
Chapter 4

Differential Expression Analysis

4.1 Introduction

Differentially Expressed Genes (DEG) information is a key step in the identification

of biomarkers for a critical disease of interest. This is accomplished by Differential Ex-

pression Analysis (DEA), which accelerates the search for biomarkers by providing a

candidate list of these discriminative candidate genes and tracks the behavior of each

gene separately under normal and pathological settings. RNA sequencing (RNA-Seq)

and DNA microarrays are essential data sources of DEA techniques. Although, microar-

ray technology was one of the commonly used strategy, there are, however, certain built-

in restrictions, such as the requirement for prior sequence knowledge for array design

or the fact that cross-hybridization makes it challenging to analyze strongly correlated

sequences. Major obstacles include the lack of reproducibility across platforms and lab-

oratories as well as the lack of sensitivity to highly or lowly expressed genes. RNA

sequencing technology overcomes these restrictions. In order to support both RNA-

Seq and microarray gene expression data, many DEA methods have been introduced.

Additionally, there are numerous datasets on crucial diseases that are accessible and in-

teroperable with both technologies. We suggest a consensus-based integrative strategy

that ensembles a few of these methods with the aim of achieving enhanced performance,

while keeping in mind that the majority of methods created for these technologies are

not beneficial for all circumstances.

4.1.1 Differential Expression Analysis (DEA)

In genomics and transcriptomics research, DEA approach has already been estab-

lished as useful to find genes that are expressed differently in two or more situations or

conditions. By comparing the levels of gene expression in several samples or groups

of samples, DEA aims to find genes that are linked to a specific biological process or



disease. The following steps are commonly used in the DEA process.

1. Pre-processing is the first step towards DEA and is specific to the input gene expres-

sion data. This step generally involves, removal of noise, normalization, and missing

value estimation.

2. After listing of the conditions under which the experiment is carried out so as to ob-

serve the differential behavior exhibited each gene under these conditions the sta-

tistical test are performed. By employing various statistical tests such as t-tests

[761, 615], ANOVA [168, 167], gene expression levels of the genes between con-

ditions are analyzed.

3. Testing of numerous genes at once has certain drawbacks that can be overcome using

multiple testing correction. Widely used methods for multiple testing correction such

as Benjamini-Hochberg technique [43, 764], the Bonferroni adjustment [49], held in

the reduction of the quantity of false positives.

4. As an indication of the degree of gene expression variation between conditions, the

fold change for each gene is computed using log2 scale as the ratio of expression

values across conditions.

5. To identify genes that are differentially expressed, ie, DEGs, a significance threshold

is chosen. The most widely used significance value is 5% (i.e., p-value=0.05) or 1%

(i.e., p-value=0.01).

Due to chance, technological turbulence, or confounding elements like batch effects or

sample heterogeneity, DEA might result in false positives. The probability of false pos-

itives should be reduced by using appropriate statistical approaches and repeated testing

correction procedures. In order to attain statistical power and accuracy, DEA needs a

large enough sample size. In some circumstances, having fewer samples available may

result in diminished power and higher false discovery rates. The assumption behind

DEA is that gene expression levels are regularly distributed, which may not always be

the case. Some datasets may not benefit from the normalization techniques used to take

into account technological variation. Variability can be introduced by differences in sam-

ple preparation, sequencing equipment, or other technical issues, which could muddle

the analysis. Technical variability can be reduced with the use of proper normalization

techniques and careful experimental design. Even though DEA might pinpoint genes

that are linked to particular biological pathways or activities, it could not fully explain

the underlying mechanisms.
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4.2 Related Works

Finding genes or other traits that demonstrate noticeable changes in expression levels

across multiple contexts or groups is the aim of DEA. The identification of genes or traits

that show notable differences in expression levels between various conditions or groups

depends critically on statistical approaches, which offer a rigorous framework for doing

so. The following are a few major implications of statistical techniques in DEA.

• Statistical approaches helps in distinguishing between significant changes in gene ex-

pression and random fluctuations as well as helps in ascertaining the statistical signif-

icance of these variations.

• Measures of uncertainty provided by statistical approaches, such as p-values, helps in

the evaluation of the validity of the results.

• Statistical approaches combine multiple testing correction processes with the aim to

reduce the probability of incorrectly classifying genes as DEGs.

• Statistical methods have taken into consideration distinct characteristic and assump-

tions corresponding to various gene expression data, such as microarray, bulk RNA-

Seq, or scRNA-Seq to ensure reliable analysis and interpretation.

• Integration of statistical methods related to DEA into bioinformatics pipelines and

software ensures simple and effective analysis across various studies.

4.2.1 Statistical Tests

Analysis of variance (ANOVA) [168, 167] is a parametric statistical technique for

comparing the means of three or more groups or situations. Based on the variation

within and across groups, it determines whether there are any significant variations in

the group means. In ANOVA, with the presumptions of the normality of the data and the

homogeneity of variances , the null hypothesis, H0, that there are no variations in pop-

ulation means between groups or conditions is tested. The alternative hypothesis, H1

asserts that at least one group mean differs from the rest. The variability between groups

and the variability within groups are the two parts of the overall variability that was seen

in the data after the ANOVA. While the within-group variability reflects variance within

each group, the between-group variability represents variations in the group means. Two

measures, a) within-group mean square (MSW) that reflects variation within groups and

b) between-group mean square (MSB) that reflects the variation between groups is used

105



to compute F-statistics. F-Statistics is the ratio of MSB to MSW. Critical value of F-

distribution at a selected level of significance (e.g, al pha = 0.05) is compared to the

F-statistics to determine its statistical significance. If the F-value > critical value, the

null hypotheses, H0 is rejected and it can be concluded that there is a significant differ-

ence between atleast one pair of group means. ANOVA is found effective in analyzing

variations in the data under more than two groups.

The t-test [761, 615] is a statistical method that has the ability to determine sig-

nificant differences between two groups through comparison of the means. With the

assumption that data is normalized and the variances are homogeneous, t-test is a para-

metric test that assesses whether the differences observed in means is due to chance

variability or are statistically significant. Assuming, the null hypothesis, H0: There is

no difference in the population means of the two groups and alternative hypothesis, H1:

There is a significant difference between the means of the two groups. The t − value,

which is a test statistic based on the differences in means and variability within the

groups, is compared to the critical values from the t-distribution for a pre-determined

significance level (α). If the t − value > critical value or p− value < α , H0 is rejected,

implying that there isa significant difference between the means of the two groups.

4.2.2 Microarray Methods

Linear Models for Microarray Analysis (Limma)[637, 638] is a widely used R/ Bio-

conductor package for analyzing microarray gene expression data. Limma is a sophisti-

cated statistical framework based on linear models that identify differentially expressed

genes across experimental groups. It’s ideal for analyzing studies with a small num-

ber of replicates, which is a common circumstance in genomics research. Limma in-

cludes functions to accomplish pre-processing and normalization of raw microarray

data. Limma’s linear model requires the design matrix as an input. The design matrix in-

corporates information regarding treatment conditions, time points, and other important

elements to define the experimental design and sample groups of interest. Limma uses

the design matrix to fit a linear model to the expression data of each gene. This model

takes into account both within-group and between-group variation. Limma’s moderated

t-statistic approach reduces gene-wise variance estimations to a common value to im-

prove stability and robustness. Because gene expression study often entails assessing

thousands of genes at the same time, it is critical to account for the issue of multi-
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ple comparisons. Limma includes numerous ways for changing p-values, including the

commonly used Benjamini-Hochberg [43, 764] method, to control the false discovery

rate (FDR).

Tusher et. al [697] developed Significance Analysis of Microarrays (SAM) as an

alternative to widely used t-test [761, 615] and fold-change approaches. It is neces-

sary that the input data to SAM is divided into two or more conditions or groups. To

measure the differences in gene expression under varying groups modified t-statistics

incorporates both variability between and within groups and the mean difference. From

randomized permutations of the data, SAM compares the observed test statistics with

the distribution of test statistics to compute the significance of each gene. SAM allows

estimation of FDR and ranks the genes based on the strength of evidence for differen-

tial expression. Significant genes or DEGs are determined through implementation of

a threshold that controls the FDR to a desired level. SAM provides a list of DEGs and

their statistical significance and fold-change values.

The simultaneous measurement of the expression levels of thousands of genes is

made possible by microarray technology. However, because to noise, variability, and

repeated testing concerns, analyzing such high-dimensional data is extremely difficult.

