
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 
Singular Spectrum Analysis and Wavelet Analysis 

of Rainfall and Other Selected Meteorological 
Variables in NE India 

 

  



P a g e  | 6-1 

 

Chapter 6  

Singular Spectrum Analysis and Wavelet Analysis of 

Rainfall and Other Selected Meteorological variables in 

NE India 

 

Contents 
Chapter 6 ................................................................................................................... 6-1 

Singular Spectrum Analysis and Wavelet Analysis of Rainfall and Other Selected 

Meteorological variables in NE India ........................................................................ 6-1 

6.1 Introduction .......................................................................................................... 6-2 

Singular Spectrum Analysis (SSA) ........................................................................ 6-2 

Wavelet analysis ..................................................................................................... 6-4 

6.2 Basic Concepts ..................................................................................................... 6-8 

6.2.1 SSA ............................................................................................................... 6-8 

Embedding the sampled time series in a vector space of dimension M ............. 6-8 

Computing the M×M lag-covariance matrix CD of the data ............................. 6-9 

Diagonalizing CD ............................................................................................. 6-10 

Recovering the time series ................................................................................ 6-11 

SSA, Noise and Signal Detection ..................................................................... 6-12 

6.2.2 Theory of Wavelet Analysis ........................................................................ 6-13 

6.3 Results and discussion ....................................................................................... 6-17 

6.3.1 SSA Analysis of rainfall .............................................................................. 6-17 

6.3.2 Wavelet Analysis of monthly rainfall .......................................................... 6-27 

Wavelet power spectrum .................................................................................. 6-27 

Cross-wavelet transform, and Wavelet coherence transform .......................... 6-29 

6.4 Summary ............................................................................................................ 6-39 

6.5 References .......................................................................................................... 6-40 

 



P a g e  | 6-2 

 

6.1 Introduction 

Singular Spectrum Analysis (SSA) 

The Singular Spectrum Analysis (SSA) is a well-developed technique in time series 

analysis [1], that provides knowledge of the dynamics of the underlying system that 

creates a time series, which are either unknown or only partially understood [2, 3]. It 

is recognized for its tremendous application areas- from mathematics, economics, to 

meteorology and oceanology [4-11]  

SSA works at the basic two concepts. Here, the time series of interest is at first 

decomposed into various smaller components, and then the original series is 

reconstructed from the decomposed series.  The forecasting of a time series can be 

achieved as well as, based on this decomposition-reconstruction technique.  As SSA is 

a method based on window length, which decomposes a time series into various 

smaller components, therefore, the time series is not necessarily required to be linear 

or non-linear. Thus, this method is extremely helpful in analysing the climatic time 

series that are inherently in most cases, non-linear in nature [12]. 

The goal of SSA of a time series is the separability, i.e., to find out how well different 

components of a time series be separated from each-other. This leads to the use of 

SSA in the extraction and identification of trends of different resolution, seasonality 

components, extraction of inherent cycles and periodicities and in finding structure in 

short time series [6]. Vautard and Ghil [3] applied SSA in time series analysis of 

global surface air temperature, to isolate small numbers of inter-decadal (period of 21 

and 16 years) and inter-annual (period of 6 and 5 years) oscillatory modes from the 

noise. In recent past, Marques et al. [9] performed successful application of SSA in 

extraction of trends from selected hydrological time series, i.e., annual rainfall, 

monthly runoff, and hourly water temperature over Portugal. Deng [4] also utilised 

