding to the sample subtypes. This can further facilitate treatment plan-
ning and personalized medicine.

(c) By identifying subsets of genes and samples most relevant to the biological question
of interest, biclustering can reduce the dimensionality of high-dimensional datasets
thus making subsequent downstream analysis and interpretation efficient and effec-
tive.

(d) In genomic and transcriptomic data where noise and missing data is quite common,
biclustering can help reduce false positives and improve result accuracy as they are
often designed to be robust to them.

Throughout the years various biclustering methods have been developed that are
applicable on different types of gene expression data, such as microarray and bulk RNA-
Seq data. Several approaches to biclustering analysis, such as model based methods,
matrix factorization methods, heuristic methods, employ different methods to identify
biclusters. The choice of the biclustering method often hinges on the research question,

availability of computational resources as well as the size and complexity of the data.

3.2 Related Works

In the literature, biclusters are represented in different ways depending on the genes
being placed in the rows or the columns in the data matrix. Similarly, the same expres-
sion sub-matrix is also given different names.

Let, y represents a bicluster that consists of a set of K of ||K|| genes and a set of L
of ||L]| conditions, such that, the expression levels of gene k is represented by by under

sample /. Thus ¥ can be represented as follows[553]:

bin b ... by
by byn ... Dby

y= e (3.1)
bk bikp - Dbkl

where, the gene gy is the k™t row, i.e., gk = br1;bio,s . .. ,bk| L > and the condition ¢ is the
I™ column, i.e., ¢; = by;;byy, . .. ,b‘ k|- To define evaluation measures, means of genes

and samples in biclusters are used frequently.These values are represented as by|z and
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bk referring to the k™ row or gene and [ column or sample means, respectively.
Furthermore, the mean of all the expression values in Y is referred to as bk -
According to Pontes et al. [553], biclustering algorithms can be grouped as: (i)
algorithms based on evaluation measures that form biclusters according to the type of
meta-heuristics used and (ii) non-metric biclustering that forms biclusters according to
most distinctive properties. We present a taxonomy of various biclustering approaches

in Fig.3.1, followed by a discussion on each of these approaches.

——> Iterative Greedy
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?Clustering Based
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Fig. 3.1: Biclustering Approaches: A Taxonomy

3.2.1 Metric-based Biclustering Approach

Several biclustering strategies, including iterative greedy, stochastic greedy, nature

inspired, and clustering based, have evolved in response to a metric-based approach.

3.2.1.1 Iterative Greedy Search

By building a group of objects from their simplest components, either iteratively or
recursively, and making tactical local optimal decisions at each step, this method comes
close to the ideal global answer.

Direct Clustering (DC) on data matrix was one of the earliest works on biclustering
to be published. It was proposed by Hartigan et al.[220]. However, it was never utilized
with genetic information. This technique uses a divide and conquer approach to produce
k matrices by iteratively dividing the input matrix into a subset of sub-matrices, taking
into consideration the desired number of biclusters as an input parameter k. During the

partitioning process, variance is used as an evaluation metric. The variance of a bicluster
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B is calculated as using Equation 3.2.

I J

VAR(B) =YY (bij—bn) (3.2)
i—1j—1
where b;; and byy represent the element in the " row and j’h column, and the mean
of B, respectively. The algorithm choses the rows and columns that improve the overall
partition variance at each iteration thus leading the algorithm towards constant biclusters.
The characteristics of the search allows overlapping among biclusters.

The most important piece of research in this category was Mean Squared Residue
(MSR) proposed by Cheng et al. [96]. Cheng and Church [96] were the first to apply
biclustering to gene expression data. Cheng and Church (CC) [96] is a deterministic
greedy algorithm that finds biclusters with minimal variance. This work attempts to find
n biclusters in an expression data matrix using sequential cover. The most significant
contribution of this work is the formulation of Mean Squared Residue (MSR), a measure
to assess the quality of a bicluster of expression data. As the name suggests, MSR uses
the means of gene and condition expression values to evaluate the coherence of the genes
and conditions in a bicluster & and is given by Equation 3.3

1 il

=017 (aij — aiy — ayj +611J)2 (3.3)
i & & (@ auay

MSR(«)

where ajj, ajj, ajj and ayy represent the element in the i row (condition) and jth column
(gene), the row and column means, and the mean of o, respectively. MSR is widely
considered to be the earliest quality metric to be defined for biclusters of expression
data [553]. However, because MSR is unable to capture shifting tendencies many ap-
proaches have incorporated modified versions of MSR. Despite the fact that MSR has
been shown to be ineffective because it can only capture shifting patterns, many authors
continue to utilize it. A search heuristic called SMSR-based biclustering (SMSR-CC)
by Mukhopadhyay et al. [513] incorporates their evaluation measure SMSR (Scaling
MSR), a variant of MSR. This is how SMSR is described in Equation 3.2.

_ 1 L M| (byyXbm — bim X bLy)*
L] x M| = = biv® X brm®

SMSR(B) (3.4)

Unlike MSR, SMSR can identify scaling patterns but is unable to detect shifting correla-
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tions. The procedure is modified to apply CC [96] twice: once using MSR for evaluation
and once using SMSR to find shifting and scaling patterns (not concurrently).

In Intensive Correlation Search (ICS), Ahmed et al. [9] accepts that MSR cannot
identify simultaneous shifting and scaling patterns, and as a result, introduces a new
algorithm that includes a new metric called the SSSim score. The SSSim score is
defined as follows for two gene expression patterns, let’s say g; = az1,as,...,a, and

g2 =by1,by,..., by, as given by Equation 3.5.

SSSim(g1,82) =

‘ai-&-] —a; _bjy1—b |

n—1 ap—aj b27b1 (3'5)
— o —a: b 1—b;
1 i=2 2xmax(|lmean,<fu(’glar’|.\lmean,-f é;lbl’|)
n—2
where,
,
aiy1—a; biy1—bi aipa—air1 bira—biy
mean( ar—ay ' bhy—by ' ap—ay; ' by—b )’
if i=2
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mean( )
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lmeani — 2 1 2 1 2 1 2 1 (36)
if i=n-1
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), otherwise.

\

SSSim score for a pair of gene expressions spans from O to 1, with a value of 1 denoting
the ideal demonstration of shift-and-scaling correlation.

Developed by Yip et al.[828], HARP (Hierarchical approach with Automatic Rele-
vant dimension selection for Projected clustering) offers an efficient statistic (Relevance
Index,RI). By adding the column-wise relevance indices, this metric assesses the quality

of the bicluster. For a column j € J Rl is defined as[828] in Equation 3.7.

2

95"
2

Oj

Rij=1- (3.7)
where Gljz, is the variance of the values in column j for the bicluster and sz represents
the variance of the whole data set. According to the experimental conditions, the bottom-
up merging approach HARP [828] iteratively merges biclusters that meet a RI threshold.

Constant biclusters are a situation where HARP maximizes quality and avoids producing

45



overlapped solutions.

The Maximum Similarity Biclustering (MSB) algorithm and a similarity score for
biclusters were proposed by Liu et al. [431]. It is a top-down, iterative procedure that
starts with the assumption that the entire matrix is the bicluster. It eliminates the row
or column with the lowest similarity score at each stage until only one element of the
bicluster is left. The technique computes n+ m — 1 sub-matrices [431] for a data matrix
with n rows and m columns. The sub-matrix with the highest similarity score is the only
bicluster that MSB returns. RMSBE makes an effort to fix a problem MSB had with the
unique case of roughly squared biclusters. Additionally, by applying random selection
for the reference gene and averaging the similarity scores between the gene pairs, the
process is sped up [553].

Weighted Fuzzy-based Maximum Similarity Biclustering (WF-MSB), a fuzzy-based
extension of MSB, was proposed by Chen et al. [77] . The method seeks to extract
biclusters based on user-defined reference genes. Due to the occurrence of large dif-
ferences from the baseline of all expression values, it has been noted that biclusters
produced using this method are quite significant. Additionally, WF-MSB frequently
identifies both the most similar and the most dissimilar bicluster in relation to the refer-
ence gene.

In Biclustering by Iteratively Sorting Weighted Co-efficients (BISWC), Teng et al.
[678] use a Pearson Correlation Coefficient (PCC) [545] variant to define a metric (the
weighted correlations index, or WCI). Using WCI, sorting and transposing are applied
alternately to the gene expression data in order to compare the genes and conditions.
The main objective was to emphasize attributes with substantially greater influence.

Blclustering by Correlated and Large number of Individual Clustered seeds (BICLIC)
[848] likewise makes use of PCC [48] to assess the biclusters. Three stages make up the
search procedure. The first stage of seed discovery uses individual dimension-based
clustering to produce an unknown number of bicluster seeds by labeling and combin-
ing the genes according to their expression levels under various situations. Iteratively
attempting to combine each gene or condition until the PCC [48] is exceeded by a pre-
determined threshold, the second phase seeks to expand these seeds, either gene-wise or
condition-wise. Although not every gene in the candidate bicluster matrix may exhibit
correlated patterns under every condition, the seed expansion process ensures that the
candidate biclusters are correlated with the seed. By removing the less linked groups
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of genes and circumstances, the third phase filters the data to produce correlation-based
biclusters. However, it’s possible that various seed biclusters will produce products
based on correlation that overlap. Therefore, the duplicate biclusters are eliminated in
the fourth and final phase by sorting and comparing them. A candidate bicluster is dis-
carded if it turns out that every gene and condition is present in another prospective
bicluster.

Ahmed et al. [9] propose a biclustering technique Intensive Correlation Search (ICS)
and a similarity measured called SSSim that can analyze biclusters. The core concept
of ICS is the iterative extraction of correlated subspaces for various genes. The largest
sample set for which gene expressions are correlated is regarded as a subspace for a
user-defined threshold, 7. This method uses greedy search with a stochastic technique
to add a random element, rendering the algorithm non-deterministic.

Spectral Biclustering (SB) [311] was designed specifically for analyzing microarray
cancer datasets. The basic assumption is that with blocks of high expression as well
low expression levels, the expression matrix conforms to a checkerboard-like structure.
Hence, this approach primarily focuses on finding these distinct patterns using Singular
Value Decomposition (SVD) [192] and eigenvectors. The search further incorporates
normalization of genes. SB prevents overlapping among biclusters and also makes at-

tempts to ensure that every gene and condition is included in at least one bicluster.

3.2.1.2 Stochastic Iterative Greedy Search

This approach uses greedy search with a stochastic technique to add a random ele-
ment, rendering the algorithm non-deterministic.

In order to speed up the biclustering process, Yang et al. [809] present FLexible
Overlapped biClustering (FLOC), which uses a heuristic to combine with the random
masking of the values in the data matrix. The algorithm starts with the creation of k
initial biclusters, then adds rows and columns according to a certain probability, before
iteratively eliminating one row or column at a time. The goal is to select an action
that will increase the average MSR values throughout the k biclusters, and the process
will only come to an end if no action can be discovered to raise the overall standard.
The algorithm favours larger biclusters, while constant biclusters are rejected using the
variance.

Random Walk Biclustering (RWB) by Angiulli et al. [27] employ user-provided
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weights to adjust for a composite game function that combines three distinct goals—MSR,
gene variance, and bicluster size. The Greedy Randomized Adaptive Search Procedure
(GRASP) [135] algorithm, which takes into account combinatorial problems, employs
an iterative multi-start meta-heuristic that is implemented in two phases: first, the con-
struction of a greedy randomized solution, and then a search of the solution’s immediate
vicinity for a local minimum. The best of the solutions is the result [553]. The self-
tuning threshold value used by the GRASP variation known as RGRASP-B [136] is
connected to the candidate solutions. Based on the calibre of the most recent computed
solutions, the threshold value is recalculated on a regular basis.

The Pattern Driven Neighborhood Search (PDNS) method put forth by Ayadi et al.
[34] replaces a lower quality neighbor with a higher quality neighbor in order to incre-
mentally improve a first candidate answer. The input data matrix is pre-processed by
this technique into a behavior matrix M”, where each gene’s trajectory patterns across
all conditions make up the rows and all of the genes’ patterns across specific samples
make up the columns. To obtain the initial bicluster, the algorithm uses two greedy al-
gorithms, CC [96] and OPSM [41], and then encodes it in its behavior matrix M”. The

algorithm alternates between two basic components.

