Chapter 5

Differential Co-expression Analysis

5.1 Introduction

Within biological systems, an approach to unravel the relationships among genes is
network analysis. Construction and analysis of networks that represent associations or
interactions between genes is an integral part of network analysis. By identifying key
genes in a network that play critical roles in biological process, disease or condition,
network analysis can facilitate biomarker identification. Co-expression network (CEN)
is an approach to network analysis that investigates trends and connections in gene ex-
pression across conditions or samples. Genes associated with a CEN exhibit similar
patterns and thus imply shared regulatory mechanisms as well as functional connection.
Weighted Gene Co-expression Network Analysis (WGCNA) [327] is a widely used
method that constructs a weighted CEN through estimation of similarity score based
on the expression profiles of the genes. The primary goal of differential co-expression
analysis (DCA) is to uncover the condition specific changes in co-expression patterns.
In other works, through DCA we compare the changes in relationships and interactions
among genes under varying conditions. While DEA identifies individual genes that are
differentially expressed between conditions, DCA takes into consideration the interac-

tions among genes under varying conditions.

5.1.1 Differential Co-expression Analysis (DCA)

By detecting variations in co-expression patterns among genes in different popula-
tions or conditions, DCA aids the discovery of crucial modules or genes associated with
specific biological functions or conditions. Following are the key steps for DCA.

1. Pre-processing is the first step towards DCA and is specific to the input gene expres-
sion data. This step generally involves, removal of noise, normalization, and missing

value estimation.



2. Various similarity approaches such as Pearson correlation[545], Spearman correla-
tion [643] or mutual information [107] are employed to find pair-wise gene-gene
similarity. Based on these pair-wise gene-gene similarity, CENs are constructed.

3. DCA is conducted to find differences in gene co-expression patterns between CENs
separated based on samples (e.g., control vs. disease).

4. Statistical tests such as t-tests [761, 615], ANOVA [168, 167] are employed for com-
parison of the co-expression correlations and evaluation of the significance of varia-
tions between groups.

5. Modules or gene-pairs that exhibit significantly different co-expression patterns un-
der varying conditions are chosen for further biological validation.

As genes tend to interact in intricate networks as opposed to functioning in isolation,

DCA helps uncover changes in these networks. This helps unravel more nuanced un-

derlying mechanisms and interactions that might be overshadowed if focus is solely on

changes in expression of genes individually. Furthermore, DCA helps highlight genes
that act as hubs or key regulators in the network and control interaction among genes.

DCA, however, entails sufficient sample sizes for accuracy as smaller sample sizes may

lead higher FDR. In large datasets, construction of CEN for DCA can be computation-

ally intensive. The accuracy of correlation calculation in DCA can be impacted by miss-
ing gene expression values. Interpretation of biological significance of large modules
with complex interactions in the CENs can be challenging.

Our work on DCA examines pair-wise gene expression changes in disease tissue
vs normal tissue with the goal of identifying important genes for serious diseases like
Esophageal Squamous Cell Carcinoma (ESCC). Due to its capacity to detect changes
in regulatory connections between genes that would not be picked up by conventional
CEN or Differential Expression (DE) research, DCA can aid in the identification of bi-
ologically significant DCA gene modules. Various steps are included in a DCA. On
the basis of pair-wise gene-gene similarity, a CEN is initially built. The most often uti-
lized tool for CEN is the Weighted Gene Co-expression Network Analysis (WGCNA)
[327]. Several techniques have been introduced to extract relevant modules, combining
a) Clustering techniques such as those proposed by Kisilevi et al.[309], Chen et al. [89],
Langfelder et al. [330] and Fukushima et. al[174], b) Guilt by association (GBA) ap-
proaches such as those proposed by Oliver et al. [533], Gillis et al. [189] and Wolfe
[765], c) Hub-gene finding approaches such as those presented in Albert et al. [15], Oh
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et al. [529], Keller et al. [304], Voineagu et al. [713], Das et al.[120] and Azuaje et al.
[35], d) Enrichment analyses such as those proposed by Huang et al. [253], Glaab et al.
[190], DAVID ([628], [253]) and Creixell [108], and e) Regulatory network identifica-
tion presented in Linde et al. [407], Margolin et al. [487], Wang et al.[752] and Irrthum
et al. [268]. These modules are then subjected to downstream analysis, which identifies
potential biomarker(s). One of the most important processes in identifying a biomarker
is hub-gene finding. Existing techniques for locating biomarkers include using p-value
cut-off [120], weighted gene score [120], and intra-modular connectivity [327]. As far
as we are aware, no study has employed centrality metrics to pinpoint hub-genes. Our
research primarily focuses on the discovery of hub genes, and we suggest the Centrality
Based Differential Co-Expression Method (CBDCEM), which is a method based on the

centrality metric.

5.2 Related Works

Many methods and tools have been created to analyze gene expression data and
identify differentially co-expressed genes (DCGs). These methods can be divided into
two groups: a) supervised and b) unsupervised. When DCA methods are influenced
by the prior knowledge or details about the conditions under which the comparisons
are carried out, those methods are supervised. Supervised DCA methods detect dif-
ferent co-expression patterns based on pre-specified list of categories. Unsupervised
DCA methods, on the other hand, seek to identify natural or intrinsic co-expression pat-
terns in the data and do not depend on specified conditions or groups. Unsupervised
methods tend to explore co-expresssion patterns that are otherwise overlooked by meth-
ods that rely on prior knowledge. Unsupervised approaches includes Weighted Gene
Co-expression Network Analysis (WGCNA) [327], Differential Co-expression Graph
Learning (DCGL)[410, 807], Co-expression Explorer (co-Xpress)[759], and Differen-
tial Co-Expression Analysis (DiffCoEx) [679], whereas Cognition and Genetics of Ag-
ing (CoGA)[604], Gene Set Co-expression Analysis (GSCA)[101], Gene Sets Net Cor-
relations Analysis (GSNCA)[567], and Differential Co-expression Analysis for REmod-

eling (DICER)[22] falls under supervised approaches.
5.2.1 Unupervised DCA approaches

A well-known and often-used method for finding differentially co-expressed mod-

ules is Weighted Gene Co-expression Network Analysis (WGCNA) [327]. WGCNA
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creates CENs utilizing a gentle thresholding method and a well-defined dissimilarity
measure. In order to ensure that gene expression levels are comparable across sam-
ples, WGCNA starts by normalizing gene expression data. Typically, this is done using
techniques like log transformation or quantile normalization. By computing pairwise
correlations between genes and translating those correlations into a weighted adjacency
matrix using a power function to emphasize strong correlations and down-weight weak
ones, WGCNA creates a weighted network. This is done to create a scale-free network
with a power-law distribution of node connectivity. Genes with comparable expression
patterns are organized into modules by WGCNA using hierarchical clustering. Based
on the topological overlap measure, which shows the shared connection of genes in the
network, clustering is done. Using metrics like module eigengene-based connectivity
[327] and Zgummary scores (Section 2.1.10), WGCNA assesses the stability and preserva-
tion of modules across various datasets or conditions. Using module eigengenes (MEs),
the initial principal elements of gene expression inside a module, WGCNA assesses the
association between modules and clinical features, environmental factors, or experimen-
tal settings. WGCNA determines hub genes, which are highly connected genes that are
biologically related to the trait of interest, by calculating the correlation between gene
expression levels and clinical traits or other relevant parameters.

Differential co-expression networks between various experimental circumstances
can be found using the Differential Co-expression Graph Learning (DCGL)[410, 807]
approach. To ensure that gene expression levels are consistent across samples, DCGL
first normalizes gene expression data, generally using quantile normalization or log-
transformation techniques. DGCL identifies distinct co-expression patterns between two
groups of samples by calculating the differential co-expression score (DCES) for each
gene pair. DCGL constructs a graph that represents the differential co-expression net-
work by creating edges between genes with substantial DCES values. The co-expression
connection along the edges represent the genes that differ significantly between two
groups. A set of genes that are most useful in differentiation between the two groups
are chosen by ranking the genes based on DCES values. DGCL employs graph em-
bedding to create low dimensional representations of the differential CEN. Underlying
structure of the relationships between genes with differential co-expression are captured
by a vectors that represent the embedding.

DiffCoEx [679] approaches DCG identification by providing two types of DCA,
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namely, a) intra-module DCE and b) inter-module DCE. To ensure that gene expression
levels are consistent across samples, DiffCoEx starts by normalizing gene expression
data, generally using techniques like log-transformation or quantile normalization. In
order to create a co-expression network, DiffCOEx computes the pairwise correlation
coefficients between all the genes in all samples. By comparing the correlation co-
efficients of each gene pair between the two groups, DiffCoEx finds gene pairs that
are differentially co-expressed in two groups of samples. Utilizing statistics like the t-
statistic or fold change, it is possible to quantify the variance in correlation coefficients.
By regulating the false discovery rate (FDR) (Section 2.1.2) using strategies like the
Benjamini-Hochberg [43, 764] method, DiffCoEx accounts for multiple hypothesis test-
ing. DiffCoEx analyses the differentially co-expressed gene pairs and uses clustering
algorithms like hierarchical clustering [756, 291] or k-means clustering [444] to identify
co-expressed gene modules. Using correlation or regression analysis, Diff CoOEx mea-
sures the correlation between co-expression modules and outside factors like clinical
characteristics or experimental circumstances.

Co-expression Explorer (co-Xpress)[759] employs clustering methods such as hier-
archical clustering [756, 291] or k-means clustering [444] to identify co-expressed gene
modules. Gene pair-wise correlations are the basis of highly correlated modules. To
assess connections between co-expression modules as well as external variables such as
experimental circumstances or clinical characteristics, Co-Xpress uses regression analy-
sis. Instead of module eigengene, Co-Xpress utilizes module expression profiles. Func-
tional enrichment analysis (Section 2.4.1) and gene set enrichment analysis [650] are
employed to analyze biological relevance of the co-expression modules. It is also es-
sential to choose a set of genes that are most useful in predicting external variables and
as such Co-Xpress chooses the genes that exhibit strongest correlations with the out-
side variables. Co-Xpress divides the data into training and testing sets to assess the

predictive performance of the chosen genes and evaluate the prediction precision.