By combining Bayesian statistics and empirical Bayes methodologies, empirical Bayes

analysis of microarrays (EBAM) [148] tackles these difficulties. The main principle

of EBAM is to use information from diverse genes to improve the identification of

genes with differential expression. It accomplishes this by modeling the distribution

of gene-specific parameters using hierarchical models, such as mean expression levels

and variances. The gene-specific metrics, such as mean expression levels and variances,

are presumptively distributed according to EBAM. An empirical Bayes method is used

to estimate these distributions from the available data. Usually, these characteristics are

believed to have a normal or gamma distribution. Following the estimation of the param-

eters, EBAM determines a score or statistic for each gene that assesses the presence of

differential expression. This rating is frequently based on a moderated t-statistic, which

takes into consideration both the variation within and between genes. Multiple testing

correction is essential to manage the FDR, as microarray data analysis entails simulta-

neously evaluating a large number of hypotheses (one for each gene). The gene-specific

p-values or scores for multiple testing can be modified using a variety of techniques, in-

cluding the Benjamini-Hochberg [43, 764] method. Finally, using the modified p-values
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or scores, genes with strong evidence of differential expression are found. A list of genes

that are differentially expressed can be created by setting a threshold on the adjusted p-

values or managing the FDR. When working with small sample sizes or highly variable

data, EBAM’s capacity to borrow information across genes makes it particularly useful.

Rank Product (RankProd) [239] is a non-parametric method based on the idea that

genes that consistently ranks high in one group but consistently ranks low in the other

has high probability of being differentially expressed. For each gene a ranking score is

calculated based on its expression level in each sample. Rank product statistics measure

the consistency of ranking across samples and groups. FDR is estimated using permuta-

tion based methods and the FDR cut-off determines the genes whose expression differs

significantly between the two groups. RankProd is robust to outliers and can handle data

that doesn’t fall under normal distribution but is sensitive to parameter selection.

Bayesian hierarchical modelling [57] is a statistical method to analyze microarray

data by combining data from several levels of data heirarchy, such as genes, samples

and experimental conditions. It employs the Bayesian framework that uses previous

knowledge and likelihoods to draw inferences about the data. For each level of hierar-

chy, a prior distribution that reflects the data distribution based on previous assumptions

and information is provided. Based on the observed data, the likelihood function is

established. The objective is to estimate the posterior distribution of the model parame-

ters based on prior knowledge and the observed data. Prior knowledge and uncertainty

is incorporated into the model in Bayesian hierarchical modelling thus increasing the

accuracy and precision of the estimation. Bayesian hierarchical modelling facilitates es-

timation of the variance and correlation structures over the layers of data hierarchy so as

to account heterogeneity and dependence in the data.

4.2.3 Bulk RNA-Seq Methods

In order to overcome the difficulties presented by count-based sequencing data,

where the distribution of expression levels is frequently skewed and the variability is de-

pendent on the mean expression, Voom (Variance modelling at the observational level)

[332] was specifically designed. The count data is first converted by Voom into approx-

imative log-counts per million (log-CPM) values. This adjustment makes the variance

more accessible to common statistical modelling approaches by stabilizing it and re-

ducing its dependence on the mean expression. Inferring precision weights from the
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mean-variance relationship in the data, Voom calculates precision weights for each ob-

servation (gene). Low variability genes have higher weights compared to high variability

genes, and vice versa. By lowering their weight, genes with high variability have less

of an impact on the statistical analysis that comes after. The correlation between the

precision weights corresponding to the log-CPM values is modeled by Voom. It con-

forms to a linear model that takes into account heteroscedasticity and mean-dependent

variance. To effectively estimate the mean-variance relationship, this modeling phase

is essential. Based on the fitted mean-variance relationship, Voom calculates the preci-

sion (inverse of the variance) at the observation (gene) level. In order to produce more

trustworthy differential expression statistics, these precision estimates are applied. To

evaluate differential expression between various experimental conditions or groups, a

moderated t-test or linear model is run using the estimated observation-level precisions.

The results of the moderated t-test are more solid and trustworthy since it takes into

consideration both the variability within and between genes. Due to its versatility in

handling count-based data and tolerance against variability-dependent mean expression,

Voom has grown in popularity in the analysis of RNA-seq data.

edgeR [584] is a statistical software program and approach for analyzing differen-

tial gene expression in high-throughput sequencing experiments, notably RNA-seq data.

It was created especially for count-based data, where the amount of reads that corre-

spond to each gene is utilized to calculate the level of gene expression. EdgeR’s first

step is to normalize the raw count data in order to eliminate systematic biases. The nor-

malization process makes allowances for variations in library size and sample makeup.

The most popular normalization technique in edgeR is the trimmed mean of M-values

(TMM) [584], which takes into consideration both the differences between genes and the

total number of reads. Using a negative binomial distribution, edgeR models the data’s

biological and technical variability. EdgeR uses an empirical Bayes approach [583]

to estimate the dispersion parameter, which represents the level of variability for each

gene. Utilizing the knowledge shared across genes, this phase enables the estimation of

the dispersion for a given gene. EdgeR models the association between experimental

variables or relevant conditions of interest and gene expression using a generalized lin-

ear model (GLM) [518] framework. The GLM can include a variety of design elements,

including time points, treatment conditions, and batch effects. To evaluate the signif-

icance of differential expression, a likelihood ratio test or a quasi-likelihood F-test is
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used. EdgeR tests many genes at once, thus it’s crucial to account for multiple testing to

keep the FDR under control. EdgeR frequently use the Benjamini-Hochberg [43, 764]

approach to correct the p-values or test statistics for multiple testing. Due to its strong

statistical technique, capacity to handle count-based data, and ability to detect differen-

tial expression with very small sample sizes, edgeR has gained widespread application

in the field of genomics.

The popular packages DESeq [23] and DESeq2 [449, 450] are used for differential

gene expression analysis in RNA-seq research. To compare the levels of gene expression

across various situations or populations, they offer statistical techniques and tools. Data

normalization is done by DESeq to adjust for variations in library size and make-up be-

tween samples. To account for variations in library sizes, it employs the median of ratio

normalization (MRN) [494] technique. To make count data more suitable for later sta-

tistical analysis, DESeq also performs a variance stabilizing transformation (VST) [28].

A negative binomial distribution is used by DESeq to estimate the dispersion parameter,

which symbolizes the variability of gene expression. To precisely estimate the disper-

sion for each gene, a model describing the connection between the mean and variance of

the count data is used. To get more accurate estimates of dispersion, DESeq employs the

method of maximum likelihood estimation (MLE) [13], also known as shrinkage estima-

tion. To model the count data with a negative binomial distribution and calculate the fold

changes in gene expression between various conditions, DESeq uses a generalized linear

model (GLM) [518]. The statistical significance of differential expression is evaluated

using hypothesis testing, which is frequently based on Wald tests [716]. In order to sta-

bilize the estimation and draw information from several genes, DESeq additionally uses

empirical Bayes methods [583]. In order to control the FDR, DESeq modifies p-values

or test statistics using the Benjamini-Hochberg approach[43, 764] or other suitable tech-

niques. This adjustment takes into consideration multiple hypothesis testing and aids in

the discovery of genes with notable expression differences. A version of DESeq with

more features and improvements is called DESeq2. The size factors normalization tech-

nique [23], used by DESeq2, is more reliable. The accuracy of DEA is increased by

using this method, which takes into consideration the compositional character of RNA-

seq data. To enhance the estimation of dispersion and fold change shrinkage, DESeq2

uses a brand-new approach dubbed estimating size factors for generalized linear models

(EGM) [23]. This improves the identification of genes that are differently expressed, es-
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pecially those with low expression levels or low numbers. To calculate the fold changes,

DESeq2 uses a Bayesian method referred to as adaptive shrinkage [644]. With the help

of this technique, the estimates are shrunk towards a common distribution, increasing

their accuracy and lowering their variability. Additional features offered by DESeq2 in-

clude gene-level and pathway-level analysis, visualization tools, and compatibility with

more intricate experimental designs, such as time-series analysis and multi-factor stud-

ies. Due to their reliable statistical approaches, capacity to manage count-based data,

and extensive functionality, DESeq and DESeq2 have grown to be widely utilized in the

analysis of RNA-seq data.

NOISeq [676] is a non-parametric method for analyzing bulk RNA-Seq data. With

the aim to circumvent the dependence of parametric methods such as DESeq2 [449,

450] and edgeR [584] on data distribution and their susceptibility to outliers as well

lowly expressed genes, NOISeq was developed. NOISeq compares the empirical read

count distribution between two conditions and employs non-parametric techniques for

estimation of fold changes and FDR. By using a permutation based approach NOISeq

determines a noise threshold and estimates FDR with the aim to distinguish noise from

differential expression. It is effective in bulk RNA-Seq data with low read depth or

substantial technical variance and does not require normalization or batch effect removal

as it does not presume normal distribution.

Sleuth [55] employs maximum likelihood estimation [13] to compute differential ex-

pression and calculates gene level abundance estimates. Sleuth fits a linear model to the

read counts with the aim to estimate mean and variation level for each gene and sample.

Like in Limma, Voom [332] is employed by Sleuth to transform the bulk RNA-Seq data

so as to facilitate linear model analysis. Sleuth makes exploration of data and discern-

ment of unusual patterns easier by facilitating interactive real time visualization of the

results. Sleuth offers various built in statistical tests, such as Wald tests [716], that can be

implemented for comparison of expression levels under two or more conditions. Sleuth

further offers various quality control and normalization tools such as, the capability to

remove batch effects, apply spike in controls for normalization.
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4.3 Identification Of Potential Biomarkers Using Integrative

Approach: Application To ESCC

The proposed framework detailed in Fig 4.1 is a consensus-based approach that in-

corporates six DEA methods for unbiased and integrative identification of DEGs as po-

tential biomarkers for critical diseases. Based on the input dataset, our framework em-

ploys specific DEA methods to detect DEGs independently. We have chosen three meth-

ods that work on micro-array (Limma [637, 638], SAM [697] and EBAM [148]) and

three on bulk RNA-Seq (Limma+voom [332], DESeq2 [449, 450] and EdgeR [584]).