SSA in extracting trend, seasonality, and residuals from monthly average sea 

temperature in a coastal region of South America and the outputs were then compared 

with other decomposition methods such as classical seasonal decomposition, seasonal 

decomposition by Loess (STL) and X-11. It was seen that the different components of 

the temperature series produced by the selected studied methods were non-identical 

but were highly correlated. 
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In the Indian context, recent findings depict the versatility of using SSA in the 

hydrological areas such as trend extraction in the hydrological time series and 

subsequent forecasting. Rangarajan [13] applied SSA in isolating the dominant 

principal components of homogeneous Indian Monsoon region rainfall series and its 

subsequent forecasting for the period 1871-1990. In this study, some inter-annual 

variability and a highly consistent phase was detected in the ranges of the annual 

variation in the three major principal components derived from SSA. However, it was 

concluded that the principal components were able to explain only slow and smooth 

changes in the signal and failed to explain the sharp and rapid fluctuations in the 

signals. Likewise, Unnikrishnan and Jothiprakash [14] applied SSA in extracting trend 

component of a daily rainfall time series for the Konya watershed, Maharashtra for 

the period 1961-2009. The SSA method was found to be successful in extracting non-

linear trends from both the hydrologic time series. SSA was also applied in 

characterization of non-linear trends in rainfall time series by Aswathaiah and 

Nandagiri [15] for the period 1960-2015 for seventeen locations of India which were 

prone to irrigational activities since a decade ago. Keeping view of this, SSA was 

implemented to identify the possible change points in that region. The results of this 

study revealed existence of steep, nonlinear trends and distinctive break points in the 

direction of the trend. 

Recent advancements show development of hybrid models using SSA based 

techniques in the field of hydrology. In such a scenario, Baratta et al. [16] applied an 

ensemble technique called as Quantitative Rainfall Forecasting (QRF) based on SSA 

to forecast daily time series of rainfall intensities at 135 stations in Tiber basin, Italy. 

The ensemble method combined an unsupervised decomposition followed by 

supervised learning. The average RMSE for the forecasted series was found to be <3. 

Another study by Alvarez-Meza et al. [10] described an automatic SSA based 

technique for the decomposition and subsequent reconstruction of daily averaged air 

temperature over Berlin, Germany for the period 2001-2004. The results revealed that 

the temperature time series could be decomposed into five different components. It 

was stated that the component with the highest power showed the cycle structure of 

the input time series, while the others might be related with the high frequency 

changes of the time series. This method was found to be successful in reconstruction 

of the original time series, discarding the noise elements. Pham et al. [17] developed a 
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Standardized Precipitation Index (SPI) drought forecasting model based on SSA and 

Single least square support vector machine (LSSVM). To develop the SPI index, nine-

gauge stations and monthly areal rainfall data over Taiwan at monthly basis for a 

period of 41 years (1975-2015) were acquired. The drought forecasting models were 

developed in dual experiments: a) the LSSVM model with or without coupled with 

SSA and b) models with different inputs (antecedent SPIs and antecedent accumulated 

monthly rainfall) pre-processed by SSA. The findings of the study suggested that the 

accuracy of the SPI drought forecasting increased with b). In another study by Reddy 

et al. [18], SSA was coupled with two machine learning methods, i.e., least-squares 

support vector regression (LS-SVR), and Random-Forest (RF) to forecast rainfall 

over Nellore, Andhra Pradesh, India. They used 110 years of input data (Maximum, 

minimum and average temperature, vapour pressure, wind speed, relative humidity, 

and cloud cover) for the period 1901-2012 to predict monthly rainfall. It was revealed 

that the SSA technique could perform impressive forecasting of rainfall when 

combined with the machine learning based approaches. 

Wavelet analysis 

Wavelet technique is a powerful tool for decomposition of a time series into a scaled 

and shifted version of a particular wavelet. By definition, a wavelet is a mathematical 

function that may be used to divide a given function or continuous time signals into 

several frequency components and to analyse each one of them with a resolution 

corresponding to its scale. The oscillating waveforms of finite length/fast decay, 

known as the “mother wavelet” gives rise to the wavelets, which are the scaled and 

translated copies (called “daughter wavelet”) of their mother wavelet. The 

representation of a function by wavelets is known as a wavelet transform. They are 

considered as superior to the classical fourier transforms due to their ability of 

describing functions with strong peaks and discontinuities as well as for the precise 

deconstructing and rebuilding finite, non-periodic, and/or non-stationary signals [19]. 