5.2.2 Supervised DCA Approaches

A probability score is used by Differential Co-expression Analysis for Remodelling
(DICER) [22] to identify DCE gene sets, and a probability-based framework is also
used for significance assessment. The goal of DICER is to identify changes in the co-

expression connections between genes, which can shed light on functional alterations
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in biological systems. DICER identifies diverse co-expression patterns between various
conditions or groups by comparing the CENs and observing changes in the strength of
gene-gene connections. Differential network analysis and differential module analysis
are used to find significant changes in co-expression patterns.

A computational technique called Gene Set Co-expression Analysis (GSCA) [101]
is used to find coordinated patterns of gene expression within predetermined gene sets or
gene modules. A gene set in GSCA is a predetermined collection of genes that have been
assigned to the same biological region, function, or regulatory mechanism. Pathways,
gene ontologies, or gene modules discovered using different clustering or co-expression
research techniques are a few examples of gene sets. From the samples of interest, gene
expression data, such as microarray or RNA sequencing data, is gathered. The expres-
sion levels of the genes across the samples are quantified by this data. Based on prior in-
formation or annotations, predefined gene sets or modules are chosen or created that are
associated to particular biological functions, pathways, or gene ontologies. These gene
sets can be found in databases like Gene Ontology or KEGG, the Kyoto Encyclopedia
of Genes and Genomes.Pairwise correlations or other measures of relationship between
the gene expression profiles across the samples are computed to form a co-expression
network. The co-expression interactions between genes are captured by this network in
terms of their intensity and direction. The goal of GSCA is to locate gene sets inside
the co-expression network that have notable co-expression patterns. If the expression
patterns within a gene set are more correlated than would be predicted by chance, it can
be determined using statistical techniques like enrichment analysis or permutation tests.
The outcomes of GSCA are frequently represented as networks or heatmaps, where
gene sets with noteworthy co-expression patterns are emphasized. Finding functional
modules or pathways that exhibit coordinated expression changes in this way enables
researchers to gain understanding of the biological mechanisms or regulatory processes
behind the phenotype or condition being researched.

In Gene Sets Net Correlations Analysis (GSNCA) [567] relationships and co-expression
patterns between gene sets or pathways are assessed and their strength are determined.
Firstly, GSNCA 1identifies relevant pathways and gene sets. Either prior biological
knowledge or GSEA [650] is employed to generate gene sets. After the specification
of the gene sets, within each gene set, pairwise correlations between the genes are deter-
mined. This is implemented to evaluate the directionality and the intensity of the links
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as well as to measure the comparability of the expression profiles across samples. Sta-
tistical testings are used to evaluate the importance of the observed connections within

a gene set and the strength of these connections over randomly predicted connections.

5.3 Basics Of Centrality Measures

In this section, we discuss the seven measures used by our proposed hub-gene find-
ing algorithm employed in our DCA framework, CBDCEM: An effective Centrality
Based Differential Co-Expression Method for crucial Gene Finding. According to net-
work theory, a node’s prominence or importance inside a network is referred to as its
centrality. Based on a node’s structural location in the network and its connections to
other nodes, it measures the relative influence or relevance of that node. Node centrality
measurements enable the detection of functional roles of genes in biological networks.
The network’s unique properties and the current research question influence the choice
of centrality measure. Different centrality measures can provide light on a variety of
network phenomena, including information flow, impact, and control within a network,
by capturing different facets of node importance. According to Azuaje et al., highly
linked genes (also known as hub-genes) in gene CENs frequently associate with impor-
tant disease pathways. We use WGCNA [327] to create a CEN and extract important
modules for a specific dataset. We try to find significant nodes (or genes) in the collected
modules that might serve as biomarkers.

A graph’s centrality can be a reliable indicator of key nodes. To represent centrality
indices, real valued functions on vertices are utilized, and as a result, these values can
provide a ranking that makes it easier to identify the most significant nodes on the graph.
Classification is possible depending on how specific centralities assess cohesion. The
walk structure is emphasized by categorizing centralities to emphasize cohesiveness.
These centralities fall into two subcategories: radial and medial, which can be deduced
from the way they are built. Radial centrality is a type of centrality that considers treks
that originate at or conclude at a certain vertex. Radial centrality is exemplified by
eigenvector centrality [519] and degree centrality [171]. In contrast, a vertex’s median
centrality is calculated by counting the walks that go through it. One example of this sub-
category is betweeness centrality [170]. It is possible to group centralities that measure
the quantity or duration of walks. Closeness centrality [39] serves as the best illustration

of this group.
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Tab. 5.1: Centrality Measures[621] for hub-gene findin employed in CBDCEM

Centrality | Function Formula
Measure
Betweeness| The ability of a given node to track | When the number of shortest pathways from node
Centrality | information flow between other ver- | v, to node vj, is @, and the number of those short-
[170] tices is measured by its betweeness | est paths that pass via node v; is alpha,,,, (vi), the
centrality.. betweeness centrality is given by:
Cbetc"i - Zva?évb?é"i %ﬁzw
Closeness | The degree of closeness between | If the shortest distance between nodes v;, and v; is
Centrality | nodes determines a node’s signifi- | d(v;,v;), then closeness centrality is defined as fol-
[39] cance in the network. lows.
Based on its ability for rapid com- Cec,, = m
munication with other nodes, a node
is given a higher value.
Degree The amount of other nodes that a | Degree centrality is determined by the formula:
Centrality | given node is connected to serves as | Cyegc(vi) = deg(v;), where deg(V;) is the degree of
[171] a measure of its degree centrality. node i.
Eigenvector| A node is given a greater value if its | If A is a constant such that A # 0 and the entry in
Centrality | connections to nearby neighbors are | the u™ row and i column of the adjacency matrix
[519] thought to be significant. of the network are represented as d(vy,v;), then the
This is done to make sure that ev- | eigen vector of a node v; € V is given by.
ery node’s neighbors experience the | Ceigenc,, = %ZVU d(vy,vi)E,.
same effects.
Katz The total number of walks between | If the total number of k degree connections between
Centrality | any two nodes is taken into consid- | node i and node j is reflected by the element at lo-
[302] eration when calculating a node’s in- | cation (i, j) of the adjacency matrix A raised to the
fluence. By adding a penalizing at- | power of k degrees than the Katz centrality of node
tenuation factor, o that distinguishes | i is given by: Ckmcw =Y, Z?:l ock(Ak) ji- The
between direct and indirect connec- | magnitude of the attenuation factor, «, is selected
tions, the measure makes a distinc- | so that it is less than the reciprocal of the absolute
tion between the two. value of the biggest eigenvalue of the A matrix.
Page Rank | An adaptation of the eigenvector ra- | If the set of all nodes linking to node v; is B, and
[652] diality metric that assigns a node’s | L(v,) is the number of links from node v,,, then Page

score based on both the node’s qual-

ity and the number of linkages.

Rank is determined by.

pageR(v,)

CpugeRv,- = Yy,cB, L(va)
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Centrality | Function Formula

Measure

Radiality Based on a node’s reachability to | Radiality is determined using the formula.
Zvu#vi RyDy, Vi
n—1

[705,766] | every other node in the network, a C’“dcv,- = , where R,D,,,, is the reverse

value is assigned to it. distance between nodes v, and v;, and n is the total

number of nodes.

Degree centrality [171], which is determined by the number of linkages occurring on a
network node, is the most basic and perhaps oldest type of centrality measure. How-
ever, this measure focuses on each node separately rather than taking into account the
network’s overall structure. The average length of the shortest paths connecting a node
to every other node in the graph is known as a node’s normalized closeness centrality
[39]. The node is closer to all other nodes when the average journey length is shorter.
The interpretation states that a node is more central the closer it is to all other nodes.
However, graphs with disconnected components cannot use this metric. A vertex’s be-
tweeness centrality [170] , which measures how frequently it acts as a bridge along the
shortest path connecting any two other nodes, is a metric of in a graph. In other words,
the vertices with higher betweeness centrality have higher probability of occurring on
the shortest path between any two randomly chosen vertices in a graph. Eigenvector
centrality [519] in a graph assigns relative scores to each node in order to measure each
node’s influence. This rating gives more weight to the idea that a node’s connections
to other high-scoring nodes contribute more significantly than equivalent connections to
nodes with lower ratings. A variation of eigenvector centrality called page rank central-
ity [652] counts the quantity and quality of connections to a node in order to roughly
gauge the significance of that node. While degree centrality [171] and eigenvector cen-
trality [519] can be used to evaluate the local and global importance of a node inside the
network, respectively, katz Centrality [302] accounts for both of these influences. Katz
Centrality [302] counts the number of a node’s immediate neighbors and the connections
that node has made to other nodes through those neighbors to determine a node’s influ-
ence within a network. Katz Centrality [302] includes an attenuation factor to penalize
links to far-off neighbors (i.e., indirect connections made through close neighbors). In

Table 5.1, we summarize these measures.
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5.4 CBDCEM: An Effective Centrality Based Differential Co-
Expression Method For Crucial Gene Finding

We analyze the transcriptional changes in gene connections rather than individual
genes in the proposed framework shown in Fig 5.1. In order to identify the disease-
induced topological and functional alterations in the networks, we first generate gene
CENs. Two separate networks that correspond to healthy and diseased states are built
by the identification of co-expressed pairings across the circumstances. Identification of
the biological alterations is aided by a comparison of the normal and disease CENs, or
from the normal condition to the disease condition and vice versa. Our approach accepts
microarray or bulk RNA-Seq data as input datasets. The gene expression dataset(s) are
initially split into two subsets according to the kind of tissue: normal adjacent tissue
and disease tissue. These subsets are used as input to the framework and can either be

microarray or bulk RNA-Seq data.
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Fig. 5.1: Proposed Centrality Based DCA Framework, CBDCEM

5.4.1 Pre-processing

The pre-processing part of CBDCEM carries out all fundamental tasks like removing

unnecessary and redundant data, normalizing the dataset, and estimating missing values
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while guaranteeing that the data meet the requirements for subsequent analysis. How-
ever, this unit also handles low read count and batch effect removal for bulk RNA-Seq
data. The pre-processing pipeline for microarray and bulk RNA-Seq data employed by
CBDCEM are described in detail in Section 2.7.1 and Section 2.7.2, respectively. We
eliminate the outlying conditions (samples) after we are certain the facts meet all the pre-
requisites. We achieve this by clustering the dataset conditions (samples) and removing

the outliers.