Fig. 4.1: Proposed Integrative Differential Expression Analysis Framework

4.3.1 Pre-processing

The microarray or RNA-Seq data are input to the proposed framework and based

on this input data type the pre-processing method is chosen. For microarray data, pre-

processing consists of the removal of unwanted and redundant information, normal-

ization of the dataset, missing value estimation while for RNA-Seq data we perform

removal of low read counts, normalization, and transformation. the general pipeline we

employ for pre-processing of the microarray and bulk RNA-Seq data are discussed in

detail in Section 2.7.1 and Section 2.7.2, respectively.
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4.3.2 DEA

The pre-processed data is input to the DEA units. Based on the pre-processesd data,

the framework employs the respective DE methods that results in identification Differ-

entially Expressed Genes (DEGs). For each data type, we employ a consensus function

that filters out all common DEGs for each dataset. In other words, depending on the

type of the input dataset, the DEA unit detects DEGs using three corresponding meth-

ods, followed by a consensus function that filters the DEGs common to all three methods

as well as identify other relevant DEGs. Our consensus function is given by equation

4.1.

DEGsrelevant = DEGscommon ∪DEGsothers (4.1)

where

DEGscommon =

DEGslimma ∩DEGsSAM ∩DEGsEBAM, for Microarray,

DEGslimma−voom ∩DEGsedgeR ∩DEGsDESeq2, for RNA-Seq

and

DEGsothers =DEGs such that

DEGs /∈ DEGscommon and q-value ≤ α, for RNA-Seq,

DEGs /∈ DEGscommon and lFDR ≤ β , for Microarray

Here, α and β are q-value (Section 2.1.3) and lFDR (Section 2.1.4) significance

values that are chosen according to their relevance to the experiment. Through multi-

ple iterations of implementation, we observed that consideration of only genes common

to all three methods leads to information loss. Thus, to overcome this we introduced

q-value into the consensus function. The main idea behind this is that while a p-value

(Section 2.1.3) of 0.05 gives the implication that 5% of the tests will be false positive

(FP), q-value, which is an FDR adjusted p-value, implies that 5% of the test found to be

significant will be FP. q-value requires a very important adjustment for multiple tests on

the same data sample. Our consensus function considers all genes common to all three

methods with p = 0.05 as detected DEGs. Furthermore, all genes that are not among the

common genes but have a q = 0.05, i.e. α (Equation 4.1), are added to the list of DEGs.

However, in the microarray datasets, we implement the proposed consensus function

given by Equation 4.1 to start off by taking the DEGs common to all three methods.
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Unlike RNA-Seq, instead of q-value, we incorporate its useful counterpart local False

Discovery Rate (β in Equation 4.1). lFDR (Section 2.1.4) is a measure of the poste-

rior probability that the null hypothesis is true. We use lFDR since Limma and SAM

calculate p-value. EBAM, on the other hand, estimates the posterior probability and

lFDR. It is worth mentioning that posterior probability and p-value are not interchange-

able. However, lFDR can be estimated from p-values. Our consensus function (Equation

4.1) considers all genes common to all three methods with p = 0.05 as detected DEGs.

Furthermore, all genes that are not among the common genes but have a lFDR = 0.05

(β ) are added to the list of DEGs. All DEGs that are determined as relevant DEGs by

equation 4.1 are considered for downstream analysis.

4.3.3 DCA

Fig. 4.2: Pipeline for DCA

All relevant DEGs identified by the DEA unit(s) are taken as input to the DCA unit. The

idea behind performing DCA is that it leads to the creation of biologically relevant mod-

ules which are easier for further analysis and validation. The DCE unit firstly constructs

two CENs corresponding to normal and disease subsets of the input dataset. This is

then followed by the extraction of all connections corresponding to the relevant DEGs.

The pipeline for DCA in our framework is given by Fig. 4.2.The DCA unit identifies

differentially co-expressed modules and performs preservation analysis (Section 2.1.9)

on these modules to identify biologically relevant modules. These modules are termed
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as "Modules of Interest" (MoI) (Definition 4.3.1). This is followed by the identifica-

tion of hub-genes (Definition 3.4.3 in Chapter 3) in these modules using WGCNA [327]

intramodular connectivity.

Definition 4.3.1 (Module of Interest (MoI)). A module is defined as ’module of interest’

if (i) its size ≥ 100, and (ii) it is not highly preserved , i.e., it is either non-preserved

(Zsummary < 2) or moderately preserved (2 ≤ Zsummary ≤ 10).

4.3.4 Identification of TEDs

We consider all the hub-genes in the biologically relevant modules identified by the

DCE unit as biomarker candidates and term them as biomarker candidate genes (BCGs)

(Definition 4.3.3). Furthermore, all DEGs that are annotated with the most enriched GO

term in all three databases as well as the most enriched KEGG pathway are termed as

Top enriched DEGs (TEDs) (Definition 4.3.2). TEDs are also added to the list of BCGs.

The validation unit of the framework validates modules in general and BCGs in specific.

Definition 4.3.2 (Top Enriched DEG (TED)). A DEG degi is defined as a Top Enriched

DEG (TED), if degi is annotated to the most enriched GO term in all three GO databases

(BP, CC, and MF) as well as annotated to the most enriched KEGG pathway.

Definition 4.3.3 (BCG). A gene gi is defined as a Biomarker Candidate Gene (BCG) if

it is identified as a hub-gene or a TED or both in a given MoI extracted by Integrative

DEA.

4.3.5 Validation

We employ two approaches for validation. We initially assess the quality of the

module(s) retrieved by the DCA unit as MoI (Definition 4.3.1) in order to identify the

BCGs identified by our framework as a potential biomarker(s). The procedures for

module validation are as follows:

(a) GO enrichment analysis is used to evaluate the quality of an extracted module, and

(b) Enhanced pathway presence is used to further evaluate the quality of modules.

A module is pathway enriched and GO enriched if at least one enriched pathway

and one enriched GO term are present in the module. MoIs identified by the preserva-

tion analysis unit are validated by performing Gene Ontology (GO) enrichment (Section

2.4.1.1) and pathway enrichment analysis (Section 2.4.1.1). In the framework, all iden-

tified MoIs are taken as input into the pathway enrichment analysis and GO enrichment
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sub-unit of the validation unit. For each MoI, these subunits compute the percentage

of enriched GO terms (PEGoT) for all three GO databases. These three databases are

Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) and

the percentage of enriched pathways (PEP) in KEGG with p− value = 0.05.

For validation of each BCG identified by the framework, we first find lgEGo and

lgEP with p− value = 0.05. The DEGs identified by the identification of DEGs unit in

the framework are input to the GO enrichment and pathway enrichment sub-units. The

output is two lists, lgEGo and lgEP. To validate the BCGs identified by the hub-gene

finding unit of the framework lgEGo and lgEP as well as the list of BCGs are input

to the biological analysis unit. The biological analysis unit identifies BCGs that are

annotated to enriched GO terms and enriched pathways. In other words, the biological

analysis unit identifies the BCGs that are present in lgEGo and lgEP. This unit further

identifies BCGs that are TFs and constructs GRN to establish the regulatory behavior

of these BCGs in the network. The literature trace sub-unit of the validation unit in the

framework identifies BCGs that have traces of published literature that establish them as

biomarkers for ESCC or other SCCs closely related to ESCC. Based on our biomarker

criteria (Section 2.5) we identify the BCGs that fall under Cases 1 and 2 and identify

them as potential biomarkers.

4.4 Experimental Results

As our primary focus is on ESCC and two microarray ESCC datasets, GSE20347 and

GSE23400, and one bulk RNA-Sequencing ESCC dataset, GSE130078 were chosen to

validate our proposed framework. Details of each dataset (Table 2.1) is described in

details in Section 2.6.1 and Section 2.6.2. The test platform is a DELL workstation

running Windows 10 Pro for workstations with an Intel(R) Xeon(R) W-2145 CPU with

3.70GHz processor and 64 GB of RAM. We conduct the results in R programming

environment (Section 2.2.1).

4.4.1 Pre-processing

RNA-Seq dataset GSE130078 has 57,783 genes and 46 samples. Large datasets tend

to add complications to the analysis and as such, we filter out genes with low read counts.

We achieve this by calculating the counts per million (CPM) for each sample for each

gene and keep only those genes that have CPM > 1 for at least two samples. This re-
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duces the dataset size from 57,783 to 22,270. We then follow up by normalization of the

dataset. We also consider two microarray datasets GSE20347 and GSE23400 for anal-

ysis. The inputs to these datasets are expression values of genes across samples. First,

we pre-process the data through the removal of unwanted and redundant genes, miss-

ing value estimation, and normalization. However, for both GSE20347 and GSE23400,

there are no missing values and as such we proceed further down the pipeline.