3.2.1.3 Nature Inspired Meta-heuristics

This approach involves algorithms that are based on effective natural phenomena,
such as ant colony optimization, artificial immune system, swarm optimization, and
evolutionary computation to solve complex optimization issues.

Simulated Annealing (SA) [308], a well-known stochastic technique that simulates
the natural crystallization process, is included in Simulated Annealing Biclustering (SA-
B) [58]. The Particle Swarm Optimization approach, which simulates the behaviour of a
flock of birds or a school of fish, is the foundation of CMOPSOB [425]. Multi-Objective
Multipopulation Articial Immune Network (MOM-aiNet) [104] develops a number of
sub-populations that explore various parts of the search space and models the collection
of solutions as a multi-population space. The algorithm begins by selecting people made
up of one row and one column at random, and then iterates sub-populations by cloning

and changing the individuals.
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3.2.2 Non-metric Biclustering Approach

In non-metric biclustering algorithms the search is not guided by any evaluation
measure. These algorithms are divided into groups based on what are thought to be their
main distinguishing traits, while some of them may be included in more than one group
[553]. Graph theoretic approach is used in graph-based techniques, which either (a) use
nodes to represent individual bicluster components, such as genes or samples, or both,
or (b) use nodes to represent entire biclusters. In addition to statistical modeling of the
expression data presented as a bipartite graph, Statistical Algorithmic Method for Biclus-
ter Analysis (SAMBA) [671] employs a graph theoretic approach. The bipartite graph
is made up of genes and circumstances, with edges denoting substantial changes. Vertex
pair weights are assigned using a probabilistic model, and biclusters with higher likeli-
hood are given heavier weights. In addition to finding maximal biclusters that frequently
match certain identical requirements and may have overlapping sections, the MicroClus-
ter [893] approach may also find biclusters that display changing patterns by utilizing
the appropriate exponential transformations. Utilizing probability theory to statistically
analyze the dataset, probabilistic biclustering algorithms build probabilistic models. For
exploratory analysis on multivariate data, Plaid Model [333] was proposed. Here, the
gene-condition matrix is made up of the superposed layers that represent the biclusters.
When there were multiple biclusters, there was a significant amount of overlap between
the biclusters in the original Plaid Model [333]. This is in contrast to a single bicluster,
when the Plaid Model’s model can be applied. To remedy the problem, the Bayesian
biclustering (BBC) [199] model allows overlap in only one of the dimensions of gene
and condition. Through linear mapping between vector spaces, some biclustering al-
gorithms that use a linear algebraic approach find the correlated sets of submatrices in
the input data set. Optimal permutations of the rows and columns are carried out to
improve the organization of the components in the data matrix. Biclusters are defined as
Order-Preserving Sub-Matrices (OPSMs) [41] when all of the genes’ expression levels
result in the same linear ordering for one of the experimental orderings. A sub-matrix
is referred to as an OPSM [41], in other words, if there is a permutation of its columns
such that the values in every row are strictly ordered in ascending or descending order.
By checking for a large linear order tendency in the rows of the expression data matrix,

one may be able to loosen this condition somewhat.
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3.3 Some Selected Biclustering Algorithms

From the four distinct approaches stated in the preceding part, we chose a few widely
used biclustering techniques for our biclustering-based analysis framework. We include
eight biclustering algorithms in this section based on their behavior, popularity and ef-
fectiveness in handling gene expression data. Table 3.1 lists the pros and cons of these
algorithms and the datasets they were validated on Following is brief description of all

eight algorithms.

3.3.1 Bimax

Using a divide-and-conquer method, Bimax lists every conceivable bicluster in the
input data matrix. The input data must be binarized because the algorithm prefers to
look for rectangles of 1s in a binary matrix. The method starts by selecting any row that
contains a mix of Os and 1s. Either the incoming data matrix satisfies the requirements,
or no such row is present. This is true if either all of the entries in the matrix are 1 (in
which case the entire matrix is a single bicluster) or all of the elements in the matrix
are O (in which case there is no bicluster). The first row, r*, of the input m x n matrix,
M, is randomly selected as the algorithm’s starting point. rx is then used to partition
M into two submatrices, each of which is processed independently. By splitting the
columns C=1,...,n into two sets, Cy=C : M[rx,c] = 1 and Cy=C — Cy, submatrices are
discovered. The algorithm then divides m rows into three sets as follows: 1) Ry: Rows
with 1s only in Cy , 2) Rw: Rows with 1Is in both Cy and Cy and 3) R,: Rows with 1s
only in Cy. Following are some observations made when the rows and columns of M are
adjusted to make each set contiguous: Because both Cy and Cy are empty, the submatrix
by (Ry,Cy) cannot form any bicluster. Alternatively, the submatrix by (Ry,Cy) contains
all possible biclusters in M. As long as there are any rows with mixed Os and 1Is, this
process will recursively process U, followed by V.

In particular, the Bimax method concentrates on datasets with entries that are binary
values, denoting the presence or absence of features or events. It works by repeatedly
looking for biclusters with high co-occurrences of 1s (presence) in particular subsets
of rows and columns. It begins with a small starting bicluster and gradually grows it
by adding rows and columns that make it more likely that 1s will occur together. The

algorithm analyzes the importance and quality of the biclusters using statistical tools
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like p-values or significance scores. Bimax is a greedy method that gives preference to
smaller, more frequent biclusters over bigger ones. It looks for biclusters inside subsets
of rows and columns that are both dense (have a high density of 1s) and homogeneous
(have comparable patterns of 1s). Until a stopping requirement is satisfied, such as a
predetermined number of iterations or reaching a maximum permissible size for biclus-
ters, the algorithm keeps improving and growing the biclusters. The output of the Bimax
algorithm is displayed as biclusters, which are collections of rows and columns. A sub-
set of rows and columns with consistent patterns of 1s are represented by each bicluster.
These biclusters can indicate functional correlations or co-occurring occurrences in bi-

nary data, as well as insights into the interactions between features and samples.

3.3.2 XMOTTIFs (conserved gene expression Motifs)

A subset of genes is an XMOTIF in the context of xXMOTIFs if it meets the criteria
listed below: a) a subset is simultaneously conserved across a subset of samples, and
b) the gene expression level in the subset is conserved across a set of samples if it is in
the same state in every sample [553]. A list of the intervals that correspond to the states
in which each gene is expressed in the samples is a fundamental prerequisite for each
gene [553, 554]. However, various restrictions are made to the conservation, maximality,
and size in order to prevent the discovery of extremely small or extremely huge xMO-
TIFs. The objective is to determine the largest xMOTIF using a probabilistic technique
that takes advantage of the XMOTIF’s mathematical structure [553]. To locate several
xMOTIFs in the data, samples that match each xMOTIF’s expectation are successively
eliminated, followed by a search for the next greatest xMOTIF, until all samples are
connected to at least one xXMOTIF.

The goal of xMOTIF is to identify recurring patterns or motifs in various biological
situations. The xXMOTIFs method works by breaking down a gene expression matrix into
biclusters, or groups of genes and conditions with comparable expression patterns. In
contrast to conventional biclustering methods, which take into account only one matrix,
xMOTIFs makes use of numerous matrices that represent gene expression data under
various experimental settings. Using currently available biclustering techniques, the
approach starts by producing a starting set of seed biclusters. Then, by taking into ac-
count both intra-matrix and inter-matrix interactions, these seed biclusters are enlarged

and refined. Inter-matrix interactions capture shared patterns across several matrices,
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whereas intra-matrix relationships focus on patterns seen inside specific gene expres-
sion matrices. For the purpose of determining the relevance of the discovered biclusters,
xMOTTIFs uses statistical methods and optimization approaches. It seeks to identify
conserved motifs with strong co-expression and enrichment for biological pathways or
functional gene sets. The outcomes of xXMOTIFs are frequently represented as collec-
tions of genes and circumstances that collectively constitute conserved motifs, signifying
co-expression patterns that are remarkably persistent across several experimental situ-
ations. These patterns can shed light on the molecular or regulatory mechanisms that

underlie gene expression.

3.3.3 Plaid models(PM)

The gene-condition matrix is represented using plaid models [333] as a superposition
of layers that correspond to biclusters [553, 554]. In this study, Lazzeroni and Owen
provided numerous iterations of the model and enabled a gene to reside in more than
one bicluster. According to Pontes et al.[553, 554] and Lazerroni [333], the most generic

model is as given Equation 3.8.

Xij = f, (6ijx — 0y jx — Kijk) (3.8)
k=0

where, Xj; = the expression level of the i" gene in the jMsample, k = the number of
biclusters, ;o= the background layer and 6; ;= the four types of models, corresponding
to the type of biclusters (overlapped, exclusive, ...). Each o, € 0,1={ 1, if jth gene is
in the k™ bicluster; 0 otherwise} [553]. Each xjk € 0,1= { 1, if j sample is in the k"
bicluster; 0 otherwise}. By looking for a plaid model that minimizes the sum of squared
errors while approximating the data matrix to the model, this greedy approach finds k
biclusters by adding one layer at a time.

PM employs a set of criteria with the aim to find subgroups of data where patterns
exhibited may vary between different subsets. Rectangular subsets of rows and columns
with similar behavior are assigned as biclusters in the data matrix and are used as the
basis for the operation of the algorithm. Identification of subsets of rows and columns
that are similar to one another in particular areas of the data matrix is the primary goal
of PM and it is accomplished by focusing on identifying local patterns in the data. PM

is capable of detecting complicated patterns and capturing overlapping biclusters with
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flexibility. PM decreases bicluster complexity through an optimization framework and

increases coherency in the bicluster.

3.3.4 Iterative Signature Algorithm (ISA)

In Iterative Signature Algorithm [44], biclusters are primarily defined as transcrip-
tion modules retrievable from the expression data [553, 554]. A set of co-regulated genes
alongwith a set of conditions where co-regulation is the most stringent [553] constitutes
a transcription module(TM). TMs in the data are found by applying a generalized Sin-
gular Value Decomposition (SVD). In a module, the gene and condition similarity is
determined by two thresholds which in turn regulate its size. The algorithm starts with a
random selection of a set of genes or conditions which are then iteratively refined until
they match the definition of a TM producing one bicluster for every iteration. As initial
selection of seeds is random and lack overlap restrictions, the resulting biclusters might
have overlapped genes and/or conditions.

When genes within a module are co-regulated by similar regulatory mechanisms, the
ISA method is particularly helpful for identifying transcriptional regulatory modules. It
works iteratively, beginning with a single seed module and progressively growing it into
a bicluster. It incorporates aspects of non-negative matrix factorization and clustering
algorithms. The basis matrix and the activation matrix are updated by ISA after each
iteration. The basis matrix shows the expression patterns of genes within the bicluster,
whereas the activation matrix represents the activity levels of genes in a bicluster across
samples. The activation matrix is encouraged by the sparsity constraint used by ISA to
contain a small number of highly active genes in a subset of samples. This restriction
encourages the discovery of distinct and coherent gene groups. The algorithm keeps
going through iterations where it improves the bicluster, updates the activation and basis
matrices, and thinks about the value and importance of the bicluster. When a stopping
requirement, such as a set number of iterations or when further expansion does not
significantly enhance the bicluster quality, is satisfied, the process comes to an end.
Genes can take part in several modules since ISA permits overlapping biclusters. The
ability to capture intricate interactions and shared regulatory processes between genes
is a benefit of this trait. The ISA results are shown as collections of genes and samples
that collectively make up biclusters. Each bicluster is made up of a set of co-expressed

genes with comparable patterns in a subset of data. These biclusters can shed light on the
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regulating mechanisms, functional relationships, or biological processes that underlie

them.

3.3.5 Factor Analysis for Blcluster Acquisition (FABIA)

For the analysis of gene expression data in Factor Analysis for Blcluster Acquisi-
tion (FABIA) presented by Hochreiter et al. [237], Multiplicative Model (MM) is used
since it enables modeling of heavy-tailed data. Furthermore, by standardizing expres-
sion values, data pre-processing produces fictitious multiplicative effects. A bicluster is
described in this work as a pair of row sets or column sets with similar rows on similar
columns, and vice versa. If one of two vectors in an MM is a multiple of the other or if
their correlation as realized random variables is negative, then the vectors are compara-
ble. The outer product A : ZT of two vectors, where A = prototype column vector and
Z = vector of factors with which prototype column vectors is scaled, can be used to show
linear dependence on subset of rows and columns. For genes and samples not included
in the bicluster, lambda and Z are 0, respectively. With additive noise, p biclusters can

be described, as given in Equation 3.9.

p
X =

NZT +y=AZ+y (3.9)
i=1

where, yinR™ = additive noise, A; € R" =sparse prototype vector and Z; € R/ = sparse

vector of factors of the i bicluster. FABIA model utilizes the concepts of Laplacian

Distribution, Gaussian and Bessel functions so as to exactly get the desired model char-

acteristics of heavy tails. Generative MM allows ranking of biclusters according to their

information content.