5.4.2 CEN Construction

We use weighted gene network analysis (WGCNA) [327] to continue with the con-
struction of the CENs. In order to calculate an adjacency matrix while employing
WGCNA, the soft threshold power to which co-expression similarity is raised must be
chosen. On the basis of the approximate scale-free topology [38] criteria , we select the
soft threshold power. We convert the adjacency matrix into a topological overlap matrix
(TOM [574]), which yields a comparable dissimilarity matrix of the same size, in order

to reduce the impact of noise and erroneous associations.

5.4.3 Module Extraction

We take into account the cardinality of the genes in a module (Definition 3.4.1 in
Chapter 3) when separating the normal from the disease modules. Unwanted challenges
in the downstream analysis may result from a significant imbalance in the module sizes.
In order to produce modules with manageable sizes, we balance the amount of instances
using differential expression analysis. We next extract all the connections related to
the differentially expressed genes (DEGs) from the CEN that has been created. After
that, we use hierarchical clustering (Section 2.1.5) to roughly extract the modules for
normal and disease states. On the normal and disease datasets, the dynamic tree cut
technique can be used to further extract comparable modules with similar expression
profiles. Additionally, it would be a good idea to combine some modules because the
genes in those modules are significantly co-expressed. To measure the similarity of co-
expression across entire modules, eigengenes are computed and clustered based on their
correlation. The DCA unit identifies differentially co-expressed modules and performs
preservation analysis (Section 2.1.9) on these modules to identify biologically relevant

modules. These modules are termed as "Modules of Interest” (Mol) (Definition 4.3.1).
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This is followed by the identification of hub-genes (Definition 3.4.3 in Chapter 3) in
these modules using our proposed centrality based hub-gene finding algorithm described

in the next subsection.

5.4.4 Hub-gene Finding

In order to identify potential biomarkers, the significant modules recovered from
both conditions are further examined using centrality measures . To find crucial genes
that can be regarded as hub-genes (Definition 3.4.3 in Chapter 3), we use seven centrality
measures (given in Table 5.1). Our strategy for locating hub-genes using these centrality
indicators is presented in the algorithm 1. Symbols used in Algorithm 1 are given in

Table 5.3

Tab. 5.3: Symbols used in proposed Hub-gene finding algorithm

Symbol used  Meaning

modGenes Network connections of a module

M Set of seven centrality measures

S[m, g] Centrality score for centrality measure, m for gene, g

L[[m]) List of corresponding centrality scores of genes for measure, m.
Topkm,g] Score of 1 or 0 assigned to gene, g based on its presence or ab-

sence among top k genes for measure, m.
Scorelg] Consensus score for gene, g

[Hub List of hub-genes

According to our proposed algorithm’s description:
1. Accept as input the important module’s matching gene co-expression network, mod Genes.
2. Seven score lists, [1,1,13,14,15,ls, and l7, with associated centrality measures m,my, m3,mq, ms, mg,
and my for each of the genes, are produced by estimating each centrality measure sep-
arately on each gene in modGenes.
3. Sort the seven gene lists Ly, L,,L3,L4,Ls,L¢s, and L7 in decreasing order of the score
values of the individual genes in the lists I1,1,/3,14,15,1s, and /7. .
4. The top k genes are given the flag value 1, designating their inclusion in the Topk list
for the relevant centrality measure (m) score. This creates seven Topk (for i= 1 to 7)
lists for the genes.

5. Calculate the consensus score for each gene in modGenes by adding up the number
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Algorithm 1: Proposed Hub-gene Finding employed in CBDCEM

B N N O N

=]

10
11
12
13
14
15
16
17

18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35

Input : modGenes: the network connections of a module, M: the set of seven centrality

measures

Output: IHub: List of detected hub genes in the given network module.

// Compute the centrality measure scores of each of the genes in the
given gene module connectivity graph for each of the seven centrality
measures in M.

foreach m € M do
foreach g € modGenes do

‘ S[m, g] = centrality score for measure m of g in modGenes
end foreach

end foreach

// // Create separate sorted lists of the genes in modGenes, one for each
m in M, based on the corresponding centrality measure (m) scores.

foreach m € M do
foreach g € modGenes do

L[m,g|.score = S[m, g
L[m,g|.gene =g
end foreach
end foreach
foreach m € M do
| Sort [L[m]] in descending order based on the score field

end foreach

// For the topk genes in in sorted [L[m|] assign flag value 1, marking its
inclusion in the Top k list for the corresponding centrality measure
(m;) score

foreach m € M do
foreach i =110 k do

‘ Topk[m,L[m,i].gene] = 1
end foreach

end foreach

// Compute consensus rank score for each gene in modGenes by counting the
centrality measures in which it ranks in top k genes

foreach g € modGenes do
Score[g] =0
foreach i =m do

| Scorelg] = Score[g] + Topk[m,g]
end foreach

end foreach

// Determine the hub-genes as those that have consensus score >4

foreach g € modGenes do
if Score[g] > 4 then

‘ IHub =[HubUg
end if

end foreach
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of times the gene has appeared in the Topk lists using the formula

7
Score, = Z Topk|m,g|. (5.1)
m=1

6. Include the hub-genes (/Hub) that have a consensus score of > 4.
In other words, all genes are regarded as hub-genes and investigated as possible biomark-
ers if they rank in Topk for at least 4 centrality measurements. The set of potential

biomarkers for further downstream investigation is taken from this list, or [Hub.

5.4.4.1 Choosing the value of £

For the algorithm to work, the value of k must be selected appropriately. It is clear
that the genes listed in the individual centrality lists as being within Topk may not be
present in [Hub. In many cases, especially in denser modules, experimental research
reveals that the list of Topk genes in each centrality list varies dramatically. As a result,
only a small number of genes have a consensus score of > 4, while a greater number have
a consensus score of 1 or 2. When looking for K hub-genes in [Hub, the experimental

investigation leads us to the following value for k:

K, if 10%0fMS < K
k= (5.2)

10%o0fMS, otherwise

where, MS is the module size in terms of no. of genes belonging to the module.

5.4.4.2 Correctness, completeness and complexity of the Algorithm

Correctness: Due to the unavailability of adequate ground truths and the algorithm
being an unsupervised problem, it is not possible to evaluate the correctness of the same.
We aim to identify novel biomarkers and the biomarkers have been validated based on
literature trace, GO enrichment, and pathway enrichment using the proposed biomarker
criteria as discussed in detail in Section 2.5.

Completeness: We attempt to extract hub-gene by considering seven centrality mea-
sures in an unbiased manner. The consensus measure of > 4 ensures that the genes
deemed as hub-genes by our algorithm rank among the top k genes for atleast four out
of seven centrality measures. This ensures that a gene that has a high centrality score

for only one centrality measure does not show up among the final identified hub-genes.
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None of the hub-genes are left out that fulfill the pre-specified criteria such as: 1) it

is a hub-gene, it is among the top k genes in atleast 4 centrality measures, and 3) its

consensus score > 4,

Complexity: To evaluate the running time of the algorithm, we initially analyze the

algorithm in parts. For each biologically relevant module, modGenes is the network con-

nections of a module with n genes, and e edges. The running time for each component

of the algorithm is analyzed below.

1.

The first component computes the centrality measure score of each gene in a given
module. For each centrality measure , m € M, the complexity can be computed as
O(complexity of centrality measure, m). The centrality score is computed for all
genes in the connectivity graph (i.e, module). As such the final complexity of this
module can be analyzed as O(n x (O(m;) + O(my) +...0(m7))). The time com-
plexities of betweeness centrality, closeness centrality , degree centrality, eigenvector
centrality, katz centrality, page rank, and radiality are O(ne +n?), O(ne +n?), O(n?),
0(n?), 0(n?), O(e), and O(ne+n?), respectively. It is noteworthy that for very dense
networks e is equivalent to n%. As such we can conclude that for most centrality mea-
sures T (n) = O(n?). Taking the worst time complexity of O(n?), we can conclude

that the time complexity of this component is T'(n) = O(n x n®) ~ O(n*).

. The second component creates separate lists of genes (n) in modGenes for each m €

M based on the corresponding centrality measure scores. Thus, 7' (n) = O(n). These
m lists are then sorted in descending order based on centrality scores. By considering
efficient sorting algorithms such as merge sort, these seven lists can be sorted in

O(nlog(n)). Thus, for this component T'(n) = O(7 x nlog(n)) ~ O(nlog(n)).

. The third component assigns flag value 1 to the the top k genes in the seven sorted

lists. This can be achieved in O(7 x k) ~ O(k) time. However, as discussed in pre-
vious subsection, we choose k using equation 5.2. As the choice of k is not constant
and the number of genes (n) can determine the value of k, T'(n) = O(n).

The fourth component computes the consensus rank score for each gene in mod Genes.

This is done for all seven centrality measures and as such 7'(n) = O(7 x n) ~ O(n).

. The fifth and final component determines the hub-genes with consensus score geg4

by analyzing the consensus scores of all genes in modGenes. As such, T (n) = O(n).

Finally, we can conclude that the time complexity of the algorithm is determined as
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T(n) = O(n*) + O(nlog(n)) + O(n) +O(n) + O(n) ~ O(n x n*) ~ O(n*) (5.3)

In other words, for each biologically relevant module modGenes with n genes, the time
complexity is O(n*). Here, n is of moderate size, since it represents the cardinality of
the set of genes included in an Mol. GPU based implementation of the algorithm can

further reduce the computation cost.

5.4.5 Validation

We take two approaches to validation. In order to determine the hub-genes (IHub)
indicated by our proposed framework as potential biomarker(s), we first evaluate the
quality of the module(s) retrieved by the module identification unit of the framework
as ‘Module of Interest’ (Mol) (Definition 4.3.1 in Chapter 4). The following steps are
taken to validate modules:

(a) GO enrichment analysis is used to evaluate the quality of an extracted module, and
(b) Enhanced pathway presence is used to further evaluate the quality of modules.
All hub genes found in biologically significant modules found by the Hub-gene discov-
ery unit are regarded as potential biomarker candidates and are referred to as Biomarker
Candidate Genes (BCG) (Definition 5.4.1). A module is pathway and GO enriched if it
contains at least one enriched pathway and one enriched GO word. Gene Ontology (GO)
enrichment analysis and pathway enrichment analysis are used to validate Mols found
by the preservation analysis (Section 2.1.9) unit. All detected Mols are used as input
in the validation unit’s pathway enrichment analysis and GO enrichment sub-unit in the
framework. These subunits calculate the percentage of enriched GO words (PEGoT)
across the three GO databases for each Mol. These three databases include the percent-
age of enriched pathways (PEP) in KEGG with a p —value = 0.05 and the biological

process (BP), cellular component (CC), and molecular function (MF) databases.