4.4.2 Identification of DEGs

For the microarray datasets, Limma takes the pre-processed dataset as input and

outputs the equivalent DEGs with a significance of 5%(p-value≤ 0.05) and FDR of 0.05.

On the other hand, for the other two methods SAM and EBAM, we employ f indDelta

with FDR = 0.05 giving us an estimate of the delta values at which FDR is closest to

0.05 and chose accordingly. In SAM, delta is the distance between the observed and

the expected test scores, whereas in EBAM, delta is the probability that a gene with a

specific test score is differentially expressed. Table 4.2 summarizes the DEGs detected

by all three methods on all three datasets.

Tab. 4.2: Summary of detected DEGs by the three RNA-Seq methods and the three microarray
methods for three datasets

Dataset Method No. of DEGs with p ≤ 0.05 Common DEGs

GSE20347

Limma 8,689

7,706SAM 10,642

EBAM 9,565

GSE23400

Limma 13,558

3,431SAM 14,301

EBAM 3,431

GSE130078

Limma +Voom 6,858

2,765edgeR 12,623

DESeq2 12,766

In the case of the bulk RNA-Seq dataset, the pre-processed data are the input to all three

methods, i.e., Limma+Voom, edgeR and DESeq2. However, it is to be noted that while

DESeq2 directly takes the count data as input, the other two methods require the count

data to be transformed into a DGEList (Digital Gene Expression Data) object. All the

methods perform multiple tests on all the 22,270 genes in the dataset across 46 samples.
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We consider a significance of 5%, i.e., p-value ≤ 0.05 and the corresponding DEGs

detected by the three methods are summarized in Table 4.2.

4.4.2.1 Consensus Function

We implement the proposed consensus Equation 4.1 to identify the common genes

detected by these three methods. First, we consider the DEGs detected by all three

methods, i.e. common genes. In GS20347, there are such 7,706 DEGs. So as not to

bypass crucial information, we use β in Equation 4.1, i.e., the consensus function. With

lFDR = 0.05 (β ) another 662 genes are considered DEGs resulting in a list of 8,368

DEGs. Similarly, in GSE23400, Limma, SAM, and EBAM find 3,431 common DEGs.

With lFDR = 0.05 (β ), another 4,066 genes are considered as DEGs, resulting in a list

of 7,497 DEGs. In the case of GSE130078, the three methods Limma+Voom, edgeR,

and DESeq2 discover 2,765 common DEGs and a q-value (α) adds another 9,945 genes

resulting in a list of 12,710 DEGs.

In GSE130078, we find 2,765 common DEGs. However, it is to be noted that filter-

ing genes based on this criterion alone might result in the loss of relevant information.

For example in the case of GSE130078, TUSC2 and HOTAIR are the only two known

ESCC causal genes detected among the 5,337 common genes, out of 10 causal genes

present in the entire dataset. However, in addition to these two genes, Limma+Voom

was able to detect another one of the 10 causal genes named TINCR among the 6,858

DEGs. Similarly, edgeR detected CDK14 and MEG3 and DESeq2 detected TUG1,

MEG3, and CDK14 among the 12,623 and 12,766 DEGs respectively.

4.4.3 DCA

To analyze the interactions among the DEGs as well as the variations in behavior

under normal and disease circumstances, we construct co-expression networks (CEN)

using WGCNA [327]. The pipeline for DCA done by the framework is described in

detail in Fig. 4.2 and Section 4.3.3.

We start DCA by clustering the samples using the hierarchical approach to detect

outlier samples. We remove the outlier samples with the aim of creating a more robust

CEN. For GSE23047, as seen in Fig 3.4a and Fig 3.4b in Section 3.5.3, we find a single

outlier in the case of normal samples with a tree cut at height h = 70 (Blue). However,

in disease samples, there are two outliers with a cut at h = 130 (Red). Similarly, in the
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case of GSE23400, as seen in 3.4c and Fig 3.4d in Section 3.5.3, a tree cut at height

h = 105 (Blue) and at h = 95 (Red) removes one and two outliers from normal and

disease samples, respectively. In the case of GSE130078, a cut at h = 1500000 (Blue)

and h = 2000000 (Red) removes one normal (Fig 3.4e in Section 3.5.3) and one disease

Fig (3.4f in Section 3.5.3) sample.

4.4.3.1 Soft Threshold

We apply soft-threshold to the normal (Blue) and disease (Red) samples of dataset

GSE20347. Nine is the lowest power for which the network maintains scale-free topol-

ogy, as can be shown in Fig. 3.5a and Fig. 3.5b in Section 3.5.3.1. As shown in Fig.

3.5c and Fig. 3.5d in 3.5.3.1, the soft thresholding for normal (Blue) and disease (Red)

samples in GSE23400 is set at nine. In contrast, for GSE130078, normal (Blue) and

disease (Red) samples are selected with soft thresholds of twelve (Fig. 3.5e in Section

3.5.3.1) and nine (Fig. 3.5f in Section 3.5.3.1), respectively.

4.4.3.2 CEN Construction

Using the soft threshold exponent nine, we compute the adjacency matrices for the

normal and disease samples of the GSE20347 dataset, yielding two corresponding adja-

cency matrices both with a size of 22,277×22,277. Similar to this, GSE23400 produces

adjacency matrices of size 22,283× 22,283 each with a soft threshold power of nine.

The number of genes in GSE130078 is decreased to 22,270 after CPM filtering, result-

ing in two adjacency matrices with soft thresholds of twelve (normal) and nine (disease)

and sizes 22,270× 22,270 each. The adjacency matrices used to create the associated

Topological Overlap Matrix (TOMs) [574] have the same size as the relevant adjacency

matrix. Here, it is noteworthy to mention that we construct the CENs from the normal

and disease subset of the dataset and then extract the modules corresponding to the bi-

clusters. As, such the number of reduced genes after removal of genes not assigned to

any bicluster is not relevant for CEN construction.
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(a) Normal (GSE20347) (b) Disease (GSE20347)

(c) Normal (GSE23400) (d) Disease (GSE23400)

(e) Normal (GSE130078) (f) Disease (GSE130078)

Fig. 4.3: Dendrograms for a) normal and b) disease in GSE20347, c) normal and d) disease in
GS23400, and e) normal and e) disease in GSE130078. The first strip of colors repre-
sents the corresponding module colors assigned after hierarchical clustering while the
second color strip of colors represents the corresponding module colors after merging.

In GSE20347, hierarchical Clustering (Section 2.1.5) and tree cut results in 50 and 75

normal and disease modules, respectively. Fig 4.3a shows the dendrogram while the first

strip of colors below represents the corresponding module colors for the normal dataset.
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Similarly, Fig 4.3b shows the dendrogram for the disease dataset. To merge modules,

we choose a height cut of 0.25, corresponding to a correlation of 0.75. Merging of the

modules with tree cut at h=0.25 further reduces the number of modules to 38 and 61

for normal and disease datasets, respectively. The second color strip in Fig 4.3a and

Fig 4.3b shows the colors for the merged normal and disease modules respectively. In

GSE23400, hierarchical clustering results in 9 normal (the first color strip in Fig4.3c)

and 13 (the first color strip in Fig4.3d) disease modules, which are then reduced to 8

normal (the second color strip in fig 4.3c) and 11 disease (second color strip in fig 4.3d)

modules after merging. Finally in GSE130078, hierarchical clustering results in 65 nor-

mal (the first color strip in Fig 4.3e) and 40 disease (the first color strip in Fig 4.3f)

modules, which are then reduced to 21 normal (the second color strip in fig 4.3e) and 24

disease (the second color strip in fig 4.3f) modules after merging.

4.4.3.3 Preservation Analysis

We follow module extraction by module preservation analysis 2.1.9 with the aim

of analyzing the distinction between preserved and non-preserved modules. Accord-

ing to Langfelder et al. [329], while the preserved modules retain a majority of their

co-expressed connections (or edges between two genes), the same cannot be perceived

from non-preserved modules. According to Langfelder et al. [329], a module with

Zsummary < 2 is considered non-preserved [329]. It is noteworthy that, GSE23400 due to

its inherent nature, extracts a smaller number of modules with significantly larger sizes

and higher densities. There are no non-preserved modules with Zsummary < 2 and most

modules are either moderately preserved or highly preserved. We take into consideration

moderately preserved modules with Zsummary < 10 [329]. In all Zsummary plots below, all

modules below the red line are non-preserved, all modules between the red and blue

lines are weak to moderately preserved and all modules above the blue line have strong

evidence of being preserved.
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(a) Normal (GSE20347) (b) Disease (GSE20347)

(c) Normal (GSE23400) (d) Disease (GSE23400)

(e) Normal (GSE130078) (f) Disease (GSE130078)

Fig. 4.4: Zsummary plots for a) normal and b) disease in GSE20347, c) normal and d) disease in
GS23400, and e) normal and e) disease in GSE130078. All modules below the red line
are non-preserved, all modules between the red and blue lines are weak to moderately
preserved and all modules above the blue line have strong evidence of being preserved.