3.3.6 QUalitative BIClustering algorithm(QUBIC)

QUBIC [348] initially represents the input data in the form of a matrix with inte-
ger values either qualitatively or semi-qualitatively. Under a subset of conditions, if two
rows of the matrix have identical integer values, then the two corresponding genes can be
considered correlated. The qualitative (or semi-qualitative) representation helps the al-
gorithm in detecting different kinds of biclusters such as scaling patterns. Furthermore,
it 1s well suited for detection of positive and negative correlation expression patterns.

The algorithm initiates by taking into account the qualitative or semi-qualitative matrix
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with vertices for genes and constructing a weighted graph. An Edge that connects a
pair of genes, however, has a corresponding weight computed based on the similarity
between the two corresponding rows. Initially, a bicluster is built using the heaviest un-
used edge as the seed and the algorithm proceeds to add additional genes to the current
solution iteratively. QUBIC employs a method known as merge and split’ to iteratively
improve the biclusters through progressive bicluster refinement of assignments. Through
merging of biclusters FABIA seeks to capture substantially coherent patterns while in
the split phase it seeks to separate subpatterns within the biclusters. Until the a conver-
gence requirement is met, this refinement of the biclusters continue. QUBIC assesses
the coherence of the biclusters by using *'modularity score’ that measures how closely
the actual pattern resembles the predicted pattern. Biclusters with higher modularity

score are consistent and thus deemed as significant.

3.3.7 Iterative Binary Biclustering algorithm with greedy search (iB-
BiG)

iterative Binary Biclustering algorithm with Greedy search (iBBiG) [208] is an it-
erative greedy search algorithm that starts with a random initial bicluster and employs
greedy search to identify neighboring biclusters that share a large proportion of genes
and samples. Until convergence is achieved, the algorithm iteratively combines these
neighboring biclusters to find larger biclusters. By gradually deleting genes and samples
that do not significantly improve the bicluster’s coherence, iBBiG achieves refinement
and seeks to minimize the proportion of false positives. iBBiG is effective on binary
datasets as well as in finding biologically significant biclusters. Initial biclusters iden-
tified by iBBiG consists of a single row and a single column. Quality score measures
the resemblance of the pattern exhibited by the identified subset as compared to the pre-
dicted pattern for the random assignment. Quality score corresponding to each row and
column is used as a rating. After each iteration, the quality score of the resulting biclus-
ters is assessed which takes into consideration all potential row and column additions
into the existing biclusters. The row and column addition that optimizes the improve-
ment in quality score are chosen. This process is repeated until further improvement in
the quality score is not possible. Bicluster expansion stage is followed by the refining
stage where the reliability and significance of the biclusters are assessed using statistical

tests. Until a predetermined criteria such as the number of iterations is met or there is
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a lack of progress, iBBiG iteratively repeats the bicluster expansion and the refinement
steps. Post processing in iBBiG further eliminates biclusters that do not meet minimal

size or significance threshold, are redundant or have heavy overlappings.

3.3.8 FLexible Overlapped biClustering (FLOC)

FLexible Overlapped biClustering (FLOC) [808, 809] employs a information theo-
retic measure , mutual information [107], to measure the similarity between genes and
conditions. By utilizing mutual information, FLOC algorithm separates the genes and
conditions into groups until a halting criterion is encountered. Unlike most biclustering
algorithms, FLOC uses a probabilistic approach for the creation of biclusters and ac-
counts for the prior probabilities of the biclusters. FLOC algorithm is capable of finding
adaptable as well as overlapping biclusters. It seeks to capture complicated relationships
between subsets of rows and columns by allowing overlapping patterns. Randomly cho-
sen subsets of rows and columns constitute the initial biclusters for FLOC. Using an
iterative optimization process, the biclusters are improved. FLOC algorithm consists of
two stages: a) expansion and b) shrinkage. During the expansion stage, FLOC adds or
removes rows and columns to or from the existing biclusters. The quality of the biclus-
ters are assessed based on a scoring scheme that captures the relevance and coherence
of the biclusters. The configurations of addition or removal that leads to optimal scor-
ing are chosen. During the shrinkage stage, FLOC gradually reduces the size of the
biclusters thus enabling the occurrence of overlappings. By taking into consideration
their contribution to the overall quality of the bicluster, FLOC eliminates the rows and
columns. Until a halting criterion .,such as the number of iterations, stability of the
biclusters or the convergence of the scoring function is encountered, FLOC iteratively
repeats expansion and shrinkage stages. Post processing in FLOC eliminates bicluters
with poor quality, or are redundant or do not meet certain requirements like minimal size

or significance threshold.
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3.4 BicGenesis: A Method To Identify ESCC Biomarkers Us-
ing Biclustering Approach

The proposed framework, named BicGenesis detailed in Fig 3.2, is a biclustering
analysis framework. It employs eight well known biclustering methods across various
approaches to generate biclusters. Hub-genes of the relevant biclusters identified by our
relevant bicluster selection criteria are candidates for potential biomarkers and are fur-
ther validated. We choose eight biclustering methods Bimax [556] , x-MOTIF [514] ,
Plaid Models [333] , ISA [44], FABIA [237], QUBIC [348], iBBiG [208], and FLOC
[808, 809] detailed in section 3.3. Table 3.1 gives a detailed comparison of all these

eight algorithms.
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Fig. 3.2: Proposed Biclustering Analysis Framework
The eight biclustering algorithms were chosen based on their popularity, behavior, and
efficiency in handling gene expression data. All chosen algorithms namely, Bimax [556]
, X-MOTIF [514] , Plaid Models [333] , ISA [44], FABIA [237], QUBIC [348], iBBiG
[208], and FLOC [808, 809] are widely used. Furthermore, we also took into con-
sideration the ease of implementation of these algorithms without the incorporation of
complications that rise from their application in various platforms. In other words, we

wanted that all chosen algorithms can be implemented on a single platform. Few other
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biclustering algorithms such as Cheng and Church (CC) [96], and spectral biclustering
[311] were implemented in the initial stages. However, after multiple iterations with
various parameters, we observed that CC generates only one bicluster corresponding to
the entire dataset rendering the generated bicluster irrelevant for further analysis. Vari-
ous iterations of implementation spectral biclustering across all datasets did not produce
relevant biclusters and as such the spectral biclustering algorithm was not taken into
further consideration.

The BicGenesis framework pipeline is represented in detail in Figure 3.2. BicGe-
nesis framework starts with the dataset as input and based on this input data the cor-
responding pre-processing technique (Section 2.7.1 and Section 2.7.2) is chosen. This
pre-processed data is further taken as input into the Identification of DEGs unit that
identifies DEGs from the pre-processed dataset. The identified DEGs are input into the
Validation unit to facilitate GO and Pathway enrichment. The pre-processed data is also
taken as input into the Biclustering Analysis unit. The bicluster generation sub-unit of
this unit employs the eight chosen biclustering algorithms to generate biclusters from
the pre-processed dataset. Row and column behavior or patterns within the specified
subset of the bicluster as well as comparison of the means of various biclusters are eval-
uated for the selection of the relevant biclusters by the Bicluster Selection sub-unit .
These relevant biclusters are then taken as input into the DCA analysis unit. The DCA
unit of BicGenesis divides the pre-processed dataset into normal and disease subsets
and constructs co-expression networks corresponding to each subset. This is then fol-
lowed by extraction of biclusters as modules and preservation analysis (Section 2.1.9)
so as to identify relevant modules. All moderately preserved modules (Section 2.1.9)
are identified are as relevant and we term them as "Modules of Interest" (Mol). All
hub-genes in relevant modules are further considered as "Biomarker Candidate Genes"
(BCGs) and thus the DCA employs a hub-gene finding algorithm to identify hub-genes
for downstream analysis. As described in the proposed Biomarker Criteria (Section 2.5)
we employ GO enrichment, pathway enrichment and gene regulatory behavior analy-
sis to biologically validate BCGs as potential biomarkers. The literature trace sub-unit
of the validation unit traces existing literature that establishes the BCGs as potential
biomarkers for ESCC and six other SCCs related to ESCC. The details of each unit of

the BicGenesis framework are further described in the following five subsections.
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3.4.1 Pre-processing

The proposed framework accepts input from either bulk RNA-Seq or microarray
data, and the pre-processing technique is selected in accordance with the input data
type. Pre-processing for bulk RNA-Seq data entails removing low read counts, nor-
malizing the dataset, and transformation whereas pre-processing for microarray data
entails removing redundant and undesirable data, normalizing the dataset, and missing
value estimates. In Section 2.7.1 and Section 2.7.2, the overall workflow we use for

pre-processing the microarray and bulk RNA-Seq data is covered in depth, respectively.

3.4.2 Bicluster Analysis

The pre-processed data is input to the bicluster analysis unit. In the bicluster analysis
unit of BicGenesis, we first generate biclusters by employing the chosen eight biclus-
tering methods mentioned in Section 3.3. This is followed by the selection of relevant

biclusters for subsequent downstream analysis.

3.4.2.1 Bicluster Generation

The bicluster generation subunit of bicluster analysis unit employs each of the eight
bicluster analysis method discussed in Section 3.3 on the pre-processed input data. Bic-
Genesis employs biclustering methods Bimax [556] , x-MOTIF [514] , Plaid Models
[333], ISA [44], FABIA [237], QUBIC [348], iBBiG [208], and FLOC [808, 809] in-
dividullay on the pre-processed input data. All biclusters detected by each of the eight

methods are considered for subsequent bicluster selection to identify relevant biclusters.

3.4.2.2 Bicluster Selection

All biclusters detected by each of the eight individual bicluster analysis method are
input to the bicluster selection subunit. Row and column behavior or patterns within the
specified subset of the bicluster are referred to as the row effect and column effect of a
bicluster, respectively [481, 96, 556]. It encapsulates the characteristic response or simi-
larity between the rows or columns within the bicluster. A post hoc test called the Tukey
test [696], commonly referred to as Tukey’s Honestly Significant Difference (HSD) test,
is used to compare the means of various groups. To evaluate substantial variations be-
tween subgroups or conditions inside a bicluster, it can be utilized. Row effect, column

effect, and tukey tests are performed for every bicluster identified using each of the eight
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biclustering methods. A significant p-value supports the idea that there is a real pattern
or difference inside the bicluster by indicating that the observed row effect/column im-
pact is unlikely to happen by chance alone. p-values for pairwise comparisons between
the means of the subgroups will be provided by the tukey test. When taking into account
the overall variability within the bicluster, these p-values show whether the observed
differences between the subgroup means are statistically significant. Thus, the bicluster
selection subunit considers all biclusters that have significant p-values for row effect,

column effect and tukey test as relevant biclusters.

3.4.3 DCA

The DCA unit of BicGenesis receives all relevant biclusters found by the bicluster
analysis unit as input. DCA is done with the intention of identifying biologically rele-
vant modules that are more intuitive to analyze and validate. The DCE unit constructs
two CENs at the initial stage that correspond to the input dataset’s subsets for normal

and disease.