Definition 5.4.1 (BCG). A gene g; is defined as a Biomarker Candidate Gene (BCG) if
it is identified as a hub-gene in a given Mol extracted by CBDCEM.

First, we find 1gEGo and IgEP with p —value = 0.05 for each BCG identified by
the framework that needs to be validated. The GO enrichment and pathway enrichment

sub-units in the framework receive input from the DEGs discovered by the identification
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of DEGs unit. Two lists, IgEGo and IgEP, are the output. The list of BCGs, along with
1gEGo and IgEP, are input to the biological analysis unit in order to validate the BCGs
found by the hub-gene discovery unit of the framework. The biological analysis unit
locates BCGs that have enriched GO keywords and enriched pathways associated to
them. In other words, the BAU recognizes the BCGs that are present in IgEGo and IgEP.
For the purpose of establishing the regulatory behaviour of these BCGs in the network,
this unit further detects BCGs that are TFs and builds GRN. The validation unit of the
framework’s literature trace sub-unit finds BCGs that have published literature traces
that support their status as biomarkers for ESCC or other SCCs that are closely related
to ESCC. We select the BCGs that come under Cases 1 and 2 and classify them as

potential biomarkers based on our biomarker criteria (Section 2.5).

5.5 Experimental Results

In order to assess the effectiveness of our method, CBDCEM, we examine the crit-
ical disease, ESCC. To assess the efficacy of our technique, three ESCC datasets were
chosen, including GSE130078 for bulk RNA-Seq data, GSE20347, and GSE23400 from
microarray data. The details of each dataset are described in Sections 2.6.1 and 2.6.2
(Table 2.1). The experimental evaluation is conducted on a DELL workstation running
Windows 10 Pro and equipped with a 3.70GHz Intel(R) Xeon(R) W-2145 CPU and 64
GB of RAM. We run the experiments in the R programming environment (Section 2.2.1).
The gene expression of cancers has been examined in all three datasets and contrasted

with that of surrounding contrast tissue.

5.5.1 Pre-processing

Pre-processing for the two microarray datasets, GSE20347 and GSE23400, begins
with the elimination of unnecessary redundant data. However, there are no missing
values for either GSE20347 or GSE23400, so we continue down the pipeline. We begin
by removing low read counts from the bulk RNA-Seq dataset using counts per million
(CPM). Genes with CPM > 1 in at least two samples are filtered. By doing so, the
number of genes is decreased from 57,783 to 22,183. In Section 2.7.1 and Section 2.7.2,
the overall workflow we use for pre-processing the microarray and bulk RNA-Seq data
is covered in depth, respectively. We implement these pipelines to prepare the data for

subsequent downstream analysis.
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5.5.1.1 Outlier Gene Detection

To find outliers, we begin by hierarchically clustering the samples. In the case of
normal samples with a tree cut at height h=70 (Blue), we discovered a single outlier for
GSE23047 as shown in Fig. 3.4a and Fig. 3.4b in Section 3.5.3. However, there are 2
outliers with a cut at h=130 (Red) in disease samples. Similarly, in GSE23400, tree cuts
at heights of h=105 (blue) and h=95 (red) eliminate one and two outliers from the normal
(Fig. 3.4c in Section 3.5.3) and disease (3.4d in Section 3.5.3) samples , respectively.
Cuts at h=1500000 (Blue) and h=2000000 (Red) in the case of GSE130078 remove one
sample of normal 3.4e in Section 3.5.3) and one sample of disease (Fig. 3.4f in Section

3.5.3).

5.5.2 CEN Construction

We apply soft-thresholding to the normal (Blue) and disease (Red) samples of dataset
GSE20347. Nine is the lowest power for which the network maintains scale-free topol-
ogy, as can be shown in Fig. 3.5a and Fig. 3.5b in Section 3.5.3.1. As shown in Fig.
3.5c and Fig. 3.5d in 3.5.3.1, the soft thresholding for normal (Blue) and disease (Red)
samples in GSE23400 is set at nine. In contrast, for GSE130078, normal (Blue) and
disease (Red) samples are selected with soft thresholds of twelve (Fig. 3.5e in Section
3.5.3.1) and nine (Fig. 3.5f in Section 3.5.3.1), respectively. Using the soft thresh-
olding exponent nine, we compute the adjacency matrices for the normal and disease
samples of the GSE20347 dataset, yielding two corresponding matrices with a size of
22,277 x 22,277. Similar to this, GSE23400 produces two corresponding matrices of
size 22,283 x 22,283 each with a soft thresholding power of nine. The number of genes
in GSE130078 is decreased to 22,183 after CPM filtering, resulting in two adjacency
matrices with soft thresholds of twelve (normal) and nine (disease). The adjacency ma-
trices used to create the associated TOMs have the same size as the relevant adjacency

matrix.

5.5.3 Module Extraction

As previously stated, we use DE analysis to find modules with sizeable dimensions.
We use DESeq?2 [450] for the bulk RNA-Seq dataset and Limma [638] for the microar-
ray datasets (GSE20347 and GSE23400) for DE analysis. When DE analysis is ap-

plied to the whole dataset for GSE20357, the number of normal instances decreases
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from 22,277 x 16 to 8,474 x 16 and the number of disease instances decreases from
22,277 x 15 to 8,474 x 15. Similar reductions in normal and disease instances are made
for GSE23400, with normal instances dropping from 22,283 x 52 to 13,338 x 52 and
disease instances falling from 22,283 x 51 to 13,338 x 51 respectively. However, in the
example of GSE130078, DE on the complete dataset yields 11,537 DEGs, but the cases
of normal behavior are decreased from 22,183 x 22 to 10,436 x 22 and the occurrences
of disease are reduced from 22,183 x 22 to 11,316 x 22. The extraction of TOM val-
ues corresponding to these DEGs is then performed, resulting in smaller TOMs of sizes
8,474 x 84,74 (GSE20347) , 13,338 x 13,338 (GSE23400) , 10,436 x 10,436 (normal
GSE130078) and 11,316 x 11,316 (disease GSE130078).

We employ hierarchical clustering to create a dendrogram of genes, resulting in 55
normal modules and 74 disease modules, in order to extract relevant modules. The first
strip of colours below the dendrogram in Fig. 5.2a depicts the matching module colours
from the normal dataset. Similarly, the dendrogram for the disease dataset is shown
in Fig. 5.2b. Heirarchical clustering produces 17 normal and 18 disease modules for
GSE23400. The dendrograms for the normal and disease datasets are shown in Figs.
5.2c and Fig. 5.2d, respectively, whereas the first strip of colours represents the colours
allocated to these modules. For GSE130078, we obtain 48 disease (Fig. 5.3a) and 62
normal modules (Fig. 5.3b).
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Fig. 5.3: Dendrograms for a) normal and b) disease in GSE20347, c) normal and d) disease in
(GS23400, and e) normal and e) disease in GSE130078. The first strip of colors repre-
sents the corresponding module colors assigned after hierarchical clustering while the
second color strip of colors represents the corresponding module colors after merging.

We select a height cut of 0.25, which corresponds to a correlation of 0.75, to merge
modules. For the normal and disease datasets in GSE20347, merging the modules with

a tree cut at h=0.25 further reduces the number of modules to 40 and 63, respectively,
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as shown in Fig. 5.4a and Fig 5.4b. The integrated normal and disease modules are

represented by the colors in the second color strip in Fig5.2a and Fig. 5.2b.
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Fig. 5.4: Heiarchical Trees for module detection for a) normal and b) disease in GSE20347, ¢)
normal and d) disease in GS23400, and e) normal and e) disease in GSE130078. The
chosen tree cut is at height, h=0.25

A comparable tree cut at h=0.25 reduces the number of healthy modules for GSE23400
to 13 (Fig. 5.4c) and the number of disease modules to 16 (Fig. 5.4d). The merged
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module dendrograms in the normal and disease dataset for GSE23400 are shown in
Fig. 5.2c and Fig. For GSE130078, h=0.25 yields 21 normal (Fig.5.4e) and 30 disease
modules (Fig. 5.4f).
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Fig. 5.5: Zsummary plots for a) normal and b) disease in GSE20347, ¢) normal and d) disease in
GS23400, and e) normal and e) disease in GSE130078. All modules below the red line
are non-preserved, all modules between the red and blue lines are weak to moderately
preserved and all modules above the blue line have strong evidence of being preserved.
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In the Zsymmary plots above all modules below the red line are non-preserved, all modules
between the red and blue lines are weak to moderately preserved, and all modules above
the blue line have strong evidence of being preserved.

In order to distinguish between preserved and non-preserved modules, preservation
analysis is performed after module extraction. Contrary to preserved modules, the bulk
of co-expression linkages in non-preserved modules vary (i.e., they are not preserved),
and as a result, they might offer useful information for identifying causative genes. A
module with Zgymmary < 2 is deemed non-preserved according to the discussion in sub-
section 2.2.5 [329]. For GSE20347, GSE23400, and GSE130078, normal Zg,mmary plots
are shown in Fig. 5.5a, Fig. 5.5c, and Fig. 5.5e, respectively. Similarly, Fig. 5.5b,
Fig. 5.5d, and Fig. 5.5f are the disease Zsummary plots for GSE20347, GSE23400,
and GSE130078, respectively. Table 5.4 compiles the preservation analysis for non-
preserved modules across all three datasets. The module preservation reference and test
networks are highlighted in the second column of both tables. In the Normal/Disease
subset of dataset GSE130078, for instance, the table reading for module purple is of
size 221, recognized in the normal network, but is non-preserved in the disease network
with a Zgymmary value of —2.61673. Dataset GSE23400 naturally extracts a number of
modules with noticeably greater sizes and higher densities. As a result, no modules with
Zsummary < 2 are non-preserved, and the majority of modules are either highly preserved
(Ztextsubscriptsummary > 10) or moderately preserved (2 < Zgymmary < 10). We have
therefore considered moderately preserved modules with Zgymmary < 10 [329, 569] in
the absence of non-preserved modules in dataset GSE23400.