Table 4.3 summarizes the preservation analysis for non-preserved modules in all three

datasets. The second column highlights the module preservation reference and test net-

works. For example, the table reading for module pink in Normal/Disease subset of
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dataset GSE20347 can be interpreted module pink of size 276 detected in the normal net-

work that is non-preserved in disease network with a Zsummary value of -0.118842161.

We only consider non-preserved modules of substantial size (size ≥ 100) as MoIs for

further downstream analysis and validation.

Tab. 4.3: Preservation analysis of modules detected by our Integrative DEA method in the two
microarray and one RNA-Seq datasets

Ref/Test Module Size Zsummary Ref/Test Module Size Zsummary

G
SE

20
34

7

Normal/

Disease

pink 276 -0.11884

G
SE

23
40

0

Normal/

Disease
magenta 45 5.63610

bisque4 62 0.84896

Disease/

Normal

magenta 231 5.59355

orangered4 82 1.10844 salmon 44 5.64756

grey 17 1.38810 greenyellow 172 6.47181

Disease/

Normal

grey 3 -0.11692 grey 891 9.22843

greenyellow 149 0.21296 purple 225 9.42312

brown2 39 0.40356

G
SE

13
00

78

Normal/

Disease

magenta 248 -1.80628

darkgreen 201 0.57638 skyblue2 37 -0.62266

lightpink4 61 0.58348 bisque4 1000 0.01986

white 99 0.72904 maroon 82 0.58940

lightyellow 122 0.88046 grey 70 1.90097

darkolivegreen4 40 1.13783

Disease/

Normal

lightyellow 240 -1.18379

antiquewhite4 58 1.19766 red 759 -0.18883

lightsteelblue1 143 1.42401 lightcyan 321 0.68868

mediumpurple3 77 1.74769 steelblue 145 0.92649

black 775 1.79867 skyblue3 104 1.01960

skyblue1 51 1.79952 violet 142 1.38497

lavenderblush3 60 1.83005

lightgreen 123 1.88961

4.4.3.4 Hub-genes

To find the hub-genes for each MoI extracted previously we employ WGCNA intra-

modular connectivity proposed by Langfelder et al. [327]. Intra-modular connectivity

calculates the connectivity of a node to other nodes in the same module.
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Tab. 4.4: Top 20 hub-genes for each extracted MoI in the two microarray and one RNA-Seq
datasets using WGCNA [327] intramodular connectivity. Hub-genes with strong litera-
ture evidence of association to ESCC are marked in Red while hub-genes with evidence
of association with five other SCCs, LaSCC, LSCC, HNSCC, OSCC, and TSCC, are
marked in Blue

Module hub-genes

G
SE

20
34

7

pink PTMA, MED1, TRIO, TERF1,BRD2, PWP1, HSD17B10, PPFIA1, EEF1B2,

ZNF148, TCOF1 NSD2, SLC25A36, RUFY3, PIK3CB, VGLL4, LYN, DDX24,

EPB41L1.

greenyellow HOMER3, SHC1, EXT2, PSMD4, CLIC4, MAP3K20, DNMT3B, TGFB2, SE-

LENOP, PSMD11, EXOSC4, SARS1, NABP1, ENTPD7, MYO1B, RAB8B,

PSAT1.

darkgreen SLC3A2, IMP4, MAPRE1, RALY, PSMB5, UQCRC2, NONO, GNB5, TFRC,

GNAPDA1, ODF2, NMD3, RPL22 NEU1, SENP5, NID1, ITSN2, ABI2.

lightyellow ANP32E, NEB, AHDC1, RPRM, HOXC11, ENOX2, TNS1, MAN1C1, RCN1,

CNPY2, APOOL, HAUSS, SBF1, ESF1, GNAQ, LSS, MCL1.

lightsteelblue1 DBF4, POP7, MCM7, RFC2, DUS4L, POM121, ZKSCAN5, ORC3, PUS7,

GMCL2, PSMC2, ITPKC, TRRAP, TIMELESS, EPHA2, CRYBG2, POM121C,

CEP290.

black KPNA2, RRP7A, EBNA1BP2, KIF4A, TMEM97, CYP3A5, CCT4, CKS2,

HAUS7, CIAPIN1, RANBP1, PITX1, PRMT1, PNO1, MAGOHB, JPT2, SPAG5,

VPS13D.

lightgreen ITGB7, CXCR3, HPRT1, TARP, NPIPB3, CD48, NEDD4L, CASP10, TP63, UBA7,

ITM2A, CD3D, MSRA, ECHDC2, LST1, CD2, UBASH3A, CD52.

G
SE

23
40

0

greenyellow TAP1, PSMB9, IFIH1, HLA-F, IFIT3, HLA-G, HLA-J, IFI44L, UBE2L6, HLA-C,

IFI35, CXCL10, OAS3, IFIT1, PSMB8, ISG15, GZMB, SCO2, CXCL11.

magenta CDKN3, PHB, MTHFD1, DLGAP5, EIF2S1, ZNRD2, MNAT1, TIMM9, VRK1,

YIF1A, PSMA3, NASP, SRM, PSMC1, EBNA1BP2, C12orf29, GLRX5, PLEK2,

TUBG1, TIMM10.

purple FCER1G, HNMT, CD14, CD163, TYROBP, LAPTM5, C1QB, MS4A4A,

PLXNC1, C1QA, ENTPD1, SRGN, CD53, TFEC, ITGB2, CD86, MS4A6A,

FCGR2A, C3AR1, MNDA.

G
SE

13
00

78

lightyellow PCNX1, CAV1, RRAS2, IGF2BP2, CAVIN1, PI4K2A, PPP4R4, HRH1, SAMD4A,

VEGFC, FJX1, SGPP1, LINC01998, PGF, LINC02454, HIF1A, ANO4, FOLR3,

FEZ1, CSF2.

red COA6, GNA13, LIN52, POLR2D, APPBP2, PPP2R5A, PPP6C, RIT1, RBBP5,

MEGF9, RALB, MEF2A, ERCC3, CDC42SE1, SDE2, STARD7, CTDSPL2,

BLOC1S2, DDX59, COQ10B.
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Module hub-genes

lightcyan ANKRD20A8P, LINC01287, SOHLH1, CDH22, DHRS2, CRLF1, TENM1,

EMILIN3, ADGRL3, AGGF1P8, CCDC144NL, RHBDL1, HCG23,

LOC105370792, ADAMTS20, RPL31P25, RBMS3, TESMIN, OR11J2P, NFIB.

steelblue GMNN, RFC5, TMTC1, UBE2T, LIMK1, OSR2, CLUAP1, HMGB3, DTL,

DNA2, LMO4, SENP1, ZNF367, CDK4, EXO1, MSH2, SUMO3, ARL4A, H1-

2, TMEM270.

G
SE

13
00

78

skyblue3 MANEAL, CCT2, PCSK1, GNS, ZNF737, ZNF85, PANK2, NAT8B, TBK1,

TBC1D15, SYT15, MON2, CXCL13, ZNF91, TDRD1, NEXMIF, TMBIM4,

DLGAP1-AS5, RHOXF1-AS1, MUCL1.

violet GRID2IP, ZNF568, ZNF239, PIWIL1, HPDL, ZNF233, ELP6, ZNF470, MST1L,

ZNF232, ZNF790-AS1, LRP6, ESRRG, CFAP91, ZNF829, THUMPD3, GSE1,

LINC01205, ZNF667, KIF15.

magenta FAM155A, SORCS1, IGFN1, ZAN, ACAN, XIRP1, CACNA1B, DNAH10,

EPHA3, CDH4, PCDH10, CACNA1E, RNF112, ST6GALNAC5, TGM4, DSCAM,

CFAP61, CDH23, FNDC1, KCNH3.

bisque4 CHPF, TRAM2, IGFBP3, CXCL16, PIGT, CRELD2, SEPTIN9, MFHAS1,

TOR3A, PDIA4, CARMIL1, MOGS, ORAI2, CLPTM1L, ARSB, CHST15, AR-

FGAP1, ST6GAL1, CDK18, CSF2RB.

4.5 Validation

We achieve validation through various approaches. Foremost we validate whether

the DEGs and MoIs identified by our framework are biologically relevant are highly

enriched. We achieve this through functional enrichment analysis (Section 2.4.1). Only

MoIs that are highly enriched are biologically relevant and considered for further anal-

ysis. Furthermore, we identify TEDs through enrichment analysis (Section4.3.4). All

hub-genes of the biologically relevant MoIs and the TEDs are considered biomarker

candidates genes (BCG). We employ Regulatory Behavior Network analysis (Section

2.4.2) to further validate the biological relevance of these BCGs. Finally, we trace ex-

isting literature that establish the BCGs as potential biomarkers for ESCC and five other

SCCs associated with ESCC. Through application of our proposed biomarker criteria

discussed in Section 2.5 we identify the potential biomarkers for ESCC.