Dataset, D Prefix n: on Normal Dataset  MOI: Module of interest
Prefix d: on Disease Dataset Soft. Soft Threshold, power to which
Data: Subset Dataset similarity is raised to construct CEN
Divide d%tatsetégtotsubsets Data': Subset Dataset with TOM: Topological Overlap Matrix
(nData, ata) removed outlier samples TOM': TOM after extraction of connections
nData dData Mod: Extracted Modules pertaining to relevant DEGS

corresponding to biclusters  Mat: Adjacency Matrix

Detect and remove sample
outliers from (nData,dData).

nData’ J{ dData’

Calculate soft thresholds (nSoft, Preservation Analysis ) MOls
dSoft) 5
o
=3
nData’ J{ dData’ = nMod TdMod
@&
=1
Construct GENs (nMat, diat) Assign modulg colors according
to bicluster
nMat dMat nTOM' dTOM:®
nTOM N
Construct TOM (nTOM, dTOM) Extract connections k. Relevant Biclusters
from (nMat, diviat) corresponding to Biclusters
dTOM I

Fig. 3.3: Pipeline for DCA

Figure 3.3 provides an insight into the steps involved in the DCA pipeline employed by
BicGenesis. The first step of the pipeline divides the dataset, D into its normal (nData)
and disease (dData) subsets. This is then followed by the detection and removal of

outlier samples from both normal and disease subsets resulting in two subsets nData’
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and dData’. Construction of co-expression networks (CENs) involves computation and
choice of the soft threshold power to which co-expression similarity is raised. Thus, two
soft thresholds corresponding to each subset (nSoft, dSoft) are computed and chosen on
nData’ and dData’. On the basis of the approximate scale-free topology [38] criteria ,
we select the soft threshold power. Soft thresholding is followed by the construction of
CENs in the form of two adjacency matrices corresponding to the normal (nMat) and
disease subset (dMat). The fifth step of the pipeline involves conversion of the adjacency
matrices (nMat, dMat) into a topological overlap matrix (TOM [574]), which yields a
comparable dissimilarity matrix of the same sizes (n'TOM, dTOM), in order to reduce
the impact of noise and erroneous associations. The two TOMs corresponding to the two
subsets are input to the fifth step of the pipeline which involves the extraction of mod-
ules. As our primary focus is on bicluster analysis we extract modules that correspond to
the relevant biclusters identified by the bicluster analysis subunit of BicGenesis. This is
then followed by the assignment of module colors that correspond to the relevant biclus-
ters. The final step of DCA involves preservation analysis described in detail in Section
2.1.9 to identify relevant modules which we term as "Modules of Interest" (Mol).

We consider all relevant biclusters identified by the previous unit as modules of the
CENs. However, as all the biclustering methods were performed on the entire dataset,
the columns of the biclusters span over both normal and disease subsets. To determine
whether a module is a normal or a disease module we consider the majority. In other
words, to identify a bicluster as a normal module, the majority of the samples (columns)
in the bicluster must be in normal dataset and vice versa.

To extract modules from the CENSs, all connections that pertain to each relevant bi-
cluster in the corresponding normal or disease dataset are extracted . These modules are
subjected to preservation analysis by the DCE unit in order to find biologically relevant
modules. The term "Modules of Interest" (Mol) (Definition 3.4.2) is used to describe
these modules. Following this, hub-genes in these modules are found employing intra-
modular connectivity in WGCNA [327]. The detailed DCA pipeline is illustrated in
Fig. 3.3. All of the hub-genes in the biologically relevant modules found by the DCE
unit are taken into consideration as potential biomarker candidates and we term them as

biomarker candidate genes (BCG) (Definition 3.4.4).

Definition 3.4.1 (Module). A module is a subset of genes, M C G, where there exists

high coherence or homogeneity among the genes in terms of associations or expression
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similarities.

Definition 3.4.2 (Module of Interest (Mol)). A module is defined as *'module of interest’
if (1) its size > 50, and (i1) it is not highly preserved , i.e., it is either non-preserved

(Zsummary < 2) or moderately preserved (2 < Zgyumary < 10).

Definition 3.4.3 (Hub-gene). A gene g; is defined as a hub-gene in a Mol extracted by

our method BicGenesis, if g; is topologically enriched (i.e., highly connected).

Definition 3.4.4 (BCG). A gene g; is defined as a Biomarker Candidate Gene (BCG) if

it is identified as a hub-gene in a given Mol extracted by BicGenesis.

3.4.4 Identification of DEGs

List of genes annotated to enriched GO terms (IgEGo) and list of genes annotated
to enriched pathways (IgEP) are essential to establish the biological relevance of the
hub-genes identified by the hub-gene finding unit of the framework. To achieve this we
employ a DEG finding method on the pre-processed input dataset. The identified list of

DEGs are then input to the validation unit of BicGenesis.

3.4.5 Validation

We take two approaches to validation. In order to determine the BCGs indicated
by BicGenesis as potential biomarker(s), we first evaluate the quality of the module(s)
extracted by the DCA unit as Mol (Definition 3.4.2). The following steps are taken to
validate the extracted modules.

(a) GO enrichment analysis is used to evaluate the quality of an extracted module, and
(b) Enhanced pathway presence is used to further evaluate the quality of modules.
All hub-genes identified in biologically significant modules by the DCA unit are re-
garded as potential biomarker candidates and are referred to as Biomarker Candidate
Genes (BCG). A module is pathway and GO enriched if it contains at least one enriched
pathway and one enriched GO word. Gene Ontology (GO) enrichment analysis and
pathway enrichment analysis are used to validate Mols found by the preservation analy-
sis unit. All detected Mols are used as input in the validation unit’s pathway enrichment
analysis and GO enrichment sub-unit in the framework. These sub-units calculate the
percentage of enriched GO words (PEGoT) across the three GO databases for each Mol.

These three databases include the percentage of enriched pathways (PEP) in KEGG
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with a p —value = 0.05 and the biological process (BP), cellular component (CC), and
molecular function (MF) databases.

First, we find 1gEGo and IgEP with p —value = 0.05 for each BCG identified by
the framework that needs to be validated. The GO enrichment and pathway enrichment
sub-units in the framework receive input from the DEGs discovered by the identification
of DEGs unit. Two lists, IgEGo and IgEP, are the output. The list of BCGs, along
with 1gEGo and 1gEP, are input to the biological analysis unit in order to validate the
BCGs found by the hub-gene discovery unit of the framework. The biological analysis
unit identifies BCGs that have enriched GO terms and enriched pathways associated to
them. In other words, the biological analysis unit recognizes the BCGs that are present
in 1gEGo and IgEP. For the purpose of establishing the regulatory behavior of these
BCGs in the network, this unit further detects BCGs that are TFs and constructs GRN.
The validation unit of the framework’s literature trace sub-unit finds BCGs that have
published literature traces that support being regarded as biomarkers for ESCC or other
SCCs that are closely related to ESCC. We select the BCGs that come under Cases 1
and 2 and classify them as potential biomarkers based on our biomarker criteria (Section

2.5).

3.5 Experimental Results

To evaluatethe performance of our method, we consider a critical disease, ESCC.
Three ESCC datasets such as GSE130078 for bulk RNA-Sequencing, and GSE20347
and GSE23400 for microarrays have been selected to evaluate the performance of our
method, BicGenesis. Each dataset’s specifics (Table 2.1) are detailed in Sections 2.6.1
and 2.6.2. A DELL workstation running Windows 10 Pro with a 3.70GHz Intel(R)
Xeon(R) W-2145 CPU and 64 GB of RAM is used for experimental evaluation. In
the R programming environment (Section 2.2.1), we run the results. Each dataset’s
characteristics are provided in Table 2.1. In all three datasets, the gene expression of

tumors have been analyzed and contrasted with that of surrounding contrast tissue.

3.5.1 Pre-processing

There are 46 samples and 57,783 genes in the bulk RNA-Seq dataset, GSE130078.
We eliminate genes with low read counts since large datasets often make analysis more

difficult. We do this by counting the number of copies of each gene in a million , i.e.,
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Counts Per Million (CPM) for each sample, and keeping only the genes with CPM > 1
for at least two samples. The dataset shrinks from 57,783 to 22,270 as a result. The
dataset is then normalized as a next step. For analysis, we also take into account the two
microarray datasets GSE20347 and GSE23400 gene expression levels across samples
are the datasets’ inputs. We first pre-process the data by eliminating redundant and
unnecessary genes, estimating missing values, and normalizing the data. However, there
are no missing values for either GSE20347 or GSE23400, so we continue down the
pipeline. After preproceesing the microarray datasets GSE20347 and GSE23400 are of
the dimensions 22,277 x 34 and 22,283 x 106, respectively.

3.5.2 Bicluster Analysis

For each pre-processed dataset, namely GSE20347, GSE23400 and GSE130078,
we detect biclusters by employing each of the eight biclustering methods discussed in

section 3.3.

3.5.2.1 Choice of parameters

For all chosen eight biclustering algorithms, we have employed most parameters
except the number of biclusters and the number of iterations based on suggestions of
the original work. R package Biclust [296] ! was used to perform three biclustering
methods, x-Motif, Bimax, and Plaid Models. For ISA, FABIA, and QUBIC we used the
R packages ISA2 [111] 2, FABIA [237] 3, and QUBIC [887] *, respectively. For iBBiG
and FLOC we used the R packages iBBiG [208] > and BicARE [187] 9, respectively.
These packages implement the parameters suggested by the respective works as default
parameters. The number of biclusters and the number of iterations inputs as and when
required were determined through exhaustive applications as well as multiple iterations

and were chosen based on our perception of the best results.
3.5.2.2 Bicluster Generation

As mentioned earlier BicGenesis employs eight biclustering methods Bimax [556],

x-MOTIF [514] , Plaid Models [333] , ISA [44], FABIA [237], QUBIC [348], iB-

Uhttps://CRAN.R-project.org/package=biclust
2 https://CRAN.R-project.org/package=isa2

3 https://bioconductor.org/packages/fabia/

4 https://bioconductor.org/packages/QUBIC/

3 https://bioconductor.org/packages/iBBiG/

® https://bioconductor.org/packages/BicARE/
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BiG [208], and FLOC [808, 809] to generate biclusters for two microarray datasets,
GSE20347 (22,277 x 34), and GSE23400 (22,283 x 106), and one bulk RNA-Seq dataset,
GSE130078 (22,270 x 46) . We have observed after pre-processing , all three datasets
have approximately around 22,200 genes but varying sizes of samples. With the aim
to detect biclusters with sizeable number of genes (rows) and not too many or too few
conditions (columns) we perform multiple iterations and exhaustive applications. Most
methods across all datasets regardless of the changes in other parameters corresponding
to the method can detect 10 biclusters of sizeable number of genes and conditions. As
such for all methods across all datasets we aim to determine 10 biclusters. In GSE20347
and GSE23400, while most methods detected 10 biclusters (Table 3.2), ISA detected 7
and 25, respectively. In GSE130078, aside from ISA that detected 5 biclusters we also

observed that Plaid also detected only 3 biclusters.

3.5.2.3 Bicluster Selection

As mentioned previously, we take into consideration row effect, column effect and
tukey test to determine the significance of each bicluster. Through multiple iterations
of application we have observed that a p — value = 0.05 for all three parameters deter-
mines all biclusters in all three datasets as relevant. With the aim to reduce the number
of biclusters as well as to obtain highly significant biclusters we determined set the sig-

nificance value for all three parameters as p — value = 0.01.

Definition 3.5.1 (Relevant Biclusters). A bicluster is defined as ’relevant bicluster’ if
(1) its rowE f f is significant with p —value < 0.01, (ii) its colE f f is significant with
p —value < 0.01, and (ii1) its tukeyTest is significant with p — value < 0.01. Here,
rowE f f, colE f f and tukeyTest refers to results of row effect, column effect and Tukey’s
Honestly Significant Test (HSD) briefly discussed in Subsection 3.4.2.2.

Table. 3.2 summarizes all biclusters detected across all three datasets by the eight
biclustering algorithms. Finally, we remove all genes that are not assigned to any bi-
cluster. This step reduces the number of genes in GSE202347 from 22,277 to 20, 941.
Similarly, the number of genes in GSE23400 is reduced from 22,283 to 20, 864 while in
GSE130078 it reduces from 22,270 to 20,938.
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Tab. 3.2: Summary of the biclusters detected by BicGenesis in all three datasets. DB: No. of
detected biclusters, RB: No. of relevant biclusters.