There are 14 and 25 non-preserved modules in datasets GSE130078 and GSE23400,
respectively, as shown in Table 5.4. Similarly, GSE20347 has 22 non-preserved modules
in Table 5.4. In Table 5.4, we consider modules of size geq100 to be modules of interest
and streamline them for further analysis. These modules are marked by blue and bold in
Table 5.4. Thus, the relevant modules for GSE130078, GSE23400, and GSE20347 are
7,7, and 8 correspondingly. Modules with the color grey are background genes and are
not taken into account. An example of a module with this color is module grey in the

Disease/Normal section of Table 5.4.
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Tab. 5.4: Preservation Analysis (Zsymmary) f normal modules in disease dataset and vice versa in
the two microarray ESCC datasets, GSE20347 and GSE23400, and the bulk RNA-Seq
dataset, GSE130078. Modules with Size > 100 and at least moderately preserved (i.e,
Zsummary < 10) are considered for further downstream analysis and highlighted in blue

and bolded.
Ref/Test Module Size Zsummary Ref/Test Module Size Zsummary
purple 263 -2.61673 floralwhite 279 -0.57028
darkgrey 691 -0.49294 grey 24 -0.30498
Normal/
antiquewhite4 39  -0.23228 darkmagenta 88  -0.24808
Disease
bisqued 173 0.46919 thistlel 58 0.27944
Normal/
navajowhite2 146 1.95233 salmon4 57  0.95925
Disease
% grey 34 -0.53381 greenyellow 204 1.11967
§ darkslateblue 22 -0.36112 paleturquoise 100 1.68276
% lightcyan 290 -0.09802 pluml 81 1.79234
salmon 320 -0.00052 palevioletred3 55  1.92806
Disease/
lightcyanl 96 0.324719 ~ grey 2 -0.58560
Normal <t
brown4 56 1.22299 § pluml 86 -0.38140
orangered4 80 1.45160 % thistlel 68 -0.02133
orange 212 1.45246 lightgreen 142 0.06532
pluml 97  1.59667 darkorange 113 0.12787
Normal/ grey60 44 8.70877 lightcoral 44 0.35072
Disease/
Disease lightcyan 66  4.43938 darkmagenta 98  0.67363
Normal
grey 1000 1.37004 darkturquoise 456 1.16855
midnightblue 118 7.19999 orange 116 1.48801
§ lightcyan 105 7.98239 skyblue 105 1.61022
on
) green 450 8.39948 mediumpurple2 45  1.67677
v Disease/
O magenta 243 8.78524 ivory 81 1.70243
Normal
grey60 300 8.84688 skyblue?2 52 1.94493
tan 139 9.52371
lightgreen 51 9.58615
salmon 128 9.83334

5.5.4 Hub-gene Finding

We apply our suggested hub-gene discovery approach, which uses seven central-
ity measures on all 22 modules of interest found in the three datasets, as explained in
subsection 5.4.4. From the CEN created on the full dataset, we extract the network cor-
responding to a module of interest, which is subsequently used as input by our hub-gene

discovery approach. A list of the hub-genes found in the module is the algorithm’s out-
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put. We test our findings using the three datasets and a K = 20 threshold. We use our

hub-gene identification algorithm to select the top 20 (K = 20) hub-genes for each of the

22 modules of interest in order to locate possible biomarkers for ESCC. Further testing

is done on these hub-genes to find potential ESCC biomarkers.

Tab. 5.5: Top 20 hub genes for each extracted module of interest in all three datasets using our
hub-gene finding algorithm. Hub genes with strong literature evidence of association to
Esophageal Squamous Cell Carcinoma (SCC) are marked in Red while hub genes with
evidence of association with five other SCCs namely, HNSCC, LaSCC, LSCC, OSCC,
and TSCC are marked in Blue

Module

hub genes

GSE20347

darkturquoise

lightgreen

darkorange

orange

skyblue

floralwhite

greenyellow

paleturquoise

USP7, AAMP, GALNTI, ZNF107, KRT6A, LEPR, GATD3A, HOXA10, CAMKK?2,
ZNF273, PHLDAI, DHX32, THEM6, SRR, CHODL, MARKI, RAB35, TRIB2,
SPRY2

SDHC. PNRC2, H2AJ, SEC24C, BASPI1, ZBTB1, SNURF, GRB10, WNK1, DST,
DOPIA, PPP6R3, RWDD2B, GMEBI, GPSM2, PEG3, CEP152, VPSI3A
KMT2A, NFYA, MLX, RABGEF1, THNSLI, PDPKI, TSGI10Il, HOXD4, CALBI,
PNMA2, SUZI2P1, ANKRD36, SUGPI1, ACSF2, GALNTI2, PEX26, TMEMS&O0,
PRDM?2

TCOFI1, ACOI, FXRI, DHRS12, SPTBN2, SLCI18A2, SLC16A6, PWP2, DGKA,
AHNAK?2, BCL6, PIASI, TTC31, SLC24A3, AHNAK, ABHDI17B, AUPI, HSFI,
CCNI

DPYSL3, WSB2, ARPC3, POFUT2, RFC5, PRDM4, DDX54, TNSI, JMJD?7,
MAP4, PLD3, TDG, PFN2, HSPA4, PRKAAI, DGCRII, PSENEN, RPL22,
CACNB3

UBE2L3, TMX4, CD163, ZKSCANS, AURKA, EIF2AK2, RGS14, PTGS1, VNN2,
GINSI, PLXNCI1, DUSP6, RAPSN, BBC3, SCD, MK167, HOXA10, SLC49A3,
DGCRI11, NRIH2

RALY, SLC22A4, HMMR, FST, TNFRSF9, NR2CI, MARK2, FMO?2, SYDEI, OS-
GIN2, RLN2, IGKC, ITGA2B, RANGRF, TSPAN15, ARMH3, DNAJC12, PIMREG,
EPOR

APIBI, ABR, ZNF556, SDCI, ANCBP2, UQCR2, SRSF5, NRG2, ACVRIB, SPPI,
LSTI, UPFI, UBE3B, IP6KI, CEP170, CYP3A5, GOLTIB, MCHRI, DHRS7B,
ARMH3

GSE23400

grey60

APRCIB, DDOST, VGLL4, CAMSAPI, TNFSFI10, SFTB, CD38, NCSTN,
SMARCCI, PSMAS, CTSC, SNDI, DBNI, MAPK9, IGFBPS5, PIK3CD, MMPI,
COCH, TTLLI, FOXA2

Continued on next page
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Module

hub genes

GSE23400

lightcyan

green

magenta

tan

salmon

midnighblue

VARSI, NDUFB7, MAD2LIBP, TCF3, KIFCI, USP39, MEAI, DNAAF2,
ATP13A3, SINHCAF, SPDLI, CDC6, YIPF2, PAGRI, STMNI, TMPO1, MCM?7,
TPTI, DNAJBI2, ARHGEF3

CALM3, CTSA, PRDX6, SREBF2, TMEMI109, NIPSSNAPI, DCN, PRDX4,
UBE2B, APPBP2, DNTTIP2, FECH, MMP15, PSMGI, STK19, PSEN2, RGS10
, SOX12, GLI3, FGF8

DGCR?2, LPIN2, UBTF, ZNF74, CYP2RI, NOLCI, SPIDR, NUSIP3, ACOT7,
UBE2J1, DYNCILII, PDPI, PLXNAI, ISYNAI, IDS, GEMIN2, SNRNPA40,
DSCCI, GAK, TOMM?70

FTSJ1, NUP62, SUMO4, SAMD4B, APP, PRKARIA, MYLI2A, UBE2D2,TMEDS,
CD2BP2, RNGTT, LIMKI, ANXA3, COAI, DBP, MSC, CMC4, KHK, RAB7A,
MZFI

ARHGEF1, HUSI, NCF1, GNG7, TRAF3IP1, GK, HACD3, YTHDF2, CDC73,
Clorfl09, LRRC2, SMGS5, TAF6L, IPCEFI, RNFI121, AKI, MTRR, PARMI,
POLAI, HICI

YBX3, ZNF200, HAUS3, GOLGASA, RBM25, MCFD2, PUS7, ETNKI, SUPT7L,
SELIL, MYC, FNTB, EHD2, RAD52, NRG1, HINFP, TNFSF4, ATXN10, LGALSS,
ITGB4

GSE130078

lightcyan

salmon

orange

purple

darkgrey

navajowhite2

bisqued

DDHDI1, CSRNP2, ST8SIAI, PRELID3A, DIP2C, SPATA33, CIQTNF1, RPSIOP?7,
MTND5P26, CD28P2-DT, ATP2C2, FAMI28A, PRSS53, ADAMTS9, DNAH]I7,
KRTT8P42, GRIN3B, C2CD4C

OTUB2, PRNP, PARPI2, JMJD6, TXLNG, BIRCS5, MAP3KI, OAS2, KYNU,
CAAPI, PRRGI, RSAD2, CMPK2, SQOR, PML, ILI18, MIER3, RRPIB, SGO2,
TGM4

ADIPOR?2, AGPAT4, CHI3L2, NOP2, DNPHI, CHTFI18, EBP, SH2B2, TBCI1D24,
ZNF75A, BANP, INPP5F, MYL5, AP4M1, NRSN2-AS1, MINCR, EEFIAIP3S,
CBX3P2, Cl7orf67

ARHGAP33, CCL26, CATSPERG, SAMDI5, PTCH2, TESMIN, HLX, REN,
ZNF474, KRT75, EIF3J-DT, DIOI, PLA2G12AP1, CAMK2A, AVPII, KLHL31,
FBXO043, HYDIN, KLF11, NOX5

TENMI1, PCDHB4, ANGPT2, ATPSF10, TXN2, PIEZO1, UBE25, SRM, IRF2BPL,
SORBS3, SDHC, ARFI, PPP4C, GXYLTI, JOSD2, STX5, NFIL3, CD3002,
FAM241B, WIPF2

NEKI11, ALDHS8AI, STXBPI, SLC2A4, MAD2LIPI1, CSPG4P11, LOC100287042,
PI15, PDLIM3, TUBAIA, UCP3, NANOSI, MBNLI-AS1, LOC392266, DNAJB5
PLEKHG6, CXCL2, P3H2, CD40OLG, EDFI, TNFSFI11, LINC00243, H2BPI,
MYLK-ASI, PRKXPI, AK4Pl, MAGII-171, LEKRI, SNORAS80OB, RPS9P2,
CPEB2-DT, GOLGASB
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5.6 Validation

Several approaches have been used to validate the biological significance of modules
found by CBDCEM’s module detection unit as well as the validation of hub-genes found

by the hub-gene discovery unit to establish them as possible biomarkers.