4.5.1 Enrichment Analysis of DEGs and Modules

For a MoI to be regarded as Gene Ontology (GO) or pathway enriched, at least one

gene in the module must be assigned to an enriched GO term or pathway, respectively
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with a significance of 5% (i.e., p ≤ 0.05). To perform functional enrichment analysis,

we use the online tool DAVID [628, 253] (Section 2.2.3).

Tab. 4.5: Percentages of genes in each MoI that are annotated to the Gene Ontology (GO)
databases (BP: Biological Processes, CC: Cellular components or MF: Molecular func-
tion) and KEGG pathways.

Module Size BP

(%)

CC

(%)

MF

(%)

KEGG

(%)

Module Size BP

(%)

CC

(%)

MF

(%)

KEGG

(%)

G
SE

13
00

78

lightyellow 240 78.9 80.5 78.9 38.3

G
SE

20
34

7

pink 276 90.1 96.0 95.2 47.2

red 759 83.3 87.6 84.8 38.9 greenyellow 149 98.4 98.4 97.7 49.2

skyblue3 104 82.6 87.2 85.3 46.8 darkgreen 201 95.6 96.7 95.6 55.0

steelblue 145 73.1 76.6 71.9 26.9 lightyellow 122 95.0 96.0 97.0 53.5

violet 142 82.0 84.7 80.0 37.3 lightsteelblue1 143 95.2 94.4 94.4 49.2

lightcyan 321 69.1 70.7 69.4 27.7 black 775 94.9 97.0 96.1 52.9

bisque4 1000 87.5 91.4 89.1 40.5 lightgreen 123 90.7 98.1 92.6 56.5

magenta 249 84.4 89.9 84.9 31.0

G
SE

23
40

0 greenyellow 172 97.7 98.3 96.5 63.4

magenta 231 94.8 96.5 93.4 44.5

purple 225 96.6 98.1 96.3 58.2

Table 4.5 summarizes the percentages of genes in the MoI annotated to enriched GO

terms as well as enriched KEGG pathways. We observe that all MoIs identified by our

framework are GO and pathway enriched.

4.5.1.1 Biomarker Candidate Genes (BCG)

As mentioned earlier, we select DEGs as candidates for potential biomarkers based

on the following two criteria:

1. All hub-genes detected by the DCA unit of our framework in all MoIs are BCGs.

2. DEGs that have been annotated to the most enriched GO terms in all three GO

databases (BP, CC and MF) and are also annotated to the most enriched pathway

after GO and Pathway enrichment analysis on the entire dataset are also considered

as potential biomarkers. We rename these DEGs as TEDs (Top Enriched DEGs)

Thus, alongside all DEGs that are among Top 20 hub-genes in MoIs (as summarized in

Table 4.4), our second criterion adds 22, 18 and 11 TEDs to the list of candidate genes

in GSE20347, GSE23400 and GSE130078, respectively. We summarize these DEGs

(TEDs) in Table 4.6. The numbers of BCGs for GSE20347,GSE23400 and GSE130078

increase from 140, 60 and 160 to 162, 78 and 171, respectively.
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Tab. 4.6: DEGs that are annotated to most enriched GO term in all three GO databases (BP, CC
and MF) as well as the most enriched pathway. DEGs with strong literature evidence of
association to ESCC are marked in Red while hub-genes with evidence of association
to five other SCCs, LaSCC, LSCC, HNSCC, OSCC, and TSCC, are marked in Blue

Dataset Top Enriched DEGs

GSE20347 TXNRD1, APPL1, FADD, FAS, MAPK1, PIK3R1, STAT1, RAF1, RARA, MAP2K1,

PIK3CD, RAC2, MAPK10, PRKACB, AR, PIK3CB, BCR, KRAS, GSK3B, NFKB2,

PIK3R2, FLT3LG

GSE23400 RAF1, PIK3R1, APPL1, MAP2K1, AR, PRKCB, PRKACB, STAT1, HIF1A, TXNRD1,

FADD, RARA, PIK3CD, IL15, RAC2, GSK3B, STAT2, BCR

GSE130078 TYMP, PDE4A, PIK3CD, PIP5K1A, GPI, PDE1B, PDE3B, PDE9A, HPGDS, PDE3A,

PI4KA

We perform the enrichment analysis on the entire dataset or in more specific terms the

list of all genes in the dataset. This leads to the observation that as the lists of genes in

GSE20347 (22,278 genes) and GSE23400 (22,283 genes) are almost the same, the list

of top enriched genes (35 genes) extracted are the same. However, the differences in

TEDs are seen (Table 4.6) due to the fact that there are DEGs identified in one dataset

that might not be detected in the other.

4.5.2 Biological Analysis

To establish the biological relevance of the BCGs detected by our method, we use

functional enrichment analysis and the construction of a gene regulatory network (GRN).

Transcription Factors (TF) have remarkable diversity as well potency as drivers of cell

transformation. Bhagwat et al. [45] justify the continued pursuit of TFs as potential

biomarkers across many forms cancer by the prevalent deregulation of the same. We ob-

serve that 26 (hub-genes:21, TEDs:5), 11 (hub-genes:6, TEDs:5) and 23 (hub-genes:23,

TEDs:0) BCGs detected by our method in GSE20347, GSE23400 and GSE130078, re-

spectively are TFs. These TFs exhibit regulatory behavior in their respective modules,

establishing their biological relevance. For easy visualization, we extract a manageable

subset of hub-genes from the non-preserved modules detected by our method (Fig 4.5a-

4.6f). We construct a Gene Regulatory Network (GRN) with these hub-genes and asso-

ciated Transcription Factors (TFs) so as to observe the regulatory behavior of the cor-

responding genes. The resulting GRN is in the form of an adjacency list with weighted

directed edges from TFs to other target genes (TGs).
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(a) Module pink (GSE20347) (b) Module greenyellow (GSE20347)

(c) Module darkgreen (GSE20347) (d) Module lightsteelblue1 (GSE20347)

(e) Module black (GSE20347) (f) Module magenta (GSE130078)

Fig. 4.5: GRN for normal module a) pink and disease modules b) greenyellow in GSE20347, dis-
ease modules c) darkgreen, d) lightsteelblue1 e) black in GSE20347. GRN for disease
module f) magenta in GSE23400.
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(a) Module purple (GSE23400) (b) Module greenyellow (GSE23400)

(c) Module blue (GSE23400) (d) Module lightyellow (GSE130078)

(e) Module violet (GSE130078) (f) Module steelblue (GSE130078)

Fig. 4.6: GRN for normal modules a) purple and b) greenyellow in GSE20347, and disease mod-
ules c) blue in GSE23400. GRN for disease modules d) lightyellow e) violet, and f)
steelblue in GSE130078.
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As in the the case of validation of modules, we employ DAVID [628, 253] to perform

functional enrichment analysis of all BCGs detected by our method. A BCG can be

regarded as GO enriched considering a GO database (GO_BP, GO_CC, GO_MF) if it is

annotated to at least one GO term in that database with significance of 5% (p ≤ 0.05).

Table 4.7, Table 4.8 and Table 4.9 summarize the BCGs annotated to the top 3 GO terms

in each GO database in GSE20347, GSE23400 and GSE130078, respectively. Similarly,

a BCG is KEGG pathway enriched if it is annotated to at least one KEGG pathway term

with significance of 5%. Table 4.10 summarizes the BCGs annotated to top 3 enriched

KEGG pathways in GSE20347, GSE23400 and GSE130078.

4.5.3 Literature Trace

Following are the literatures where BCGs identified by our framework in all three

datasets have evidence of association to ESCC.

• Caveolin-1 (CAV1) is a biomarker for ESCC, according to Kato et al. [301], Ando et

al.[26], and Jia et al.[283].

• Yu et al. [835] and Wang et al. [738] identified that cyclin-dependent kinase inhibitor

3 (CDKN3) controls tumour growth in ESCC via activating the AKT signalling path-

way. According to Liu et al., [424] CDKN3 behaved as an oncogene in human ESCC.

• Cyclin-dependent kinase 4 (CDK4) amplification was discovered to be a distinct prog-

nostic factor for survival, which could be incorporated into the tumor-node-metastasis

staging system to improve risk stratification of patients with ESCC, according to

Huang et al. [255].

• Carbohydrate sulfotransferase 15 (CHST15), according to Wang et al. [744], stimu-

lates the growth of TE-1 cells in ESCC through a variety of mechanisms.

• According to Zheng et al. [904], cytokine induced apoptosis inhibitor 1 (CIAPIN1)

expression was statistically correlated with the degree of differentiation, depth of inva-

sion, and lymph node metastasis of ESCC and has since been regarded as an important

prognostic indicator in ESCC.

• According to Kita et al. [310], cyclin-dependent kinase subunit 2 (CKS2) expression

in ESCC was higher than it was in normal tissue, and CKS2 overexpression is linked

to the depth of the tumor’s lymphatic invasion, clinical stage, distant metastasis, and

a poor prognosis.

• Making use of Cox regression Canopy FGF Signalling Regulator 2 (CNPY2) was
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shown to be useful in predicting ESCC outcomes by He et al [228] in their 2017

decision.