Method DB/  Relevant Biclusters Method DB/  Relevant Biclusters
RB RB
x-Motif 1072 1,2 x-Motif 10/8 1,2,3,4,6,7,8,9
BiMax 10/5 1,5,6,9,10 BiMax 10/9 1,2,3,4,6,7,8,9,10
= Plaid 10/10 1,2,3,4,5,6,7,8,9,10 ® Plaid 3/1 1
§ ISA 7/6 1,2,3,4,6,7 % ISA 5/5 1,2,3,4,5
% FABIA 10/6 3,5,6,7,8,9 %“ FABIA 10/2 2,3
QUBIC 10/4 1,2,6,8 QUBIC 10/10 1,3,4,5,6,7,8,9,10
iBBiG  10/9 1,3,4,5,6,7,8,9,10 iBBiG  10/7 1,2,3,4,5,7,9
FLOC 10/8 1,2,3,4,6,7,8,9 FLOC 10/4 1,5,7,10
o X-Motif 10/7 1,2,3,4,5,6,8 FABIA 10/9 1,2,3,4,5,6,7,8,9
g BiMax 10/9 1,2,4,5,6,7,8,9,10 QUBIC 10/3 6,7,10
% Plaid 10/9 1,2,3,4,5,6,7,8,10 iBBiG  10/4 1,2,3,6
ISA 25/ 4, 8,9, 10, 11, 12, 13, 14, FLOC 10/10 1,2,3,4,5,6,7,8,9,10
19 15, 16, 17, 18, 19, 20, 21,
22,23,24,25
3.5.3 DCA

We create co-expression networks (CEN) using Weighted Gene Co-expression Net-
work Analysis (WGCNA) [327] to examine the interactions between the genes in a
bicluster as well as the variations in behavior under normal and disease conditions. Fig.
3.3 in Section 3.3 provides the detailed pipeline for DCA in our system.

To find outliers, we begin by hierarchically clustering the samples of the three dataset.
In the case of normal samples with a tree cut at height 4 = 70 (Blue), we discovered a
single outlier for GSE23047 as shown in Fig. 3.4a and Fig. 3.4b. However, there are
2 outliers with a cut at 7 = 130 (Red) in disease samples. Similarly, in GSE23400, tree
cuts at heights of 7 = 105 (blue) and 7 = 95 (red) eliminate one and two outliers from
the normal Fig. 3.4c and disease 3.4d samples, respectively. Cuts at 4 = 1500000 (Blue)
and 47 = 2000000 (Red) in the case of GSE130078 remove one sample of normal (Fig.
3.4e) and one sample of disease (Fig. 3.4f).
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Sample clustering to detect outliers

(f) Disease (GSE130078)

Sample clustering to detect outliers
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(e) Normal (GSE130078)
GSE130078. The lines represent the height for tree cut in normal (blue) and disease

GSE23400, e) bulk RNA-Seq dataset, GSE130078. Hierarchical trees for disease sam-
(red) subsets.

ples in microarray datasets b) GSE20347 and d) GSE23400, f) bulk RNA-Seq dataset,

Fig. 3.4: Hierarchical trees for normal samples in microarray datasets a) GSE20347 and c)
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Fig. 3.5: Soft thresholds for a) normal and b) disease in GSE20347, ¢) normal and d) disease in
GS23400, and e) normal and e) disease in GSE130078

We apply soft threshold to the normal (Blue) and disease (Red) samples of dataset
GSE20347. 9 is the lowest power for which the network maintains scale-free topol-

ogy, as can be shown in Fig. 3.5a and Fig. 3.5b. As shown in Fig. 3.5¢ and Fig. 3.5d,
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the soft threshold for normal (Blue) and disease (Red) samples in GSE23400 is set at 9.
In contrast, for GSE130078, normal (Blue) and disease (Red) samples are selected with
soft thresholds of 12 (Fig. 3.5e) and 9 (Fig. 3.5f), respectively.

3.5.3.2 CEN Construction

Using the soft threshold exponent 9, we compute the adjacency matrices for the
normal and disease samples of the GSE20347 dataset, yielding two corresponding adja-
cency matrices both with a size of 22,277 x 22,277. Similar to this, GSE23400 produces
adjacency matrices of size 22,283 x 22,283 each with a soft threshold power of 9. The
number of genes in GSE130078 is decreased to 22,270 after CPM filtering, resulting
in two adjacency matrices with soft thresholds of 12 (normal) and 9 (disease) and sizes
22,270 % 22,270 each. The adjacency matrices used to create the associated Topological
Overlap Matrix (TOMs) [574] have the same size as the relevant adjacency matrix. Here,
it is noteworthy to mention that we construct the CENs from the normal and disease sub-
set of the dataset and then extract the modules corresponding to the biclusters. As, such
the number of reduced genes after removal of genes not assigned to any bicluster is not

relevant for CEN construction.

3.5.3.3 Module Extraction

Generally module extraction would entail the employment of methods such as hi-
erarchical clustering on the the normal and disease TOMs to obtain connections in the
networks that are highly connected. However, we make the assumption that relevant
biclusters detected by the Bicluster analysis unit are highly connected and correspond to
biclusters. As such we extract connections corresponding to each relevant bicluster from
the normal and disease TOMs and assign them module colors according to bicluster la-
bels. As our aim is primarily to observe the variations in behavior exhibited by biclusters
under normal and disease conditions, it is essential that we first first distinguish between
normal and disease biclusters. To achieve this we anlyze whether majority of the biclus-
ter conditions (or columns) fall under normal or disease dataset. If most of the columns
in a bicluster are part of normal dataset then me consider that as a normal bicluster. Ta-
ble 3.3 gives a detailed summary of the normal and disease biclusters in each dataset.
Furthermore, as we further analyze biclusters of one condition that do not retain ma-

jority of its connections under the other condition, i.e, they are not preserved [329], we
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only consider biclusters that are either normal or disease. As such biclusters that cannot
be strictly categorized as normal or disease are not taken into consideration. Bicluster 7

and 10 in FABIA and QUBIC, respectively in GSE23400 are such biclusters.
Tab. 3.3: Subset of Normal and Disease Biclusters. DB: No. of detected biclusters, RB: No. of

relevant biclusters

Method DB/RB  Normal Biclusters Disease Biclusters
x-Motif  10/2 1,2 NULL
BiMax  10/5 NULL 1,5,6,9,10
~ Plaid 10/ 10 7,8,9 1,2,3,4,5,6,10
% ISA 776 NULL 1,2,3,4,6,7
@ FABIA 10/6  NULL 3,5,6,7,8,9
QUBIC 10/4 NULL 1,2,6,8
iBBiG  10/9 1,5,7,9 3,4,6,8,10
FLOC 10/ 8 2,7,8,9 1,3,4,6
x-Motif 10/ 7 2,3,4,5,8 1,6
BiMax  10/9 1,2,4,5,6,7,8,9,10 NULL
o Plaid 10/9 1,2,3,4,5,6,7,8 10
% ISA 25/'19 4,9,11,12,13,17,19,20,24 8,10, 14, 15, 16, 18, 21, 22, 23, 25
% FABIA 10/9 1,2,6 3,4,5,8,9
QUBIC 10/3 6 7
iBBiG 10/ 4 1,2,3,6 NULL
FLOC 10/ 10 1,2,3,4,5,6,8, 10 7,9
x-Motif 10/ 8 1,3,4,6,7,9 2,8
BiMax  10/9 NULL 1,2,3,4,6,7,8,9,10
% Plaid 2/1 1 NULL
o
K ISA 5/'5 1,4 2,3,5
é FABIA 10/2 2,3 NULL
© QUBIC 10/10 NULL 1,2,3,4,5,6,7,8,9,10
iBBiG  10/7 3,5 1,2,4,7,9
FLOC 10/ 4 NULL 1,5,7,10

Fig. 3.6a and Fig. 3.6b are the dendrograms for normal and disease subsets in GSE20347
where the strip of color represents the colors assigned to corresponding biclusters. Sim-
ilarly, Fig. 3.6c and Fig. 3.6d are the dendrograms for GSE23400 while Fig. 3.6e and
Fig. 3.6f are the dendrograms for GSE130078.
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B |10 U 0
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Fig. 3.6: Dendrograms for a) normal and b) disease in GSE20347, c) normal and d) disease in
GS23400, and e) normal and e) disease in GSE130078. The strip of color represents
the colors assigned to corresponding biclusters.

3.5.4 Preservation Analysis

In order to analyze the difference between preserved and non-preserved modules, we

follow module extraction by module preservation analysis. While the preserved mod-
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ules retain the bulk of their co-expressed connections (or edges between two genes), the

same cannot be observed from non-preserved modules, according to Langfelder et al.

[329].
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Fig. 3.7: Zsummary plots for a) normal and b) disease in GSE20347, c) normal and d) disease in
GS23400, and e) normal and e) disease in GSE130078. All modules below the red line
are non-preserved, all modules between the red and blue lines are weak to moderately
preserved and all modules above the blue line have strong evidence of being preserved.

A module with Zgymmary < 2 is regarded as non-preserved, in accordance with Langfelder
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et al. [329]. We evaluate moderately conserved modules with the Zgymmary < 10 [329]
(Section 2.1.9). Fig. 3.7a, Fig. 3.7c, and Fig. 3.7¢ are the Zsymmary plots for datasets,
GSE20347, GSE23400, and GSE130078, respectively. In Zgymmary plots above, all mod-
ules below the red line are non-preserved, all modules between the red and blue lines are
weak to moderately preserved and all modules above the blue line have strong evidence

of being preserved.

Tab. 3.4: Preservation Analysis (Zsymmary) Of normal modules in disease dataset and vice versa in
the two microarray ESCC datasets, GSE20347 and GSE23400, and the bulk RNA-Seq
dataset, GSE130078. Modules with Size > 100 and atleast moderately preserved (i.e,
Zsummary < 10) are considered for further downstream analysis and highlighted in blue

and bolded.
Ref/Test Module Size Zsummary Ref/Test Module Size Zsummary
greenyellow 218 1.55407 salmon4 3 1.09769
royalblue 407 2.60446 tan 9 1.36990
darkgreen 12 2.62285 lightcoral 10 1.75694
Normal/ skyblue 474 3.90280 cyan 17 2.01960
Normal/
Disease magenta 252 4.16232 ) skyblue 21 2.62263
Disease
~ white 140 7.69126 brown2 1283 3.25331
L
§ saddlebrown 130 7.74030 skyblue2 15 4.24438
%] lightgreen 498 9.01459 purple 226 4.88135
yellowgreen 369 -1.43358 grey60 12 6.56521
darkturquoise 24  -0.67250 firebrick4 220 7.07419
white 127 0.55815 salmon 44 7.10097
lightcyanl 25  1.20614 o blue?2 35  7.15751
S
magenta 237 2.33799 E thistle 93  7.24022
maroon 22 3.02716 % violet 187 8.27108
pluml 97 3.11051 plum3 513 8.76015
violet 299 3.30263 lightsteelbluel 39  9.41598
Disease/
Sfloralwhite 22 3.42265 darkgreen 2 -0.61404
Normal
darkorange 230 3.52126 saddlebrown 3 -0.11975
purple 104 3.95907 plum?2 2 0.61396
sienna3 333 5.21882 darkturquoise 23 1.41100
salmon4 545 5.63931 Disease/ darkorange 22 1.97032
corall 28  5.71808 Normal  pluml 244 4.69040
darkgrey 317 5.96807 darkolivegreen 6 5.24692
thistle2 712 6.07552 darkgrey 146 6.54487
darkolivegreen 418 7.96030 lightpink4 111 7.08346

Continued on next page
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Ref/Test Module Size Zsummary Ref/Test Module Size Zsummary
paleturquoise 121 9.53985
lightcyan 50 5.83082 darkgreen 37 4.56141
grey60 56  6.60936 darkgrey 74 4.67108
Normal/ royalblue 116 6.84477 yellow 27 4.77035
Disease magenta 106 6.97547 grey60 41 5.51684
o0
S floralwhite 9 0.92119 orange 68  6.99870
= o0
= sienna3 5 2.46668 5 lightsteelbluel 64  7.62333
2 Disease/ <  Disease/
O magenta 24 2.58236 = purple 35 8.11836
Normal % Normal
pink 35 2.90630 O lightyellow 81 8.77480
orangered4 9 3.31394 darkred 98  9.46642

Table 3.4 summarizes the preservation analysis for non-preserved modules in all three
datasets. The second column highlights the module preservation reference and test net-
works. For example, the table reading for module royalblue in Normal/Disease subset
of dataset, GSE20347, can be interpreted module royalblue of size 407 detected in the
normal network that is moderately preserved in disease network with a Zgymmary value
of 2.60446. We only consider moderately preserved modules (i.e, Zsymmary < 10 [329])
of substantial size (size > 50) as Mols for subsequent downstream analysis and valida-
tion. With the consideration that we identify 20 hub-genes as candidates for potential
biomarkers in subsequent downstream analysis we the size of the Mol to be atleast 50.
This is to keep the majority of genes as non hub-genes. In GE20347 we have identified
19 Mols while in GSE23400 9 modules are Mols.