Perfect reconstruction, i.e., the process of resembling a signal or image that has been 

divided into its component parts without losing any information, is a key 

characteristic of wavelet analysis. Because of these characteristics, wavelet methods 

have been considered as one of the potent and relevant methodologies in the areas of 
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signal processing and time series analysis and their widespread uses can be found in 

the hydro-meteorological studies [20]. 

Wavelet based approaches had been found to be carried out in decomposing various 

univariate time series (annual temperature of Central England, rainfall over the 

Everglades National Park, Florida and monthly NINO3.4 datasets) into its statistically 

significant components [21], detecting dominant periodicities responsible for the 

presence of trends in annual total precipitation over selected regions of Turkey [22], 

the variance and frequency-time localization as well with the detection of the 

dominant oscillations in rainfall as study of extremes [23],  forecasting wind speed 

[24], investigating temporal variations in the dust storms over north China [25], 

studying Karst aquifers’ (located in southern China) the response of discharge, 

suspended sediment and temperature to precipitation [26]. The findings of these 

studies indicate the promising performance of wavelet over other traditional linear 

models as well as wavelet as a coupled model with the modern advances of artificial 

intelligence. 

Wavelet gained a worldwide popularity in the nineties. Wavelet transform was 

implemented in filtering and prediction of time series analysis since then by several 

researchers, such as Moghram and Saifur [27], Aussem et al. [28], and Khotanzad et 

al. [29]. Towards the late nineties numbers of research emerged based on different 

wavelet analyses of climatological series. Studies emphasizing the association of 

various indices of El Niño Southern Oscillation (ENSO) and other meteorological 

variables, mainly rainfall and sea surface temperature (SST) were extensively carried 

out using wavelet. Torrence and Compo [30] presented a step-by-step guide to time 

series analysis using wavelet on two climate indices of ENSO, viz. Niño3 sea surface 

temperature and Southern Oscillation Index (SOI). The results of this study revealed 

the variance of ENSO changing at an inter-decadal timescale, with a period of low 

variance during 1920-1960. The cross-wavelet power spectra revealed the changes in 

the Niño3 variance to be strongly associated with changes in the SOI. Likewise, 

Kestin et al. [31] applied wavelet along with windowed Fourier transform and 

windowed Prony’s method to analyse time-frequency spectral structure of ENSO, 

where three indices, namely, SOI, Niño3 SST and a tropical Pacific rain index were 

analysed for variation in the spectral structures with time for the period 1871-1995. In 
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this study, large decadal changes could be noticed in the power distribution of SOI 

within 2-10 years periodicity band. In another study by Nakken [32], the temporal 

variability of rainfall and runoff and their inter-relationship over selected regions of 

central western New South Wales, Australia and association with SOI was 

investigated. The variability in rainfall, runoff and the relationship between them was 

found as changing over time; the association between SOI and rainfall over the region 

was found to be stronger after 1950s onwards, with a dominant frequency of SOI at 

27 months. Similarly, Torrence and Webster [33] (1999) applied wavelet coherency 

on detection of inter-relationship between various ENSO and monsoon indices, where 

Nino3SST and Indian rainfall showed high coherence, especially during the intervals 

of high variance. Both of these parameters were found to be 180o out-of-phase; with a 

gradual increase in phase difference Vs. Fourier period. Also, as detected in the 

wavelet power spectra, inter-decadal variations were observed in the indices in 2-7 

years band, and intervals of high (1875-1920 and 1960-1990) and low (1920-1960) 

variance were also detected. Narasimha and Bhattacharyya [34] analysed the relation 

of ENSO with the solar activity and Indian monsoon rainfall for two test periods of 31 

and 35 years (1878-1913 and 1933-1964) using wavelet cross-spectral analysis. An 

increased solar activity was found to be associated with a decrease in ENSO indices 

and an increase in monsoon rainfall in the 8-16 years period band. Within the period 

band of 2-7 years, the effects varied with the region. The findings from this study 

suggested that influence of solar processes on Indian monsoon rainfall functions in 

part indirectly through ENSO, but on more than one time scale.  