• High CXCL10 expression has the potential to be a clinically useful marker of the need

for adjuvant chemotherapy after surgery in patients with advanced thoracic ESCC,

according to Sato et al. [609]. This is because high CXCL10 expression is an inde-

pendent prognostic factor.

• Component 3a Receptor 1 (C3AR1) may contribute to the development of an im-

munosuppressive microenvironment by influencing the polarization of macrophages

to M2 phenotype thus leading to the progression of ESCC, according to Qu et al [564]

.

• Dehydrogenase/reductase member 2 (DHRS2) was demonstrated by Zhou et al. [915]

to play a significant role in the initiation and progression of ESCC.

• Disks large-associated protein 5 (DLGAP5) may promote cell poliferation in ESCC,

according to preliminary research by Hu et al [245].

• In ESCC, Chen et al. [83] discovered that overexpression of DNA methyltransferase

3b (DNMT3b) is connected to increased STAT3 signalling and is the cause of more

aggressive tumour growth and treatment resistance.

• EPH receptor A2 (EphA2) overexpression appears to be associated with a low degree

of tumour differentiation and lymph node metastasis in ESCC, according to Miyazaki

et al. [504].

• According to Chen et al. [84], silencing EPH receptor A3 (EphA3) in KYSE410

cells causes the epithelial-mesenchymal transition and promotes cell migration and

invasion in ESCC.

• Estrogen-related receptor gamma (ESRRG) is one of four molecular markers that may

be useful in the diagnosis and therapy of ESCC, according to Xu et al. [795].

• Bolidong et al. [52] proposed that glycogen synthase kinase 3 beta (GSK3B) has a

tumor-promoting effect in ESCC via cyclin D1/CDK4-mediated cell cycle progres-

sion. Gao et al. [182] established that GSK3beta-STAT3 signalling could be a viable

therapeutic target for ESCC treatment since GSK3B expression enhances ESCC pro-

gression through STAT3 in vitro and in vivo.

• Hypoxia-inducible factor 1 alpha (HIF1A), p53, and vascular endothelial growth fac-

tor (VEGF) are significant variables that promote tumour progression, according Shao

et al. [619]. Study done by Hu et al. [251] revealed that HIF1A enhances ESCC
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metastasis by targeting SP1 in a hypoxic microenvironment, according to the find-

ings.

• Human leukocyte antigen-F (HLA-F) antigen expression was shown to be related to

survival in patients with ESCC by Zhang et al.[876].

• Human leukocyte antigen-G (HLA-G) expression in human ESCC has been proven

by Yie et al. [827] to have a strong and independent prognostic value.

• Homer scaffolding protein 3 (HOMER3) is one of the three genes put forth as poten-

tial cancer-associated genes by Shen et al. [623] and may contribute to tumorigenesis

in ESCC.

• High mobility group box 3 (HMBG3) has been shown by Gao et al. [180] to have

potential as a molecular marker for ESCC patient prognosis prediction.

• Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) plays a significant

carcinogenic effect in ESCC, according to studies by Lu et al. [452] and Shu et al.

[635].

• According to Luo et al.[458]’s research, insulin-like growth factor binding protein-3

(IGFBP3) knockdown gives resistance to the cell-killing effects of IR on ESCC both

in vitro and in vivo. According to Zhao et al. [892], the elevated ESCC chemosen-

sitivity may be dependent on IGFBP-3 upregulation via EGFR-dependent pathway.

Additionally, Luo et al. [459] state that high levels of IGFBP3 expression in ESCC

are associated with early clinical stages and are indicative of favourable patient out-

comes after radiation.

• Interferon-stimulated gene 15 (ISG15) has been linked to the promotion of tumours

in ESCC via c-MET/Fyn/al pha-catenin pathway, according to Yuan et al. [840].

• Kinesin family member 4A (KIF4A) was discovered by Wang et al. [730] as a fa-

cilitator of ESCC proliferation, cell cycle, migration, and invasion both in vivo and

in vitro. Similar to this, Sun et al.[657] claimed that KIF4A regulates the biological

function of ESCC cells through the Hippo signalling pathway, boosting ESCC cell

proliferation and migration.

• Karyopherin alpha 2 (KPNA2) protein levels were shown to be elevated in ESCC tu-

mours, according to Ma et al. [475], and siRNA against KPNA2 was able to limit the

proliferation of ESCC cells, suggesting that it may be a novel potent marker and ther-

apeutic target for ESCC. Sakai et al. [596] added that KPNA2 expression is connected

to ESCC tumour proliferation, tumour invasiveness, and poor differentiation.
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• Myeloid cell leukemia 1 (MCL-1) has been shown to contribute to the development

of ESCC by Yu et al. [838].

• According to research done by Qiu et al. [563], MCM7 (maintenance complex com-

ponent 7) aids in the proliferation of tumour cells, colony formation, and ESCC cell

migration via activating the AKT1/mTOR signalling pathway. Further recommenda-

tions from Choy et al. [102] and Zhong et al. [906] pointed to MCM7 as a more

accurate proliferation marker for assessing and forecasting various clinical outcomes

of ESCC, respectively.

• MutS homolog 2 (MSH2) methylation in the plasma was suggested by Ling et al.

[408] to be a reliable indicator of DFS for these ESCC patients prior to oesophagec-

tomy.

• Findings by Cheng et al. [94] revealed that non-POU domain containing octamer

binding (NONO) plays a significant role in numerous biological features of ESCC

through activation of the Akt and Erk1/2 signalling pathways.

• By regulating lipocalin 2 (LCN2), Wang et al. [719] identified pleckstrin-2 (PLEK2)

as the primary factor causing metastasis and chemoresistance in ESCC.

• Lower processing of precursor 7 (POP7) expression is associated with a worse prog-

nosis in esophageal cancer, according to Yang et al. [819].

• The expression of PTPRF interacting protein alpha 1 (PPFIA1) is significantly in-

creased and is associated with some malignant clinical features and poor outcomes in

ESCC patients, according to Tang et al. [674], establishing it as a valuable biomarker

for early detection, treatment planning, and prognosis evaluation for ESCC.

• According to Zhao et al. [900], protein arginine methyltransferase 1 (PRMT1) medi-

ates transcriptional modification through histone H4 arginine methylation, which acti-

vates and maintains esophageal TICs. According to Zhou et al. [913], PRMT1 has an

oncogenic function in the development of ESCC by activating Hedgehog signalling

and up-regulating the expression of target genes that are downstream of Hedgehog

signalling.

• Phosphoserine aminotransferase 1 (PSAT1) expression was found to be higher in

ESCC tissues compared to normal esophageal tissues, and Liu et al. [411] found

that this increase is significantly correlated with disease stage, lymph node metasta-

sis, distant metastasis, and poor prognosis.

• A potential target for the immuno-oncology action of proteasome 20S subunit alpha
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3 (PSMA3) in ESCC therapy was offered by Liu et al. in their publication [422].

• According to Ma et al. [464], overexpression of proteasome 26S subunit non-ATPase

4 (PSMD4) accelerates the development of ESCC.

• Prothymosin alpha (PTMA) is presented as a viable candidate for ESCC because Zhu

et al. [920] emphasize that PTMA expression was up-regulated in ESCC tissues.

• A tumor-suppressive role for the RNA binding motif single stranded interacting pro-

tein 3 (RBMS3) gene in ESCC was proposed by Li et al. [375].

• According to Feng et al. [162], Ras-like without CAAX1 (RIT1) exhibits tumor-

suppressing functions in ESCC. These functions were carried out by inhibiting the

MAPK and PI3K/AKT signalling pathway, inhibiting EMT, and down-regulating the

cancer stemness of ESCC cells.

• Signal transducer and activator of transcription-1 (STAT1) may act as a tumor sup-

pressor in ESCC, according to Zhang et al [884].

• The clinically significant implications of the Transferrin Receptor (TFRC) were high-

lighted by Wada et al. [715], who came to the conclusion that it provides an indepen-

dent prognostic factor.

• Ubiquitin conjugating enzyme E2 T (UBE2T) plays a role in the emergence of ESCC,

and gene signatures formed from UBE2T-associated genes are prognostic in ESCC,

as suggested by Wang et al. [743].

• Vascular endothelial growth factor C (VEGF-C) expression is correlated with lymph

node metastases and a poor prognosis, according to Tanaka [670]. Similarly, as sug-

gested by Kimura et al.[305], Vascular implies that VEGF-C expression in ESCC may

play a significant role in lymphatic propagation.

• According to Jiang et al. [284], vestigial like family member 4 (VGLL4)’s down-

regulation was crucial to the development of ESCC, and regaining its functionality

could be a viable treatment for the disease.

• Vaccinia-related kinase 1 (VRK1), according to Liu et al. [439], increases CDDP

resistance through c-MYC by activating c-Jun and amplifying a malignant phenotype

in ESCC.