3.5.5 Hub-gene Finding

To find the hub-genes for each Mol extracted previously we employ WGCNA intra-
modular connectivity proposed by Langfelder et al. [327]. Intra-modular connectivity
calculates the connectivity of a node to other nodes in the same module. For each Mol
(Definition 3.4.2), we compute intra-modular connectivity of each gene and identify
genes with high intra-modular connectivity as hub-genes. Table 3.5 gives a detailed

summary of top 20 hub-genes in all Mols identified across each dataset.
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Tab. 3.5: Top 20 hub-genes for each Mol in the two microarray and one bulk RNA-Seq datasets
using WGCNA [327] intra-modular connectivity. Hub-genes with strong literature evi-
dence of association to ESCC are marked in Red while hub-genes with evidence of as-
sociation with five other SCCs, HNSCC, LaSCC, LSCC, OSCC, and TSCC are marked

GSE20347

in Blue
Module hub-genes
royalblue DMXL2, CMKLR2, CNNM2, PCGF1, APBA2, EAPP, APOCI, FEZF2, ZDHHC17,

greenyellow

saddlebrown

skyblue

magenta

white

lightgreen

yellowgreen

whiteD

magentaD

pluml

CALDI, DYRKIA, PCLAF, HNRNPA1, NPIPA1, P2RY6, SRSF11, PKD1P1, TPMI,
EHBP1, MLF2

MED?21, RPL41, SRSF9, HSDL2, AOPEP, UBE2L3, CTTN, RANBP9, MAST4,
IL13RA1, AREG, CNN3, STN1, PDZD2, PDCD4, GMDS, LMOD1, RPL38, TTC9,
SLC24A3

SET, NDUFS4, SNX3, ADK, DLD, MRPS28, MTFR1, CYB5A, CANX, RAB14,
SH2B2, ISCA1, MRPS18A, RNF138, MED13L, ADIPOR1, MSH2, GLUD2, SKAP2,
PDLIMS

VAMP3, ARF6, HADHA, DSG2, MAP2K1, CCT4, N4BP2L2, UBE2GI1, ECI2,
NOTCH2NLA, TSPAN6, BNIP3, PPPIR2, ASCCl, TSPAN6, MACROH2AI,
HILPDA, HPGD, ETFDH, BNIP3

DIP2A, PSMA2, SPCS1, BLVRA, ATP6VOEl1, PSMCI1, VPS26A, PPP2CB,
SEPTIN10, CHP1, EIF3K, CCNC, SEPTIN10, POLR1D, TMX1, SDCBP, BCAP29,
ATP5MC3, RPS27L, REXO2

MCTS1, SDHC, HIKESHI, PCBP1, TRIM33, UBL3, RORA, OCLN, GRBI10,
AMACR, RCHY1, B3GNT2, TRIP10, POLQ, TPM1, CNPY2, FERMT2, AGFG2,
AFF4, CDH3

DNASE2, SIAH2, UFSP2, ING2, SRP72, TAF1C, ZFAND6, TAB2, CES3, OPNISW,
UBC, SPINT1, CYB5SA, MYLK, CLIP3, DAAM2, IL2RA, PICALM, PDE4DIP,
BHMT

ATP10B, MYOS5A, CYP3AS, SASH1, FUT6, MECOM, USF2, OSTM1, CYP3AS,
ZC3H15, CRIPT, NFIL3, RUVBLI1, DYNCI1I2, C20rf49, TMEM38B, ARHGEF10L,
GNBS, ELF3, CYP3AS

GFPT1, KIF1A, BPTF, CETN2, UBE3A, ATAT1, COMMD10, GORASP2, ZC3H11A,
CYLC2, ZFR, E2F1, ARHGAP4, B2M, SETX, HLA-C, C8orf44, ETV1, DLXS5,
PHF20

NCRI1, NTRK3, GPATCH4, EMILIN2, NODAL, SEMA3G, TNFSF18, TMPRSS2,
DMWD, NECTINI, SPDEF, PART1, ZNF839, DCAF15, MYL1, TRMT44, PTP4A3,
MYLPF, RHAG, ABCC5

TOMM?20, SH3BP4, RPA3, SMARCAS5, GCSH, RFC3, PJAl, RNF114, PDGFA,
ODF2, HNRNPC, EDEM2, PFKM, CANX, R3HDM1, ABI2, SELENOP, SELENBPI,
RPN2, CIAO1

Continued on next page
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Module

hub-genes

GSE20347

violet

darkorange

purple

sienna3

salmon4

darkgrey

thistle2

darkolivegreen

PRSS3P2, SRI, C6orf120, YTHDCI1, TES, UBE2A, AGK, ARPCIA, EXOSCS,
CKAP2, NUDT21, GNRH2, IPOS5, HTATIP2, SOCSS5, RPS6KA3, UCHLS, MTCH2,
MTEF2, TNFRSF25

SRP14, UBE2M, FSTL1, COPG1, ZNHIT6, SSBP1, TMEM131, RFXANK, PDIA3,
SMU1, CALR, PRPF18, TARS2, USP8, WTAP, TNPO1, MRS2, Cé6orf62, RASAL,
GLMN

SBNO2, PPP6C, EIF3G, HNRNPC, DERA, KSR1, FCN1, CATSPER2, LARPI,
TGM4, RPL35, SNTB2, GPR176-DT, PSG3, PSMD4, SHISA6, NFU1, CD4,
HMGA?2, PDE4A

BUBI, TIPIN, CEACAMI, OIPS, PLAU, TLE2, HDGFL3, CDH12, CALU, TAFIA,
HMMR, FEZ2, SLC16A1, MCM10, DBF4, ITGA6, NDUFB7, MTF2, BRD30S,
MSH6

HPX, FGF5, GSN-AS1, TRAPPC4, NNAT, PIN1, PNOC, ACTN3, PDCD10, BUB3,
ETNPPL, GLUD2, METAP2, ANP32A, COPS8, ARHGAP11A, RRP12, SNRNP27,
KPNA4, NRBF2

PAK3, POU3F2, ITGA2B, MPZ, CROCCP3, LSAMP, RABI11FIP3, ATRNLI,
ELOVL2, POLR2B, CASP2, IQCK, MGC2889, STMN2, NTRK3, CXXC4, ASBI,
PADI2, CA6, CD8B

TGFB2, NMBR, SULTIC2, NPAT, CARDI14, SUMO2, GCKR, RPL23A, FNDC4,
CLCN4, MED18, GBA, ADAM22, BMP3, AGTR2, CARDI14, RBMX, SAMD4B,
SNTB1, DHODH

ZNF236, COL1A1, RHOQ, FUT2, DACT1, HMGN4, HMGN4, NOX4, CALU, SS18,
TRAPPC2L, PLEKHMI1, PLAU, RNF114, TOP2A, WASHC3, YKT6, PLA2GI2A,
TPCNI1, DSG2

GSE23400

brown2

purple

firebrick4

violet

plum3

LGALSI1, SDC3, TGFBR2, LOXLI1, CAV1, CLCA2, IGFBP7, COL6A2, TGFA,
ACTA2, CALDI, RABI11FIP1, FN1, TMEM47, F11R, ABI1, NREP, TAX1BP3,
ARAP2

MYHI11, PJA2, PKP3, SAP1S8, ASL, CYTHI1, ABCA7, SEMA3F, SPATASL1, PLDI,
LSM14A, DENND2B, EPSSL1, KRT16, NMT2, TBCID3E, RIMS2, EHBPILI,
MACO1, ARL6IPS

SLPI, CALML3, ACOX2, GRN, CADMI1, FAMI149A, IPO7, CAl12, CAMK2G,
BRD3, MFF, ELMO3, CLTB, MINK1, BCL2, MAPK3, ACTC1, MYOID, CA12
EXTL2, ARHGEF40, ID3, RHOQ, DIPK1A, SOCS5, FTO, ARPP19, PDE4DIP,
ROR2, NPTXR, LCAT, SPRY2, SYBU, FOXJ2, PAQR3, RDHI14, DEXI, VWAS,
DNAJC6

KLK11, CAPG, CSK, CAPNI1, PTPRM, MAPK13, DGKA, F12, RAB25, DIAPHI,
GPR&7, PPP1R13L, ACTNI1, FUT2, NBEAL2, MFSDS5, CYB561, FUT6, GYG1

Continued on next page
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Module

hub-genes

GSE23400

thistle

pluml

darkgrey

linghtpink4

paleturquoise

DHCR24, STI14, DNAJBS, PDE4D, TRIM29, RIPK4, CALDI, RHOBTBI,
PPARGCIA, SEMA3B, MAP7, EVC, VEGFB, CTSF, CYRIA, PSD4, SRSF9, APRT,
SPRR2D, TLE3

CD84, VDR, LUC7L3, TEK, BUBI, PPIG, IGKC, USH1C, KCTD12, CETP, IGLCI,
TCF4, ATRX, SON, IGLC2, IGLJ3, IGLC1, ESF1, RBM25, PNISR

EXOSC4, MCM4, PYCR3, TUBB, SLC39A4, FBXL6, HSPD1, UCK2, PRRC2A,
PUF60, ACP1, RAD21, G3BP1, NLE1, PSME3, LAPTM4B

USHI1C, WNT6, CD93, SMG6, EVI2B, IGH, ZC3H13, LCN1, LBP, NEK1, PPWDI,
ITK, TARP, GMFG, TRDV2, TOR1AIP1, CAVIN3

NMEI, WDR74, BOP1, MRGBP, AURKA, NME2, CSEI1L, PFDN2, BUB1, GANAB,
UBE2C, ATAD2, SLC25A22, ENY2, PAICS, KPNA2, PHB1, TPX2, MYBL2

GSE130078

lightcyan

grey60

royalblue

magenta

darkgrey

orange

lightsteelbluel

lightyellow

darkred

SNX25P1, FOLR3, PLPP4, KRBOX1, AZIN2, PLD6, CCN5, HOXD3, MSL3P1,
DTX1, CTXNDI1, WIPF3, ERVMER34-1, CYP39A1, PRAP1, MMP19, ARNT?2,
ELN, MAP2K7, TBC1D14

IGLVV-58, GLYATL2, RSPO1, SLCO6A1, MYHI5, RPS15AP12, STAGS3,
MCMDC2, HSPAIL, KRT77, SLC13A3, SLC35F3, LINC00319, PNMA2, PRKG2,
CMTM3, DNAJC17, LTB, PTGR2, TATDN3

IL6, LINC02904, TCAP, RPS12P7, GSC, TTC34, CLEC18A, LINC02582, STRAS,
SNAP25-AS1, EVAIA, AMDHD1, ANKRD19P, CASCS, CBY2, SPANXC, PRAC2,
SULT1C2P2, CNIH2, LRRDI1

VPS37D, ADCY10, LINC00310, SCIRT, OMP, CFHR3, ILIRAPL2, LOC643348,
LOC105379109, AMBP, LINCO03007, LINCO01249, HP, MIR4755, NECAB2,
LOC101928682, ARL17A, MRPL53, KLHL14, DOC2A

KCNMB2, MYH7, STYXL2, CHIA, OMP, MIR4755, ADCY10, SCIRT, NLRP6,
CFHR3, IL1RAPL2, LOC643015, RBM34, B3GAT1, CNR2, LOC1053791009,
BRMEI, LNCAROD, SMN1, FBXLS

ABCCS8, HPX, RAPSN, EFCABI12, ZNF648, PGKI1P2, TAS2R63P, C4orf48,
ZNF415P1, ATOHS, C100rf88B, PRDM6, GDPD1, GFI1, IQCH, TIMMS8A, TAS2R4,
CACNALI ZNF860, RELL2

SLFNL1, ARMHI1, C7orf25, CCN5, MILR1, IGLVV-58, ITPKB-IT1, GPHA2,
TIMP4, MTCO3P23, USP3-AS1, DIRAS3, LIME1, HCN4, POTEG, Clorf53, CCRS,
FMRINB, SNAI3-AS1, RHOT1P1

LOC100422687, MTND5P14, RPL21P53, RNF208, HSPA8P3, LOC100422382,
RDM1P5, RBPMS-AS1, RNU6-522P, NLRP6, FCER2, IL1RAPL2, COL23Al,
MED15P9, RNF175, SGCA, RTEL1-TNFRSF6B, BBS1, ICAM4, RNF222
ADAMTS7P4, MYH7, SULT2A1, BSG-AS1, ALMSI1PI, MSLNL, RPSAP12,
ABCG4, RRH, RPL18AP6, MIR23B, OXCT2, SNORD20, TNFRSF13C, LINC02404,
LOC149935, CLNK, RN7SL587P, IQCD, TLE6
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3.6 Validation

We achieve validation through various approaches. Foremost we validate whether
the DEGs and Mols identified by our framework are biologically relevant and highly
enriched or not. We achieve this through functional enrichment analysis (Section 2.4.1).
Only Mols that are highly enriched are biologically relevant and considered for further
analysis. All hub-genes of the biologically relevant Mols are considered biomarker can-
didates genes (BCG). We employ Regulatory Behavior Network analysis (Section 2.4.2)
to further validate the biological relevance of these BCGs. Finally, we trace literature
for established we-tlab results that help substantiate the BCGs as potential biomarkers
for ESCC and five other SCCs associated with ESCC. Through application of our pro-
posed biomarker criteria discussed in Section 2.5 we identify the potential biomarkers

for ESCC.