In case of recent studies pertinent to India, literatures show the application of wavelet 

analyses related to precipitation. Subash et al. [35] applied Morelet wavelet for the 

detection of dominant periodicities prevailing in the total annual rainfall, rainfall 

during monsoon and during the months of June to September over five meteorological 

sub-divisions of central northeast India. In this study, periodic oscillations in the 

bands of 4-8 years and 30-34 years were observed for the western Uttar Pradesh 

(during September) and Bihar (during July) respectively. However, no significant 

periodicity was found to be associated with the rainfall over central northeast India as 

a whole. Determination of possible relationship of monthly precipitations and large-

scale atmospheric circulation patterns with the application of wavelets had gained 

widespread observation. Rathinasamy et al. [36] applied wavelet in determining the 
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possible relationship of monthly rainfall extremes over thirty selected Indian regions 

with Nino3.4 and Indian Ocean Dipole (IOD). It was seen that significant inter-annual 

as well as inter-decadal oscillations (2-8 years and 8-32 years respectively) with 

variability in time and space were present in the extremes of monthly precipitation as 

detected by the wavelet spectra. Further on, these oscillations at the inter-annual and 

inter-decadal scales were found to be significantly driven by Nino3.4 and IOD in the 

wavelet coherence and partial wavelet coherence analysis. Likewise, in another 

research carried out by Das et al. [20] on monthly rainfall over six different locations 

of India for the period 1951-2015 with the help of global wavelet coherence, it could 

be seen that the Indian Summer Monsoon Index (ISMI) have the most effect on 

rainfall than the other selected indices IOD, SST, SOI, Multivariate ENSO Index 

(MEI), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO) and 

Arctic Oscillation (AO). The phase difference between any of the climate indices and 

rainfall was non uniform in nature across India. However, rainfall was found to be in 

phase with ISMI in case of long terms of ISMI over all the studied locations of India. 

It was concluded that the wavelet and global coherence approach was a powerful tool 

in analyzing the association of multiple time series. 

In the previous chapter (Chapter 5) the behaviour of precipitation along with other 

selected meteorological variables in terms of presence of inherent seasonal or cyclical 

components were discussed. Here, in this chapter we present the decomposition of 

monthly rainfall time series at the selected locations of NER (as discussed in Chapter 

2), to segregate the different components consisting of the original rainfall series, and 

their individual contribution to the original time series using SSA. We’ve also 

incorporated wavelet analyses in this chapter, to analyse the rainfall time series in 

time-frequency space, to have an enhanced view of the detection and identification of 

oscillatory components constructing the rainfall time series over the region in a 

multiple-resolution way. Further on, the inter-relationships between rainfall and 

different meteorological variables, viz. temperature, relative humidity, sea level 

pressure and wind speed were examined using wavelet coherence and wavelet cross-

spectrum.  This chapter thus continues with the findings of the previous chapters and 

bridges the next chapter (chapter 7) that discusses the inter-relational sensitivity of the 

selected meteorological variables and rainfall over the NER 
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6.2 Basic Concepts 

6.2.1 SSA 

SSA is fundamentally a model-free technique; rather than being a confirmatory 

procedure, it is more of a tool for generating models. By not fitting an assumed model 

to the available series, it attempts to solve the issues of finite sample length and noisy 

sampled time series, yet, by utilising an adaptive data basis set. The description of the 

SSA approach in this chapter is in accordance with that given by Elsner and Tsonis 

[37]. and Golyandina et al [38]. 

 

 

Figure 6. 1 Diagrammatic representation of the SSA analysis performed on the time series 

There are three basic steps in SSA :  

i) Embedding the sampled time series in a vector space of dimension M; then  

ii) The M×M lag-covariance matrix CD of the data is computed and finally  

iii) CD is diagonalized. 