• Results by Fang et. al[152] indicate that targeting chaperonin containing TCP1 com-

plex 4 (CCT4) may be a therapeutic target in ESCC patients, which provides a theo-

retical basis to enhance the sensitivity of DDP in ESCC.
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In Table 4.11, we give a detailed summary of all DEGs that have been identified by

our method as candidates for potential biomarkers for ESCC. In our method, we con-

sider strong literature evidence for association with ESCC and five other SCCs related

to ESCC as the necessary criterion for a BCG to be a potential biomarker, and the find-

ings from literature are summarized in Table 4.11. In the table, we also highlight the

enriched GO terms and pathways to which the BCGs has been annotated. Furthermore,

it also details whether the same is a hub-gene, a transcription factor (TF) or whether it is

upregulated or down-regualted. A DEG is upregulated if logFC > 0 and downregulated

when logFC < 0. We take into consideration logFC values calculated by limma for the

microarray datasets, and edgeR in the bulk RNA-Seq dataset.

4.6 Discussion

We employ our biomarker criteria (Section 2.5) to determine the potential biomark-

ers. Table 4.12 gives a summary of all the cases the BCGs are annotated to.

Tab. 4.12: Summary of potential ESCC biomarkers identified by Integrative DEA using the
biomarker criteria (Section 2.5), Here, HG: Hub-gene, and TED: Top Enriched DEG.

GSE20347 GSE23400 GSE130078

HG TED HG TED HG TED

Case 1 DNMT3B, MCM7 STAT1 STAT1 HIF1A

Case 2 HOMER3,

PSMD4, PSAT1,

TFRC, MCL1,

EPHA2, KPNA2,

CKS2, PRMT1

GSK3B HLA-F, HLA-G,

CXCL10, ISG15,

PSMA3, FCGR2A,

C3AR1

GSK3B CAV1, VEGFC,

CDK4, MSH2

Case 3 PTMA, VGLL4,

NONO

PLEK2 HMGB3, ESRRG

Case 4 PSMC2 AR AR

All BCGs that fall under Case 1 and Case 2 are considered potential biomarkers for

ESCC because of existing evidence of association with ESCC in the form of other works

while our biological validation of these genes establishes their relevance to their respec-

tive datasets. For BCGs that fall under Case 3, although there is strong literature evi-

dence of association with ESCC, we have weak evidence of their biological relevance to

their datasets. On the other hand, for BCGs that fall under Case 4, although we strongly
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validate their biological relevance to their datasets, there is only literature evidence of

association with other SCCs related to ESCC. For both these cases, the candidates can

be considered probable potential biomarkers, but need further in-depth analysis.

Top Enriched DEGs (TEDs), STAT1 and HIF1A detected in both microarray datasets

(GSE20347 and GSE23400) and GSE130078, respectively, belong to Case 1. In GSE20347,

two candidates DNMT3B and MCM7 also belong to Case 1. Thus, STAT1, HIF1A,

DNMT3B and MCM7 are potential biomarkers for ESCC. GSK3B is a TED detected

in both microarrays, and belongs to Case 2. In dataset GSE20347, 9 BCGs HOMER3,

PSMD4, PSAT1, TFRC, MCL1, EPHA2, KPNA2, CKS2 and PRMT1 belong to Case

2, and thus are potential biomarkers for ESCC. Similarly, 7 BCGs HLA-F, HLA-G,

CXCL10, ISG15, PSMA3, FCGR2A and C3AR1 are potential biomarkers for ESCC as

they fall under Case 2. Four BCGs in the RNASeq dataset GSE130078, CAV1, VEGFC,

CDK4 and MSH2 fall under Case 2 and are potential biomarkers for ESCC.

Three candidates genes in GSE20347, PTMA, VGLL4 and NONO fall in Case 3.

In other words, although there are other works that establish their role as potential

biomarkers for ESCC, the biological relevance to their respective datasets is not that

strong. However, they can still be regarded as probable potential biomarkers for ESCC,

but need further in-depth validation. Similarly in GSEE23400 and GSE130078, one

(PLEK2) and 2 (HMGB3 and ESRRG) genes fall under Case 3. PSMC2 detected in

GSE20347, on the other hand falls under Case 4. We validate its strong association with

the dataset as this BCG has been annotated to GO terms in all three GO databases as

well as several enriched pathways. They further exhibit regulatory behavior in a GRN,

but there are no previous works that relate the same to ESCC. However, its worth men-

tioning that there is literature evidence that identify PSMC2 as potential biomarker for

OSCC. Similarly, the TED identified in the two microarray datasets, AR, also falls under

Case 4. Both, PSMC2 and AR are probable potential biomarkers for ESCC, but need

further in-depth analysis.

In Table 4.13, we put forward a comparison between our work and two recent works

presented by Patowary et al. [541] and Hu. et al.[245] that perform DEA by employing

approaches and methods similar to our work.
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4.7 Chapter Summary

The proposed framework has been found successful in identifying several interesting

differentially expressed genes (DEGs) with a p-value of 0.05. Our consensus function

that uses lFDR (for microarray) and q-value (for RNA-Seq) also takes into account the

information loss caused by the DEGs that are common to all three methodologies. We

investigated the behavioral alterations among the DEGs in both normal and disease con-

ditions using Differential Co-expression (DCE) analysis and preservation analysis. All

reasonably sized non-preserved modules are considered as modules of interest and are

analyzed later on in the pipeline. When DEGs are either (a) hub-genes in the mod-

ules of interest, or (b) Top Enriched DEGs (TED), which are DEGs annotated to the

most enriched GO term in each of the three GO databases as well as the most enriched

KEGG pathway in their respective datasets, they are considered candidates for poten-

tial biomarkers for ESCC. Two microarray datasets (GSE20347 and GSE23400) and

one bulk RNA-Seq dataset (GSE130078) were used to validate our Integrative DEA

framework. With a p-value of 0.05, Limma+Voom, edgeR, and DESeq2 were each able

to extract 6,858, 12,623, and 12,766 DEGs for GSE130078. 9,225 DEGs were found

by our consensus function with the additional parameter (q-value). SAM, EBAM, and

Limma were successful in extracting 8,689, 10,642, and 9,565 DEGs for GSE20347 at

p = 0.05. 8,318 were found by the consensus function with the lFDR option added.

Similar DEGs were found in GSE23400, including 13,558 (Limma), 14,301 (SAM),

and 15,748 (EBAM). These DEGs have been found to be highly GO enriched, includ-

ing 2,418 (GSE130078), 5,860 (GSE20347), and 7,882 (GSE23400). One hundred and

twenty four, 59, and 160 hub-genes were discovered from 7, 3, and 8 modules of in-

terest in GSE20347, GSE23400, and GSE130078, respectively. 146, 77, and 176 are

candidates for putative ESCC biomarkers when the 22, 18 and 16 TEDs discovered by

GSE20347, GSE23400, and GSE130078, respectively, are taken into account. The bio-

logical relevance of each candidate to each dataset is evaluated based on (a) annotation

to enriched GO terms in the GO databases, (b) annotation to enriched KEGG pathways,

and (c) whether the BCG is a transcription factor in a gene regulatory network. Previ-

ous research that has either (a) established them as potential biomarkers for ESCC itself

or (b) established them as potential biomarkers for five other SCCs related to ESCC,

namely Oral SCC, Tongue SCC, Lung SCC, Head and Neck SCC, and Laryngeal SCC,
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was a very important factor we took into consideration when deciding whether a BCG

should be a potential biomarker.

Our method identified four BCGs, including STAT1, HIF1A, DNMT3B, and MCM7,

which are Transcription Factors (TFs), have significant biological significance to their

respective datasets, and may serve as ESCC biomarkers. These BCGs were found using

previous research works. Our method identified GSK3B, reported as a DEG by both

microarray datasets (GSE20347 and GSE23400), as a TED because it has substantial

biological relevance to both microarray datasets and significant literature support as a

possible biomarker of ESCC. Similar to this, nine BCGs, including HOMER3, PSMD4,

PSAT1, TFRC, MCL1, EPHA2, KPNA2, CKS2, and PRMT1, seven BCGs, including

HLA-F, HLA-G, CXCL10, ISG15, PSMA3, FCGR2A, and C3AR1, and four BCGs, in-

cluding CAV1, VEGFC, CDK4, and MSH2, have been identified as potential biomarkers

for ESCC in the datasets GSE20347, GSE23400, and GSE130078, respectively. Addi-

tionally, we discovered that 3 TFs, PTMA, VGLL4, and NONO, 1 TF, PLEK2, and 2

TFs, HMGB3 and ESRRG, in the datasets GSE20347, GSE23400, and GSE130078,

respectively, had moderate biological relevance but substantial literature support as pos-

sible ESCC biomarkers. Therefore, these TFs can be thought of as probable ESCC

biomarkers but requires further in-depth analysis to further establish their relevance to

ESCC. On the opposite end of the spectrum, despite their great biological significance to

their separate datasets, the transcription factor AR, a TED that is recognized as a DEG

in both microarray datasets, and PSMC2 have been identified as possible biomarkers for

further SCC related to ESCC.

Next Chapter presents a centrality-based hub-gene centric method called Centrality

Based Differential Co-Expression Method (CBDCEM), for crucial gene finding for criti-

cal diseases. The identification of hub-genes for each differentially co-expressed module

is a key task of differential co-expression (DCE) analysis. We develop a consensus-based

approach that identify hub-genes using seven centrality measures.
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