5.6.1 Enrichment Analysis of Modules

GO and pathway enriched genes are evidence of the biological relevance of each
module of interest. We employ the simple web programme DAVID [628, 253] to carry
out functional enrichment analysis. The percentage of genes in the relevant module
annotated to enriched GO keywords and enriched KEGG pathways is summarized in

Table 5.6.

Tab. 5.6: Percentage of genes in each module that are annotated in the Gene Ontology (GO)
databases (BP: Biological Processes, CC: Cellular components or MF: Molecular func-

tion) and KEGG pathways.
Module Size BP CC MF KEGG Module Size BP CC MF KEGG
(%) (%) (%) (%) (%) (%) (%) (%)

darkturquoise 456 93.5 94.0 964 482 grey60 300 952 943 957 535

lightgreen 142 89.3 90.1 934 446 green 450 92.6 942 964 470
w darkorange 113 91.8 92.8 969 40.2 <8r midnightblue 118 96.8 94.6 989 44.1
% orange 116 95.0 93.0 97.0 43.0 g lightcyan 105 939 927 95.1 488
% skyblue 105 920 920 93.1 448 | © magenta 243 937 92.1 953 44.7

floralwhite 279 90.5 942 96.3 43.2 tan 139 879 869 935 374

greenyellow 204 92.0 94.8 943 42.5 salmon 128 88.3 91.5 84.0 44.7

paleturquoise 100 923 912 956 352
% lightcyan 290 704 68.7 743 212 % darkgrey 691 835 83.1 889 322
§ salmon 320 81.3 81.0 86.1 37.0 § navajowhite2 146 57.8 63.7 62.7 25.5
a orange 212 71.1 717 759 289 é bisque4 173 769 76.2 80.0 33.1
© purple 263 79.7 78.1 903 274 ©

5.6.2 Biological Analysis

As mentioned in subsection 5.4.5, we employ functional enrichment analysis and
the creation of gene regulatory networks to determine the biological relevance of the
hub-genes discovered by CBDCEM.

The diversity and power of transcription factors (TF) as agents of cell change is as-
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tounding. The continued search for TFs as possible biomarkers [45] is justified by the
fact that the deregulation of TFs is a common trend across many types of human cancer.
We have found that the hub-genes identified by CBDCEM in GSE20347, GSE23400,
and GSE130078, respectively, are TFs in 41, 45, and 23 cases. The biological im-
portance of these TFs is demonstrated by their regulatory behavior in their respective
modules. We have taken a reasonable selection of hub-genes from the non-preserved
modules discovered by CBDCEM for simple visualization. In order to track the regu-
latory behavior of the corresponding genes, we build a Gene Regulatory Network (RN)
using these hub-genes and related TFs. An adjacency list with weighted directed edges

from TFs to other target genes (TGs) makes up the RN that results from this process.

Il
ferd [~

APIB1
S0LT 1S
=

(a) Module paleturquoise (GSE20347) (b) Module darkturquoise (GSE20347)

. I
P
cEEr TLR3

(c) Module orange (GSE23400) (d) Module grey60 (GSE23400)

Fig. 5.6: GRN for normal module a) paleturquoise, disease modules b) darkturquoise and c)
orange in GSE20347. GRN for disease module d) grey60 in GSE23400

As shown in Fig 5.6d, seven hub-genes in the module grey60 (GSE23400) are TFs:
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VGLLA4, FOXA2, PML, NFKB2, SMARCCI, SP110, TCF3, and NFKB2. All hub-
genes that are TFs control both other genes in the module and hub-genes that are not
TFs. The hub-genes that are TFs also control one another, in addition. Similar to this,
5 hub-genes identified by CBDCEM in module orange (GSE20347), namely FXRI,
PIAS1, BCL6, TCOF1, and HSF1, are TFs (Fig. 5.6¢.

a
| =
- =
B
— =
(a) Module lightcyan (GSE23400) (b) Module tan (GSE23400)
¥ oo
=
- -
= =
=
(c) Module green (GSE23400) (d) Module salmon (GSE130078)

Fig. 5.7: GRN for disease module a) lightcyan, d) tan e) green in GSE23400, and disease module
f) salmon in GSE130078.

We monitor the regulatory behavior exhibited by the BCGs detected by CBDCEM. We
further perform GO enrichment (Section 2.4.1.1) and the pathway enrichment analysis
(Section 2.4.1.2) on these BCGs. We employ the web tool DAVID [628, 253] (Section

2.2.3), just as when analyzing the enrichment of the modules.
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Tab. 5.8: Summary of hub-genes detected by CBDCEM in GS130078 annotated to the top 20

KEGG enriched pathways
KEGG Pathways Hub Genes
hsa04151:PI3K-Akt signaling pathway ANGPT2
hsa05200:Pathways in cancer BIRCS, PML, PTCH?2
hsa04510:Focal adhesion ACTN4, MYL5
hsa04010:MAPK signaling pathway MAP3KI
hsa04024:cAMP signaling pathway GRIN3B, CAMK2A
hsa04810:Regulation of actin cytoskeleton ACTN4, MYLS5
hsa04015:Rap1 signaling pathway ANGPT2
hsa04020:Calcium signaling pathway CAMK2A
hsa04261:Adrenergic signaling in cardiomyocytes CAMK2A
hsa05205:Proteoglycans in cancer CAMK2A
hsa05166:HTLV-I infection MAP3KI
hsa04014:Ras signaling pathway ANGPT2
hsa04728:Dopaminergic synapse CAMK2A
hsa01130:Biosynthesis of antibiotics SDHC
hsa04142:Lysosome AP4M1
hsa04722:Neurotrophin signaling pathway IRAKI, CAMK2A, SH2B2, MAP3K1
hsa04919:Thyroid hormone signaling pathway DIOI
hsa04724:Glutamatergic synapse GRIN3B
hsa04725:Cholinergic synapse CAMK2A

FBX043, CAMK2A

hsa04114:0ocyte meiosis

Contrary to modules, where enrichment analysis was carried out on the list of genes for
each module separately, we do the analysis on whole datasets. The significance level
that we used was 0.05. Alternatively stated, a GO term or pathway is deemed highly
enriched if its p-value is < 0.05.

The top 20 enriched KEGG pathways and the associated hub-genes discovered by
CBDCEM and annotated to these pathways in the two microarray datasets (GSE20347,
GSE23400) and the bulk RNA-Seq dataset (GSE130078) are summarized in the tables
5.7 and 5.8, respectively. Due to the similar gene sets in both microarray datasets,
enriched KEGG pathways are present in both. Similarly, Tables 5.9 and 5.10 give a
summary of the top 10, 3 and 3 enriched GO Terms in GO_BP, GO_CC and GO_MF
databases and the corresponding set of hub-genes detected by CBDCEM that are anno-
tated to these GO terms in the two microarray (GSE20347, GSE23400) and one bulk
RNA-Seq dataset (GSE130078), respectively.
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5.6.3 Literature Trace

As a final step, we validated the detected hub-genes based on existing literature, es-

tablishing that these hub-genes may serve as potential biomarkers for six types of SCCs

which are ESCC, HNSCC, LaSCC, LSCC, OSCC and TSCC. Based on CBDCEM anal-

ysis and existing literature that correlated these hub-genes with the six previously men-

tioned SCCs, Table 5.11 summarizes the hub-genes detected by CBDCEM and existing

literature.

According to Loomans et al. [447], Activin A’s suppression of ESCC development
depends on ACVRI1B. Loomans et al. [446] further emphasize how the absence of
ARCVIB can cause Squamous Cell Carcinoma in general to become more aggressive.
Gao et al. [183] note that annexin A3 (ANXA3) reduction greatly reduces ESCC cell
proliferation and propose it as a possible biomarker.

According to Shang et al. [618], down-regulation of Baculoviral IAP Repeat Contain-
ing 5 (BIRCS) is observed to prevent both migration and invasion in ESCC.

Hu et al. [247] provide CD163 as a marker of M2 macrophage, helping to predict the
aggressiveness and prognosis of Kazakh esophageal squamous cell carcinoma.
Diacylglycerol kinase o (DGKA) is crucially involved in the progression of ESCC,
according to Chen et al. [76], who suggest DGKA as a viable target for ESCC treat-
ment.

The work of Wong et al. [767] and Ma et al. [469] suggest that Dual-specificity
phosphatase 6 (DUSP6) plays a role in the metastasis, carcinogenesis of ESCC.

Li et al. [358] suggest EH domain-containing protein 2 (EHD2) as a promising inde-
pendent prognostic biomarker for ESCC.

According to Gao et al. [179], Forkhead Box A2 (FOXAZ2) is crucial to the develop-
ment of ESCC.

Overexpression of heat-shock factor 1 (HSF1) is a biomarker for ESCC as suggested
by Tsukao et. al [694].

Imai et al. [266] emphasize the critical function of Kinesin Family Member Cl1
(KIFC1) in the carcinogenesis of ESCC.

Microtubule-associated protein 4 (MAP4) has been identified by Jiang et. al [285] as a
key regulator of cell invasion and migration in ESCC, making it a potential prognostic

biomarker.
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Mitogen-activated protein kinase 9 (MAPKY9) is down-regulated in ESCC, which
Song et al. [641] theorizes promotes carcinogenesis.
The results presented by Qiu et. al [563] show that mini-chromosome maintenance
complex component 7 (MCM?7) activates the AKT1/mTOR signalling pathway, pro-
moting colony formation, migration, and tumour cell proliferation in ESCC cells.
Recommendations from Choy et. al [102] and Zhong et. al [906] pointed to MCM7
as a biomarker for ESCC.
The biological significance of NADPH oxidase 5 (NOXS5) in the emergence of ESCC
is discussed by Chen et. al [75].
Profilin-2 (PFN2), which Cui et. al [114] show has a novel role in increasing ESCC
progression and also present as a biomarker of high-risk population.
Since its down-regulation inhibits the growth of ESCC, Gao et al. [181] suggests that
Piezo Type Mechanosensitive Ion Channel Component 1 (PIEZO1) presents as a new
therapeutic target for ESCC.
In patients with ESCC, Yen et al. [825] demonstrate that the promyelocytic leukaemia
gene (PML) protein serves as an independent prognostic predictor.
Peroxiredoxin 6 (PRDX6) overexpression is shown by He et al. [231] to contribute to
the development of ESCC via Erk1/2.
According to the study presented by Granelli et al. [197], SELIL aids in identifying
patients who are at a high risk of developing ESCC.
According to Li et al. [346], sex-determining region Y box 12 (SOX12) promotes the
JAK?2/STAT3 signalling pathway, which improves the motility of ESCC cells.
Cell proliferation, migration, and invasion are all significantly reduced when Stathmin
1 (STMNT1) is down-regulated, according to Ma et al. [467], but these processes are
increased when STMNI1 is up-regulated.
According to Sheyhidin et al. [629], Toll-like receptor (TLR) 3 is a potential target
for the treatment of ESCC..
Zhang et al. [852] introduce Tetraspanin 15 (TSPAN15) as a new therapeutic biomarker.
Ubiquitin-specific protease 39 (USP39), which Zhao et al. [899] identifies as an onco-
genic factor in ESCC.
According to Jiang et al. [284], restoring the function of VGLL4 may be a promising
therapeutic approach for treating ESCC. VGLL4 down-regulation is thought to be
crucial in the development of ESCC.
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Table 5.11 gives a summary for all hub-genes detected by CBDCEM that have liter-

ature evidence as potential biomarkers for six SCCs as mentioned earlier.