Embedding the sampled time series in a vector space of dimension M 

The time series x(t): t=1, 2, …, N is embedded into vector space of dimension M by 

considering M lagged copies x(t-j): j = 1, 2, …, M of it. M is also known as ‘window 

length’. The goal is to define the coordinates of the phase space that will roughly 

match the dynamics of the system from which the time record was collected by 

employing M lagged copies of a single time series [39, 40]. The number of lags is 

known as ‘embedding dimension’. This method uses lagged (or delayed) copies of 

Original time series 

Decomposition 

Stop 

Reconstruction 

Start 
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segments of a time series, that is why the procedure is referred to as ‘method of 

delays’. 

Each lagged copy of a time series is used as a column vector, this is used for 

preparing trajectory matrix X. This way of constructing X is convenient to use the 

notation of an (M, J)-window, where M is the number of time series elements in each 

lagged copy (or embedding dimensions) and J is the sample times between each 

visible element. For SSA, J=1 is used in which case it is only necessary to specify M 

and refer to the (M,1)-window as an M-window. 

The selection of window length M is based on a compromise between information 

content and statistical confidence. Longer period oscillations, representing additional 

information above the strictly high frequency components, can be resolved with the 

larger window length. In contrast with the smaller window length, there is increase in 

statistical confidence because high frequency components do not compete with low 

frequency components for the limited available variance [41]. 

To resolve an oscillation of frequency f and a spectral bandwidth 2δf using SSA, 

Vautard et al. [42] recommends. 

1

𝑓
≤ 𝑀 ≤

1

2δ𝑓
 

As a good choice of M. These bounds cannot be determined a priori. Window length 

of M allows the distinction of oscillations with periods in the range of (M/5, M) 

suggested by empirical evidence [43]. 

The trajectory matrix X and its transpose XT are the linear maps between the spaces 

RM and RN. The embedded space, RM, is the space of all m-element patterns. 

Computing the M×M lag-covariance matrix CD of the data 

There are many other ways to find lagged covariance matrix from a univariate time 

series. If we have a set of observations xt, t=1, 2, …., N, Broomhead and King [2] 

proposed 

             (𝐶𝐷)
𝑖𝑗
(𝑖)

=
1

𝑁−𝑀+1
∑ 𝑥𝑖+𝑡−1𝑥𝑗+𝑡−1

𝑁−𝑚+1
𝑡=1  
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Alternatively, suggested by Vautard and Ghil [3] 

            (𝐶𝐷)
𝑖𝑗
(2)

=
1

𝑁−|𝑖−𝑗|
∑ 𝑥|𝑖−𝑗|+𝑡𝑥𝑡

𝑁−|𝑖−𝑗|
𝑡=1  

Here (𝐶𝐷)
𝑖𝑗
(2)

is a Toeplitz matrix, meaning that all the elements along each diagonal 

are the same. 

Diagonalizing CD 

As CD is symmetric and real, there exists a diagonalizing matrix E whose columns are 

orthonormal and a diagonal matrix Λ [44] such that  

                                               CD = EΛET 

                                                CDE= EΛ 

This is known as spectral decomposition of CD. Also ˄ is a diagonal matrix whose 

non-negative entries are the eigenvalues of CD. From the definition of CD, we have  

                                                XTXE = EΛ, 

                                                ETXTXE = Λ 

                                            or (XE)T(XE) = Λ 

trajectory matrix XE is the trajectory matrix projected onto the basis E. The 

components of X aligned along the basis E are uncorrelated as E is composed of 

orthogonal vectors Ek known as the singular vectors of X. The diagonal matrix Λ 

consisting ordered values 0≤ λ1 ≤ λ2 ≤……≤ λM whose square roots are known as 

singular values that are referred to collectively as singular spectrum. These terms give 

SSA its name. Broomhead and King [2] showed method of obtaining the set 

{𝜆𝑘
1/2

, 𝐸𝑘: 1 ≤ 𝑘 ≤ 𝑀} by singular value decomposition (SVD) applied to trajectory 

matrix X. Ek’s are called the empirical orthogonal functions (EOFs).  

If there is arrangement of singular value in a plot is in decreasing order, one can often 

distinguish an initial steep slope, representing the signal, and a (more or less) “flat 

floor” represents the noise level [3]. 