3.6.1 Enrichment Analysis of Biclusters

An Mol must have at least one gene assigned to an enriched Gene Ontology (GO)
word or pathway with a significance level of 5% (i.e., p < 0.05) in order to be considered
Gene Ontology (GO) or pathway enriched. We employ DAVID [628, 253] (Section
2.2.3) to carry out functional enrichment analysis. The percentages of genes in the Mol
annotated to enriched GO terms and enriched KEGG pathways are shown in Table 3.6.

We note that all Mols identified by BicGenesis are pathway and GO enriched.

Tab. 3.6: Percentages of genes in each Mol extracted from the three datasets that are annotated
to the Gene Ontology (GO) databases (BP: Biological Processes, CC: Cellular compo-
nents or MF: Molecular function) and KEGG pathways.

Module Size BP CC MF KEGG Module Size BP CC MF KEGG
(%) (%) (%) (%) (%) (%) (%) (%)
royalblue 407 933 96.0 933 48.1 brown2 1283 95.8 97.9 96.1 53.7
greenyellow 218 94.1 94.6 94.1 52.7 purple 226 944 959 964 49.7
saddlebrown 130 984 992 99.2 63.7 firebrick4 220 95.7 97.1 96.2 519
% skyblue 474 96.1 979 947 533 § violet 187 92.1 93.8 949 49.7
§ magenta 252 942 98.8 942 56.8 g plum3 513 94.6 97.6 96.6 543
3 white 140 96.2 985 97.0 51.5 3 thistle 93 955 97.8 933 539
lightgreen 498 945 969 956 552 pluml 244 955 973 964 53.6
yellowgreen 369 939 96.6 963 414 darkgrey 146 954 9777 977 50.8
white 127 941 95.0 96.6 445 lightpink4 111 90.2 96.1 922 47.1

Continued on next page
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Module Size BP CC MF KEGG Module Size BP CC MF KEGG
(%) (%) (%) (%) (%) (%) (%) (%)
magenta 237 940 96.7 953 498 paleturquoise 121 99.1 99.1 100 58.6
pluml 97 946 968 97.8 58.1 lightcyan 55 90.7 930 884 512
violet 299 940 958 943 472 grey60 69 825 842 86.0 439
w darkorange 230 90.8 937 91.8 502 royalblue 541 773 82.6 80.5 37.1
% purple 104 949 98.0 969 53.1 g magenta 210 814 86.2 82.6 40.1
%] sienna3 333 96.1 97.7 98.1 51.8 é darkgrey 102 83.8 87.5 85.0 40.0
salmon4 545 932 972 96.6 539 | O orange 87 83.6 83.6 822 452
darkgrey 317 92.1 93.8 945 48.8 lightsteelbluel 198 81.5 852 852 414
thistle2 712 933 97.1 95.6 49.7 lightyellow 111 775 82.0 843 404
darkolivegreen 418 94.0 97.1 96.9 50.8 darkred 129 80.0 8277 773 36.4

3.6.2 Biological Analysis

We employ gene regulatory network (GRN) construction and functional enrichment
analysis to determine the biological relevance of the BCGs found by BicGenesis. The
diversity and power of transcription factors (TF) as agents of cell change is astounding.
Bhagwat et al. [45] justifies the ongoing search for TFs as possible biomarkers for a
variety of cancer types. We note that the BCGs identified by BicGenesis in GSE20347,
GSE23400, and GSE130078 are 40, 38 , and 22, respectively, TFs. The biological
importance of these TFs is demonstrated by their regulatory behavior in their respec-
tive modules. From the non-preserved modules found by our technique, we extract a
reasonable subset of hub-genes for straightforward visualization (Fig. 3.8a-3.10). To
investigate the regulatory behavior of the corresponding genes, we build a Gene Regula-
tory Network (GRN) (Section 2.4.2) using these hub-genes and the related Transcription
Factors (TFs). An adjacency list with weighted directed edges from TFs to other target

genes (TGs) makes up the resulting GRN.
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(e) Module salmon4 (GSE20347) (f) Module purple (GSE20347)

Fig. 3.8: GRN for normal modules a) skyblue and b) white in GSE20347, disease modules c)
yellowgreen, d) white e) salmon4, and f) purple in GSE20347
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(a) Module brown2 (GSE23400) (b) Module lightcyan (GSE130078)

Fig. 3.9: GRN for normal modules a) brown2 in GSE23400 and b)l/ightcyan in GSE130078
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Fig. 3.10: GRN for disease module orange in GSE130078

We use DAVID [628, 253](Section 2.2.3) to carry out functional enrichment analysis
(Section 2.4.1) of all BCGs found by our method, same as we did for module valida-
tion. If a BCG is annotated to at least one GO term in that database with significance
of 5% (p < 0.05), it is considered to be enriched for GO in terms of the GO databases
(GO_BP, GO_CC, and GO_MF). The BCGs annotated to the top three GO terms in
each GO database, namely BP, CC, and MF, in all three ESCC datasets, GSE20347,
GSE23400, and GSE130078, are summarized in Tables 3.7, Table 3.8, and Table 3.9,
respectively. Similar to this, a BCG is enriched for KEGG pathways, if it is annotated to
at least one term with a significance of 5% (p < 0.05). The BCGs annotated to the top
5 enriched KEGG pathways in GSE20347, GSE23400, and GSE130078 are included in

the Table 3.10.
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3.6.3 Literature Trace

The literature traces that BicGenesis found to be associated with ESCC in all three

datasets are listed below.

Chen et al.[86] found that overexpression of acylglycerol kinase (AGK) sustained con-
stitutive JAK2/STAT3 activation, consequently promoting the cancer stem cell popu-
lation and augmenting the tumorigenicity of ESCC cells both in vivo and in vitro and
suggets the same as a prognostic biomarker and therapeutic target.

Cao et al. [63] demonstrate the pro-metastatic function of ATPase family AAA do-
main containing 2 (ATAD2) and uncovered the new molecular mechanism by regu-
lating C/EBPB/TGF-f1/Smad3/Snail signaling pathway, thus providing a potential
target for the treatment of ESCC metastasis.

Studies by Ma et al.[478] indicate that BCL2 interacting protein 3 (BNIP3) exerts
prodeath effects through the induction of caspase-independent apoptosis under hy-
poxia in ESCC, though BNIP3-induced autophagy acting as a survival mechanism.
Cancer susceptibility candidate 8 (CASCS8) was found by Wu et al. [773] to have an
oncogenic role in the development of ESCC, suggesting that CASC8 may someday
serve as a predictive biomarker in ESCC.

Ando et al.[26] found that the ESCC patients with positive staining for caveolin-1
(CAV1) had significantly shorter survival than those with negative staining and thus
CAV1 is a potential prognostic marker of ESCC. According to Kato et al., [301],
over-expression of CAV1 is associated with lymph node metastasis and a worse prog-
nosis after surgery in ESCC. Jia et al.[283] found that down-regulation of stromal
CAV1 expression in ESCC had high malignant potential and suggests that it could be
a powerful prognostic marker for patients with ESCC.

Results presented by Ochi et al [527] suggest that the expression of carbonic anhy-
drase XII (CA12) may be a valuable prognostic factor for patients with advanced
ESCC.

Results by Fang et al.[152] indicate that targeting chaperonin containing TCP1 com-
plex 4 (CCT4) may be a therapeutic target in ESCC patients, which provides a theo-
retical basis to enhance the sensitivity of DDP in ESCC.

Results of the study done by Qian et al.[558] demonstrate a critical role of CEA

cell adhesion molecule 1 (CEACAM]1) in angiogenesis of ESCC progression, thus
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suggesting that CEACAMI1 could be a potential therapeutic target for ESCC.
Li et al.[376] considers collagen type I alpha 1 chain (COL1A1) as novel potential
diagnostic and prognostic biomarkers in patients with ESCC.
The data presented by Luo et al.[460] suggest that cortactin gene (CTTN, also EMS1)
is an oncogene in the 11q13 amplicon and exerts functions on tumor metastasis in
ESCC. Hsu et al.[243] observed that CTTN overexpression in early and late stages of
human ESCCs and carcinogen-induced murine ESCCs, suggesting a role for cortactin
in esophageal carcinogenesis.
Diacylglycerol kinase alpha (DGKA) is involved in the progression of ESCC, accord-
ing to Chen et al. [76], who suggest DGKA as a viable target for ESCC treatment.
Analysis of clinical data by Liu et al.[434] indicate that desmoglein-2 (DSG?2) levels
were significantly associated with patient age and histological grade in ESCC and
may be a diagnostic biomarker for ESCC.
Ebihara et al.[146] found that over-expression of E2F transcription factor 1 (E2F1) is
associated with tumor progression and a worse prognosis after surgery in ESCC. Li et
al.[361] also found that E2F1 displays a remarkable potential value for ESCC progno-
sis, which has improved our understanding of the molecular pathology of E2F1, thus
providing a possible therapeutic target for ESCC treatment.
According to Iwabu et al. [273], ibroblast growth factor 5 (FGFS) methylation is a
sensitive marker of ESCC to definitive chemoradiotherapy.
Ma et al.[472] suggest potential target for the treatment of ESCC as they establish
that high expression of FN1 protein in ESCC tumor tissue is an independent poor
prognostic factor.
Results presented by Lau et al.[331] establish the significance of follistatin Like 1
(FSTL1) in driving oncogenesis and metastasis in ESCC by coordinating NFxB and
BMP pathway control, with implications for its potential use as a diagnostic or prog-
nostic biomarker and as a candidate therapeutic target in this disease.
Zhao et al [890] found that knockdown of fat mass and obesity associated (FTO)
drastically suppressed the proliferation, migration, and invasion of ESCC cells.
According to Huang et al. [260], growth factor-independent 1 (GFI1) may be a useful
target for ESCC therapy because it indicated how SOCS1 expression was inhibited by
GFI1, which allowed ESCC cells to proliferate and migrate more freely.
Palumbo et al.[538] present high mobility group A 2 (HMGA?2) abrogation attenuated
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the malignant phenotype of two ESCC cell lines, suggesting that HMGA?2 overexpres-
sion is involved in ESCC progression.

Li et al.[373] increased insulin-like growth factor binding protein 7 (IGFBP7) may
accelerate ESCC progression by promoting the expression of TGF1, a-SMA, and
collagen I by activating the TGFf 1/SMAD signaling pathway.

According to Li et al.[368], importin 5 (IPOS) expression significantly increased in
ESCC tissues, which was associated with pathological staging and poor prognosis of
ESCC patients and may promote it’s malignant progression.

Kwon et al.[324] present findings that suggest that integrin alpha 6 (ITGA6) plays
an important role in tumorigenesis in ESCC and represents a potential therapeutic
target in the treatment of ESCC. Ma et al. [466] found that decreased ITGA6 attenu-
ates motility of malignant cells partially through deactivating Akt pathway, which is
essential for ESCC cells motility.

Abbaszadegan et al. [2] found that potassium channel tetramerization domain con-
taining 12 (KCTD12) may exert its inhibitory role in ESCC through the suppression
of WNT /NOTCH, stem cell factors, and chromatin remodelers and can be introduced
as an efficient therapeutic biomarker.

He et al [230] found that kallikrein-associated peptidase 11 (KLK11) plays a key role
in inhibiting ESCC carcinogenesis and progression and became a potential biomarker
for poor prognosis in patients with ESCC.