Tab. 5.12: Summary of potential ESCC biomarkers identified by CBDCEM using the biomarker
criteria (Section 2.5).

GSE20347 GSE23400 GSE130078
Casel HSF1 MCM7 PML
Case 2 DGKA, MAP4, PEN2, DUSP6, PRDX6, MAPKY, SELI1L, EHD2,  BIRCS
ACVRIB KIFCI1, STMNI
Case 3 TSPANI15 ANXA3, HICI, SOX12, FOXA2, NOXS5
USP39
Case4 USP7, HOXA10, SRSF5 GLI3, CDC6, GNG7

There exists strong literature evidence that associate all BCGs that falls under Cases 1
and 2 to ESCC. In all three datasets, they have also been annotated to highly enriched GO
terms and enriched pathways. All hub-genes that fall under Cases 1 and 2 are potential
biomarkers as discussed in the biomarker criteria (Section 2.5). As shown in Table 5.12,
twelve BCGs including DGKA, MAP4, PFN2, DUSP6, ACVR1B, PRDX6, MAPKO,
SELIL, EHD2, KIFC1, STMNI1, and BIRCS are potential biomarkers for ESCC as they
fall under Case 2. Case 1 includes three BCGs, HSF1, MCM7, and PML, which are also
TFs (thus they fall under Case 1).

TSPANT15 in GSE20347, NOXS in GSE130078, and 5 hub genes namely, ANXA3,
HIC1, SOX12, FOXA2, and USP39 in GSE23400 fall under Case 3. Thus , while
there exists literature evidence that tie these seven BCGs to ESCC, further in-depth
analysis is necessary to establish them as potential biomarkers. Similar to Case 3, Case
4 pertains to three BCGs, USP7, HOXA10, and SRSF5)in GSE20347 and three BCGs
GLI3, CDC6, and GNG7 in GSE23400. USP7, HOXA10, SRSF5, GLI3, GNG7 and
CDC6 are five BCGs that have been identified as possible biomarkers for the other five
SCC (but not ESCC). All of these hub-genes are TFs, indicating their regulatory function
in the network. Additionally, they are linked to highly enriched pathways and GO terms
in at least two out of three GO databases, demonstrating their biological relevance.

Although 15 BCGs detected by CBDCEM, namely IMJD6, IL18, PHLDA1, BASPI,
FMO2, PRDX4, MMP15, ACOT7, CD38, IGTFBPS5, MCFD2, RAD52, ATP13A3,
YTHDF2 and CDC73 are potential biomarkers for five other previously mentioned SCC,

they have only been annotated to enriched GO terms in one or more GO databases and
190



are neither TFs nor annotated to any enriched pathway. As a result, they lack sufficient
biological or literary support to be taken into consideration as potential biomarkers for
ESCC. The two BCGs KRT75 and MINCR, which are biomarkers for other SCC but
have not been linked to any GO terms or pathways, and cannot be counted as a potential
ESCC biomarker.

Finally, it can be said that validation has confirmed the potential biomarker sta-
tus of 15 hub-genes identified by CBDCEM, including HSF1, MCM7, PML, DGKA,
MAP4, PEN2, DUSP6, ACVRI1B, PRDX6, MAPKY, SEL1L, EHD2, KIFC1, STMNI,
and BIRCS. Additionally, 18 additional hub-genes identified by CBDCEM, including
TSPAN15, ANXA3, HIC1, SOX12, FOXA2, USP39, NOXS, USP7, HOXA10, SRSF5,
HMMR, SDCI1, SPP1, GLI3, CDC6, GNG7, CALM3, and ITGB4, have weak support

for their potential as ESCC biomarkers and need further biological investigation.

5.7 Discussion

Our research is compared to four other hub-gene discovery techniques. Hub-genes
can be located using two of the simplest and most popular techniques: Genes with the
highest degrees within the module and those with the highest intra-modular connectivity
[327]. Additionally, Das et al. in their publication DHGA [120] offered two approaches
for locating hub genes, a) Weighted Gene Score and b) p-value Cut Off, both of which
are extensively applied. For the purpose of hub-gene discovery, we give a straightfor-
ward comparison between CBDCEM and these four approaches. Incorporating CBD-
CEM into a comparison with these four hub-gene discovery techniques is inappropriate.
Therefore, we compare these approaches to our hub-gene discovery algorithm utilizing
the procedures listed below:

1. Pre-processing to module discovery still follows the same pipeline.

2. We use the four techniques simultaneously for each module taken into account by
CBDCEM, and we compile a list of the 20 hub-genes found by each module.

3. We discover the hub-genes from these hub-genes that have literary evidence of re-
lationship with the following types of squamous cell carcinoma (SCC): Esophageal,
oral, laryngeal, lung, tongue, and head and neck SCCs.

Table 5.13 summarizes in detail, the comparison between CBDCEM and four other

previously mentioned methods.
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We compare CBDCEM’s performance to each of the four methods using two param-
eters: a) quantity (which measures how many potential biomarkers have been identified
by a method for the six categories of SCC already mentioned) and b) quality (which
measures how many potential biomarkers have been identified by a method for ESCC
specifically). It is advantageous if a method performs well overall across the board for

both parameters.

5.7.1 Comparison of with WGS, PCO, IMC and Degree

5.7.2 CBDCEM vs. WGS

The DHGA Weigted Gene Score (WGS) [120] identifies a list of hub genes in a
co-expressed gene network based on Weighted Gene Score and does not use statistical
significant values.

As can be observed in Table 5.13, CBDCEM outperforms WGS for the major-
ity of modules. In ten modules, salmon (GSE130078), darkgrey (GSE130078), sky-
blue (GSE20347), floralwhite (GSE20347), greenyellow (GSE20347), paleturquoise
(GSE20347), grey60 (GSE23400), midnightblue (GSE23400), lightcyan (GSE23400),
and salmon (GSE23400), CBDCEM performs better than WGS in terms of both qual-
ity and quantity. Furthermore, both CBDCEM and WGS find two possible biomark-
ers in the orange module (GSE20347). CBDCEM has discovered two putative ESCC
biomarkers, DGKA and HSF1, although WGS can only identify HES1. On the other
hand, both WGS and CBDCEM identify two hub-genes that could serve as biomark-
ers in the tan module (GSE23400). However, only one of the two possible biomark-
ers identified by CBDCEM (ANXA3) and one of the two identified by WGS are con-
nected to ESCC. In the purple module (GSE130078), CBDCEM and WGS find two
and one possible biomarkers, respectively; nevertheless, both detect one biomarker as-
sociated with ESCC. WGS has outperformed CBDCEM in terms of both quality and
quantity in four modules: orange (GSE130078), bisque4 (GSE130078), navajowhite2
(GSE130078), and magenta (GSE23400). In the green module (GSE23400), CBDCEM
outperforms WGS in terms of quantity, detecting seven possible biomarkers as opposed
to three. However, only two of the seven hub-genes found by CBDCEM, PRDX6, and
SOX12 are possible ESCC biomarkers, whereas all three potential biomarkers detected
by WGS (AKRIC2, GPX2, and G6PD) exhibit evidence of correlation with ESCC.

While WGS is unable to identify any prospective biomarker in the darkturquoise module
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(GSE20347), CBDCEM finds three potential biomarkers, none of which are associated
with ESCC.

5.7.3 CBDCEM vs. PCO

p-value for DHGA Based on gene connection significance values, Cut-off (PCO)
[120] finds a list of hub genes in a co-expressed gene network.

As can be observed in Table 5.13, CBDCEM outperforms PCO for the majority
of modules. CBDCEM performs better than PCO in terms of both quality and quan-
tity in ten modules, orange (GSE20347), skyblue (GSE20347), floralwhite (GSE20347),
greenyellow (GSE20347), paleturquoise (GSE20347), green (GSE23400), grey60 (GSE23400),
midnightblue (GSE23400), lightcyan (GSE23400) and salmon (GSE23400). In the mod-
ule salmon (GSE130078), CBDCEM outperforms PCO in terms of quantity since it
identifies one more potential biomarker; however, in terms of quality, CBDCEM and
PCO are equal because each discovers two potential biomarkers for ESCC. In the ran
module (GSE23400), CBDCEM outperforms PCO in terms of quantity, detecting just
two possible biomarkers as opposed to three for PCO. However, in terms of quality,
CBDCEM and PCO are comparable because both detect a putative ESCC biomarker.
In module purple (GSE130078), as seen in the case of WGS, CBDCEM and PCO find
two and one possible biomarkers, respectively, but only one of them is associated with
ESCC. Similar to WGS, PCO has outperformed CBDCEM in terms of both quality and
quantity in four modules: orange (GSE130078), bisque4 (GSE130078), navajowhite2
(GSE130078), and magenta (GSE23400). CBDCEM and PCO each identify four and
three possible biomarkers in the module darkturquoise (GSE20347), but none of them
are connected to ESCC. There is no evidence of a connection between any of the only
putative biomarkers identified by CBDCEM and PCO in module lightgreen (GSE20347)
and ESCC.

5.7.4 CBDCEM Vs IMC

With the assumption that a highly connected node has larger flow of relevant infor-
mation through it, genes with high intra-modular connectivity can be considered hub-
genes. WGNA [327] intra-modular connectivity (IMC) calculates connectivity of a node
to other nodes in the same module.