It can be noted that the eigenvalues of CD and the square roots of the eigenvalues of 

CD are singular values, respectively, of X. In fact, X can be written as 
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                                                     X= DLET 

From the single value decomposition [44] (Press et.al.,1992), where D and E are left 

and right singular vectors of Xt and L is a diagonal matrix of singular values. 

Substituting for X in CD, we get 

                                                     CD = XTX = (DLET)T (DLET) 

                                                           =ELDTDLET 

Since DTD=I, we have 

                                                            S=EL2ET 

With the decomposition being unique to within a sign ambiguity, it follows that    

                                                                L2=Λ 

So, this is the right singular vectors of X that are eigenvectors of CD. Similarly, it can 

be shown that the left singular vectors of X are the eigenvectors of the matrix XXT. 

Recovering the time series 

The eigenvalues are used to compute the principal components (PCs) (ak,s) by 

projecting the original record on them as follows: 

𝑎𝑖
𝑘 = ∑ 𝑥𝑖+𝑗−1𝑒𝑗

𝑘𝑀
𝑗=1 ,    for i = 1, 2, …, N, 

Here 𝑒𝑗
𝑘represents the jth component of the kth eigenvector. Each principal component 

ak represents the projections of the original time series onto the k-th EOF. Sum of 

power spectra of PCs is identical to power spectrum of time series x(t) [42]. 

Therefore, we can study separately the spectral contribution of various components. 

The PCs have length N’=N-M+1, not N, and do not contain phase information. 

The recovery of any lost phase information during calculation can be done by 

reconstructing a signal from a convolution of one or more principal components with 

corresponding singular vectors which amount to 

                                                      Xi+j-1=∑ 𝑎𝑖
𝑘𝑒𝑗

𝑘𝑀
𝑘=1  
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Where i = 1, 2, …., N and j = 1, 2, …., M. The records can be filtered this way by 

using only a selection of possible principal components. 

The pairs of high-variance eigenvalues λk = λk+1 are associated with oscillatory 

phenomena, observed by Vautard and Ghil [3]: both the corresponding PCs and EOFs 

are in quadrature (900 out of phase) with each other. The EOFs can be thought as data 

adaptive, anharmonic sine and cosine pair. This observation is true only for a pure 

oscillation but is found to hold in practice also for the paleoclimatic marine record [3]; 

the Vostok isotopic temperature record [45]; a record of 38 years mean monthly 

values of zonal wind at equator [46] and leading EOF analysis of geopotential heights 

taken daily at 700mb (Northern Hemisphere) and 500mb (Southern Hemisphere). 

SSA, Noise and Signal Detection 

The following assumptions in the eigenvalues decomposition is that the record has 

been taken from a process in which the stochastic component (noise) is a white noise 

process and is independent of signal bearing component (signal) of the process. In this 

way, 

CD= 𝑪𝑫
𝒔𝒊𝒈𝒏𝒂𝒍

+ 𝑪𝑫
𝒏𝒐𝒊𝒔𝒆 

If the process is corrupted by independent and identically distributed white noise, then 

𝑪𝑫
𝒏𝒐𝒊𝒔𝒆=v2I 

v2 is noise variance, and I is identity matrix. 

If we store the eigenvectors of CD as columns in matrix E, then since CD is symmetric 

ETCDE = ET(𝑪𝑫
𝒔𝒊𝒈𝒏𝒂𝒍

+v2I) E = Λ, 

Where Λ is the diagonal matrix containing the eigenvalues of CD.  with the 

eigenvectors forming an orthonormal basis we have  

ETIE = I, 

We can write  

ET𝑪𝑫
𝒔𝒊𝒈𝒏𝒂𝒍

E = Λ-v2I. 
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Under the assumption of white noise, CD AND 𝑪𝑫
𝒔𝒊𝒈𝒏𝒂𝒍 share eigenvectors and their 

eigenvalues are related as follows: 

∑ 𝝀𝑴
𝑲=𝟏 K= ∑ 𝝀𝒌

𝒔𝒊𝒈𝒏𝒂𝒍
+ 𝑴𝒗𝟐𝑴

𝑲=𝟏  

6.2.2 Theory of Wavelet Analysis 

The discrete wavelet transform (DWT), which functions similarly to the discrete 

fourier transform in spectrum analysis, is the fundamental tool required for examining 

time series using wavelets. The wavelet analysis methods described here follow 

Walker [47] and Percival and Walden's [48] approaches. 