Karyopherin alpha 2 (KPNAZ2) protein levels were shown to be elevated in ESCC tu-
mours, according to Ma et al. [475], and siRNA against KPNA2 was able to limit the
proliferation of ESCC cells, suggesting that it may be a novel potent marker and ther-
apeutic target for ESCC. Sakai et al. [596] added that KPNA2 expression is connected
to ESCC tumour proliferation, tumour invasiveness, and poor differentiation.

Tian et al.[683] found that aberrant overexpression of minichromosome maintenance
10 replication initiation factor (MCM10) facilitated the proliferation and metastasis
abilities of ESCC cells in vitro and in vivo by inducing DNA over-replication and
genomic instability, providing functional evidence to support their population finding
that high expression of MCM10 is extensively presented in tumor tissues of ESCC
and correlated with inferior survival outcomes.

Chen et al.[91] suggest that NADPH oxidase 4 (NOX4) overexpression is a poor prog-
nostic factor for patients with ESCC undergoing curative esophagectomy.
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According to Bai et al [37], progestin and adipoQ receptor family member 3 (PAQR3)
expression is an independent prognostic indicator for patients with ESCC and may
serve an important role in the progress of ESCC and become a potential candidate for
ESCC targeted therapy. Bai et al [36] found that PAQR3 is epigenetically silenced in
ESCC and restoration of PAQR3 suppresses the aggressive phenotype of ESCC cells
and may represent a potential target for the treatment of ESCC.
Findings by provide a new perspective for understanding the molecular mechanism
of esophageal carcinogenesis, and poly(rC) binding protein 1 (PCBP1) is a promising
therapeutic target.
According to Han et al. [212], platelet-derived growth factor A (PDGFA) may serve
as an oncogene in ESCC and represent an independent molecular biomarker for prog-
nosis of ESCC patients.
Meta-analysis done by Guo et al. [207] indicate that high programmed cell death 1
ligand 1 (PD-L1) expression in ESCC is associated with distant metastasis and re-
duced overall survival.
Experimental evidence that peptidylprolyl cis/trans isomerase, NIMA-interacting 1
(PIN1) knockdown inhibited proliferation and clonogenicity of ESCC in vitro and
tumorigenesis of ESCC in vivo was provided by Lin et al.[404].
Results presented by Li et al.[352] suggest that high abundance of DNA polymerase
theta (POLQ) in ESCC contributes to the malignant phenotype through genome in-
stability and activation of the cGAS pathway.
A study by Wang et al. [729] indicates a functionally significant regulation mech-
anism of POTE ankyrin domain family, member G (POTEG) in the aetiology of
esophageal cancer, suggesting possible application in the treatment and intervention
techniques for ESCC. Findings by Li et al. [374] suggests that POTEG plays a crucial
role in the aetiology of ESCC and may serve as a biomarker.
According to Tong et al. [686], Rab25 may provide a prognostic biomarker for ESCC
outcome prediction and a novel therapeutic target in ESCC treatment.
Tang et al. [673] suggest that semaphorin 3B (SEMA3B) is an important tumor-
suppressor gene in the malignant progression of ESCC, as well as a valuable prog-
nostic marker for ESCC patients. Dong et al. [142] suggests SEMA3B as tumor
suppressors and may serve as potential targets for antitumor therapy.
Xie et al. [786] indicate that semaphorin 3F (SEMA3F) serves as a potential prognos-
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tic biomarker and tumor suppressor of ESCC and may be involved in the lymph node
metastasis development through regulating neuropilin 2.

Xia et al. [780] shows that solute carrier family 39 member 4 (SLC39A4) knockdown
impaired the proliferation and motility capacities of ESCC cells and suggest that it
could serve as a novel prognosis biomarker to promote ESCC progression.

Yang et al. [813] demonstrate the novel function of suppressor of cytokine signaling
(SOCSS5) in ESCC prognosis and suggests that its’s expression could serve as a novel
therapeutic biomarker for improving the prognosis of ESCC.

Li et al. [384] suggest that transforming growth factor alpha (TGFA) as well as three
other genes may be associated with angiogenesis, and the progression and metastasis
of ESCC.

According to Ma et al. [476], the high level of methylated CpGs in TGF-beta receptor
type II (TGFBR2) in ESCC suggests that DNA methylation in TGFBR2 promoter
region would contribute to absent or reduced TGFBR2 mRNA expression, and hence
promote ESCC carcinogenesis.

According to Liu et al. [416], overexpression of TPX2 may be risk factor of lymph
node in esophageal carcinoma, and maybe a potential biomarker for early diagnosis
and prognosis of ESCC. Hsu et al. [244] demonstrated that TPX2 expression is asso-
ciated with cell proliferation and poor prognosis among patients with resected ESCC.
According to Li et al. [364], ubiquitin conjugating enzyme E2 C (UBE2C) mRNA
and protein level were highly expressed in ESCC and UBE2C likely plays different
roles in different stages of the ESCC. Furthermore, Palumbo et al.[537] reports that
UBE2C affects proliferation rates and cell cycle profile of ESCC cell lines, by directly
interfering with cyclin B1 protein levels, suggesting its involvement in crucial steps
of ESCC carcinogenesis.

Luo et al.[457] suggest that the WT1 Associated Protein (WTAP), a potential biomarker
of ESCC, maybe play an important role in ESCC-genesis through regulating expres-
sion of genes related to cell proliferation, migration and apoptosis. Furthermore, Luo
et al.[461] identified the significant role of WTAP-catalysed m6AMo in ESCC tu-
mourigenesis, wherein it facilitates ESCC tumour growth and metastasis.

Zheng et al. [903] demonstrate that cytochrome P450 Family 3 Subfamily A Member
5 (CYP3AS5) downregulation, resulting in ZEB?2 activation, promoted ESCC invasion
and migration.
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In Table 3.11, we give a detailed summary of all hub-genes that have been identified by
BicGenesis as candidates for potential biomarkers or BCGs for ESCC. In our approach,
we consider strong literature evidence for association with ESCC and five other SCCs
related to ESCC as the necessary criterion for a BCG to be a potential biomarker, and
the findings from literature are summarized in Table 3.11. In Table 3.11, we highlight
the enriched GO terms and pathways to which the BCGs have been annotated. Further,

it also details whether the BCG is a transcription factor (TF) or not.

3.7 Discussion

To identify potential biomarkers, we use our biomarker selection criteria (Section
2.5). A list of all the cases with BCG annotations is provided in the Table 3.12 . Due
to prior evidences of correlation with ESCC in the form of earlier studies and both our
statistical and biological validations of these genes, all BCGs that fall under Cases 1 and
2 are considered to be potential biomarkers for ESCC. Although there are considerable
literature evidences for a link between Case 3 BCGs and ESCC, there is little support
for Case 3 BCGs’ biological significance. On the other hand, there is only literature
evidence of association with other SCCs related to ESCC for BCGs that fit under Case 4,
despite the fact that we substantially support their biological relevance to the respective
datasets. The possibilities in both these examples can be thought of as likely prospective

potential biomarkers, however more thorough investigation is required.

Tab. 3.12: Summary of potential ESCC biomarkers identified by BicGenesis using the biomarker
criteria (Section 2.5)

GSE20347 GSE23400 GSE130078

Case 1 E2F1, HMGA?2, PCBPI, PIN1
Case 2 AGK, BNIP3, COL1AIl, CTTN, CAV1, TGFA, FNI1, SEMAS3F,
FGF5, IPOS, NOX4 CA12, SOCS5, DGKA, PPARGCIA,
SEMA3B, UBE2C, KPNA2
Case 3 FSTLI1, ITGA6, CCT4, MCM10, IGFBP7, FTO, PAQR3, KLKI11, GFIl
WTAP RAB25, KCTD12, SLC39A4, ATAD2,
TPX2
Case4 DLXS,RUVBLI ARNT2

In GSE20347, four BCGs such as E2F1 , HMGA?2, PCBP1 , and PIN1 (Table 3.12) be-

long to Case 1 are recommended as potential biomarkers for ESCC. In dataset GSE20347,
100



seven BCGs uch as AGK, BNIP3, COL1A1, CTTN, FGF5, IPO5, and NOX4 (Table
3.12) belong to Case 2, and thus are recommended potential biomarkers for ESCC.
Similarly, eleven BCGs in GSE23400, such as CAV1, TGFA, FN1, SEMA3F, CA12,
SOCSS5, DGKA, PPARGCI1A, SEMA3B, UBE2C and KPNA2 are found and estab-
lished as potential biomarkers for ESCC as they fall under Case 2. However, none of the
BCGs in the RNASeq dataset GSE130078 fall under either Case 1 or Case 2 and thus
are not potential biomarkers for ESCC.

Five BCGs in GSE20347 such as FSTL1, ITGA6, CCT4, MCM10, and WTAP fall
in Case 3. In other words, although there are other works that establish their role as
potential biomarkers for ESCC, the biological relevance to their respective datasets is
not that strong. However, they may be further explored for their acceptability as prob-
able biomarkers for ESCC. Similarly in GSE23400 and GSE130078, nine genes such
as IGFBP7, FTO, PAQR3, KLK11, RAB25, KCTD12, SLC39A4, ATAD2, and TPX2
and one gene GFI1 (Table 3.12), respectively, fall under Case 3. DLXS5 and RUVBLI1
identified in GSE20347 and ARNT?2 detected in GSE130078 on the other hand falls un-
der Case 4. We establish their biological relevance as these BCGs are annotated to GO
terms in all three GO databases as well as several enriched pathways. They further ex-
hibit interesting regulatory behavior, but there are no previous works that relate them to
ESCC. However, it is worth mentioning that there is literature evidence that indicate that
DLXS and ARNT?2 has strong relevance to OSCC and RUVBLI has strong relevance to
HNSCC (Table 3.11) .

3.8 Chapter Summary

Our biclustering analysis framework, BicGenesis has been found capable of identi-
fying several in crucial genes for ESCC. All eight biclustering methods such as Bimax
[556] , x-MOTIF [514] , Plaid Models [333] , ISA [44], FABIA [237], QUBIC [348],
iBBiG [208], and FLOC [808, 809] are able to generate relevant biclusters. These bi-
clusters are neither too large nor too small in terms of both rows and colums. Through
multiple iterations and exhaustive application we have determined the parametres for
extraction of effective biclusters using each method. We perform DCA to observe the
changes in behavior exhibited by the relevant biclusters under normal and disease con-
ditions. The modules extracted are equivalent to the relevant biclusters. Using preser-

vation analysis we determine that 19, 9 and 9 modules in the datasets viz GSE20347,
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GSE23400, and GSE130078, respectively are Modules of Interest (Mol). We identify
top 20 hub-genes in each Mol and these hub-genes are considered Biomarker Candidate
Genes (BCGs).

The biological relevance of each BCG for each dataset is evaluated based on (a) an-
notation to enriched GO terms in the GO databases, (b) annotation to enriched KEGG
pathways, and (c) whether the BCG is a transcription factor in a gene regulatory net-
work. Previous research that has either (a) established them as potential biomarkers for
ESCC itself or (b) established them as potential biomarkers for five other SCCs related to
ESCC, namely Oral SCC, Tongue SCC, Lung SCC, Head and Neck SCC, and Laryngeal
SCC. With the help of prior literature works, our technique identified four BCGs—E2F]1,
HMGAZ2, PCBP1, and PIN1—that are Transcription Factors (TFs), have substantial bio-
logical relevance to their respective datasets, and may serve as ESCC biomarkers. Sim-
ilarly, seven BCGs such as AGK, BNIP3, COL1A1, CTTN, FGFS5, IPOS, and NOX4 and
seven BCGs such as CAV1, TGFA, FN1, SEMA3F, CA12, SOCSS5, DGKA, PPARGCIA,
SEMA3B, UBE2C, and KPNA?2 in datasets GSE20347, and GSE23400, respectively,
are established as potential biomarkers for ESCC. No BCGs in dataset GSE130078 are
established as potential biomarkers for ESCC as none fall under Case 1 or Case 2.

Next Chapter presents a consensus-based approach that incorporates six differen-
tial expression analysis methods for unbiased and integrative identification of Differen-
tially Expressed Genes (DEGs) as potential biomarkers for critical diseases. To identify
DEGs, we employ three microarray and three bulk RNA-Seq differential expression
analysis methods. An effective consensus function has also been presented in the next

chapter for identification of a set of unbiased yet biologically significant DEGs.
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