As seen in Table 5.13, there are different scenarios when CBDCEM and IMC are
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compared, unlike in previous cases where there are clear indications that CBDCEM
performing better than WGS and PCO. CBDCEM outperforms IMC in terms of both
quality and quantity in seven modules: skyblue (GSE20347), floralwhite (GSE20347),
paleturquoise (GSE20347), grey60 (GSE23400), midnightblue (GSE23400), lightcyan
(GSE23400), and salmon (GSE23400). It can be said that the performance of CBD-
CEM and IMC in three modules, salmon (GSE130078), dark grey (GSE130078), and
greenyellow (GSE20347), is comparable in terms of both quality and quantity. Four pos-
sible biomarkers are found by CBDCEM and IMC in the module salmon (GSE130078),
with PML and BIRCS being detected by the former while CAV1 and CAV2 being de-
tected by the latter. Out of the two potential biomarkers found in darkgrey (GSE130078),
PIEZO1 and PPFIA1 were found by CBDCEM and IMC, respectively, and have indi-
cations of correlation with ESCC. In the module green (GSE23400), CBDCEM out-
performs IMC in terms of quantity, detecting seven and two possible biomarkers, re-
spectively. However, both are equivalent in terms of quality as both CBDCEM and IMC
found two potential ESCC biomarkers. One putative biomarker in orange (GSE130078),
is detectable by both CBDCEM and IMC, however HMGB3, found by the latter, may be
a potential ESCC biomarker. Both CBDCEM and IMC identify two potential biomark-
ers in the purple module (GSE130078), but only one of the two is a potential ESCC
biomarker according to CBDCEM, whilst both are in IMC. One of the four potential
biomarkers identified by IMC has an association with ESCC, however none of the four
potential biomarkers identified by CBDCEM in the module darkturquoise (GSE130078)
do. Similar to this, in lightgreen (GSE20347), CBDCEM and IMC found possible
biomarkers, BASP1 and UAPILI respectively, of which only the latter has evidence
of relation to ESCC. Similar to WGS, CBDCEM also identifies two hub-genes in the
tan module (GSE23400), which have the potential to serve as biomarkers. However,
only one of the two potential biomarkers identified by CBDCEM (ANXA3) and both
identified by IMC (SULTIA1 and SULT1A2) are connected to ESCC. On the other
hand, both CBDCEM and IMC identify two possible biomarkers in the orange mod-
ule (GSE20347). CBDCEM has discovered two putative ESCC biomarkers, DGKA and
HSF1, although WGS can only identify HESI.
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5.7.5 CBDCEM Vs Degree

Genes with the most degrees can be regarded as hub-genes on the premise that nodes
in a network with high degrees, which have a high volume of incoming and outgoing
degrees, hold the most information. This is the simplest and most basic technique for
finding hub-genes.

The list of identified hub-genes in the majority of modules is pretty comparable be-
tween CBDCEM and Degree. Particularly in smaller and sparser modules discovered by
GSE20347, this is the case. As a result, the bulk of hub-genes that have the potential to
serve as biomarkers are shared by the two approaches. However, there are circumstances
in which CBDCEM outperforms Degree and is able to identify distinct hub-genes that
are missed by Degree. Although there are no shared hub-genes in the module darkgrey
(GSE130078), both CBDCEM and Degree identify two potential biomarkers, with CB-
DCEM providing higher-quality results because it identifies PIEZO1, a potential ESCC
biomarker. A further possible biomarker for ESCC, PML, is discovered by CBDCEM
in the salmon module (GSE130078). In the floralwhite module (GSE20347), CBD-
CEM detects the possible biomarker DUSP6 while Degree misses it. We have seen
that in dataset GSE23400, CBDCEM generally outperforms Degree. A biomarker for
ESCC, SOX12, and two for additional SCCs, MMP15, GLI3, and FGFS, which are not
detected by Degree, are found in the module green (GSE23400). Similar to this, the
possible ESCC biomarker VGLL4 is discovered by CBDCEM in the module grey60
(GSE23400). The module midnightblue (GSE23400) contains two more biomarkers for
different SCCs, MCDEF2 and ITGB4.

We conclude from the experimental findings that CBDCEM works satisfactorily
across the board for all datasets. The percentage of modules in which CBDCEM per-
forms better, similar, or worse than WGS, PCO, IMC, and Degree when considering
both parameters—Quantity and Quality—is summarized in Table 5.14. All modules of
interest can be extracted by CBDCEM with significant levels of GO and pathway en-
richment, proving their biological importance. In the majority of modules, CBDCEM is
able to pinpoint at least one hub gene as a potential biomarker. Only the modules light-
cyan, bisque4, navajowhite2, and darkOrange are an exception to this rule. CBDCEM’s
performance is satisfactory because it can identify a sizable number of hub-genes that

could serve as potential biomakers for Squamous Cell Carcinoma in general. Many of
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these hub-genes also show evidence of a specific relationship with ESCC.

Tab. 5.14: Summary of performance of CBDCEM vs. other methods in terms of proportion of
modules. We compare these methods on 8, 7 and 7 Mols in GSE20347, GSE23400
and GSE130078. Quantity measures the number of potential biomarkers identified by
a method for the six previously mentioned categories of SCC in general and Quality
measures the number of potential biomarkers identified by a method for ESCC in

particular
CBDCEM>Method CBDCEM=Method CBDCEM<Method
Dataset Quantity Quality Quantity Quality Quantity Quality
(%) (%) (%) (%) (%) (%)
GSE20347 625 62.5 37.5 25 0 12.5
WGS  GSE23400 57.1 42.9 28.6 0 14.3 57.1
GSE130078 42.9 28.6 0 14.3 42.9 42.9
GSE20347 625 62.5 37.5 37.5 0 0
PCO GSE23400 714 57.1 14.3 28.6 14.3 14.3
GSE130078 28.6 0 14.3 28.6 42.9 57.1
GSE20347 375 50 50 12.5 12.5 37.5
IMC GSE23400 57.1 42.9 28.6 14.3 14.3 42.9
GSE130078 14.3 0 14.3 42.9 57.1 42.9
GSE20347 125 12.5 87.5 87.5 0 0
Degree GSE23400 28.6 14.3 71.4 85.7 0 0
GSE130078 14.3 28.6 71.4 57.1 0 0

It is interesting, however, that CBDCEM has the capacity to identify possible biomark-
ers that are missed by other methods in several modules (Table. 5.13). With strong ev-
idence of association with ESCC, CBDCEM detects PIEZO1, PML, DUSP6, VGLL4,
and SOX12 in the modules dark grey (GSE130078), salmon (GSE20347), floralwhite
(GSE20347), and green (GSE23400), but not by the other four methods. Additionally,
the hub-genes ANGPT2, MMP15, GLI3, FGF8, and MCFD2, respectively, with strong
evidence of association with five other SCCs (excluding ESCC) are detected by CB-
DCEM in the modules darkgrey (GSE130078), green (GSE23400), and midnightblue
(GSE23400), but are not detected by the other four methods.

5.8 Chapter Summary

We demonstrate that our proposed differential expression analysis method, CBD-

CEM, performs effectively in terms of extracting differentially co-expressed modules
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and identifying hub genes. We have demonstrated that CBDCEM is capable of ex-
tracting relevant modules that GO enriched and pathway enriched from two microarray
datasets , GSE20347 and GSE23400 and one bulk RNA-Seq dataset, GSE130078. We
investigated the behavioral alterations among the DEGs in both normal and disease con-
ditions using Differential Co-expression (DCE) analysis and preservation analysis. All
reasonably sized non-preserved modules are considered as ‘Modules of Interest’ (Mol)
and are further analyzed. CBDCEM identifies 22 Mols across all three datasets. Using
the proposed hub-gene finding method, CBDCEM identifies 20 hub-genes from each
of the 20 Mols. CBDCEM considers all these hub-genes as biomarker candidate genes
(BCGs). CBDCEM performs biological analysis on each BCG and finds literature ev-
idence that associates that BCG with either ESCC or five other SCCs that are associ-
ated with ESCC, namely head and neck SCC, larygeal SCC, lung SCC, oral SCC and
tongue SCC. Three transcription factors (TFs) HSF1, MCM?7 and PML fall under Case
1 of the biomarker criteria (Section 2.5) and are potential biomarkers for ESCC. Twelve
BCGs DGKA, MAP4, PEN2, DUSP6, ACVRI1B, PRDX6, MAPK9, SELIL, EHD2,
KIFC1, STMNI1, BIRCS fall under Case 2 of the biomarker criteria and thus are poten-
tial biomarkers for ESCC. Seven BCGs TSPAN15, ANXA3, HICI1, SOX12, FOXA2,
USP39 and NOXS5 fall under Case 3 and thus require further in depth analysis to es-
tablish them as potential biomarkers for ESCC. Similarly, six BCGs USP7 , HOXA10,
SRSF5, GLI3, CDC6, and GNGT7 fall under case 4 and thus are biologically relevant and
have literature evidence that associate them to five SCCs related to ESCC. Thus, they
are probable biomarkers for ESCC.

In most scenarios, CBDCEM performs satisfactorily, according to a comparison of
CBDCEM with four other hub-gene methods. In addition, CBDCEM can identify ten
unique potential biomarkers that the other four methods are unable to detect, five of
which, namely PIEZO1, PML, DUSP6, VGLL4, and SOX12 have strong evidence of
association with ESCC. It is observed that in the majority of Mols detected in the two
microarray datasets, GSE20347 and GSE23400, CBDCEM outperforms Weighted Gene
Score (WGS) [120] and p-value cut-off (PCO) [120]. However, they perform at par or
better than CBDCEM in the bulk RNA-Seq dataset, GSE130078. In seven modules,
CBDCEM performs better than Intra-modular Connectivity (IMC) [327], while the latter
performs better in three modules . Additionally, their performance is at par across three
modules. CBDCEM performs at par with or better than IMC in terms of the quantity of
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potential biomarkers that are discovered. In eight modules, CBDCEM outperforms IMC,
however, IMC outperforms CBDCEM when the number of potential ESCC biomarkers
found is taken into account. It is also noteworthy that, in the majority of cases, there are
no hub-genes shared by CBDCEM and Intra-modular Connectivity.

In the following chapter, a framework for DCA of single cell RNA-Seq (scRNA-Seq)
data is presented. Through this, we aim to gain an insight into how intrinsic biological
processes interact under various conditions (or states) provided by scRNA-Seq data. In
handling scRNA-Seq data, we examine and address the issues and challenges that may
arise. We employ a variation of our proposed hub-gene finding algorithm presented in

this chapter and compare the same against four hub-gene finding methods.
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