Let X be an N dimensional vector whose elements are real valued time series {Xt: t= 

0,..., N-1}, where the sample size N is taken as integer multiple of 2j0 . Partial 

discreate wavelet Transform (DWT) of level Jo of X is an orthonormal transform given 

by W= WX, where W is an N dimensional vector of DWT coefficients, and W is an 

N×N real valued matrix defining the DWT (if N= 2J and J0 = J, we obtain a full 

DWT). The DWT coefficients W and matrix W can be partitioned such that  

𝐖 = 

[
 
 
 
 
 
 
 
 
𝐰1

𝐰2

.

.

.

.

.
𝐰Jo

𝐯jo ]
 
 
 
 
 
 
 
 

     and 𝑊 = 

[
 
 
 
 
 
 
 
 
𝑤1

𝑤2

.

.

.

.

.
𝑤𝐽𝑜

𝑣𝑗𝑜 ]
 
 
 
 
 
 
 
 

 

So that Wj =WjX and Vjo = VjoX. Here Wj is an Nj ≡ N/2j dimensional vector of 

wavelet coefficients associated with change on scale τj≡  2 
j-I; Wj is an Nj × N 

dimensional matrix; Vjo is an N jo dimensional vector of scaling coefficients 

associated with averages on scale λjo≡ 2Jo; and VJo is an NJo × N dimensional matrix.  

The vector X can be synthesized from W via 

X = WTW = ∑ 𝑊𝐽
𝑇𝐖𝐉 +

𝒋𝒐
𝒋=𝟏 𝑉𝐽𝑜

𝑇𝐕𝐉𝐨 ≡ ∑ D
𝐣𝐨
𝐣=𝟏 j + SJo 

Which defines a multiresolution analysis (MRA) of X, i.e., an additive decomposition 

in terms of the N dimensional vectors Dj = Wj
TWj (the jth level detail) and SJo≡
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 VJo
TVJo (Joth level smooth), each of which can be associated with a particular scale (τj 

in case of Dj and λJo in case of SJo).  

In practice the DWT matrix W is not formed explicitly, but rather W is computed 

using a ‘pyramid’ algorithm that makes use of a wavelet filter and scaling filter and 

scaling filter. By definition, a filter {hl : l = 0, …., L -1} of even width L (implying 

ho≠ 0 and hL-1 ≠0) is called a wavelet filter if, 

∑ ℎ1 = 0𝐿−1
𝑙=0  and ∑ ℎ1ℎ1+2𝑛

𝐿−1
𝑙=0 = {

1, 𝑖𝑓
0, 𝑖𝑓

   
𝑛 = 0

𝑛 𝑖𝑠 𝑎 𝑛𝑜𝑛 − 𝑧𝑒𝑟𝑜 𝑖𝑛𝑡𝑒𝑔𝑒𝑟
 

Where the second summation expresses the orthonormality property of a wavelet 

filter (in the above hl ≡ 0 for l< 0 𝑎𝑛𝑑 1 ≥ 𝐿, so we consider {hl} to be an infinite 

sequence with the most L nonzero values).  The scaling filter is defined in terms of the 

wavelet filter via the ‘quadrature mirror’ relationship  

𝑔𝑙 ≡ (-1)l+1hL-1-l 

The filter satisfies the conditions 

∑ 𝑔𝑙𝑔𝑙+2𝑛
𝐿−1
𝑙=0 = {

1, 𝑖𝑓 𝑛 = 0;
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 and ∑ 𝑔𝑙ℎ𝑙+2𝑛 = 0𝐿−1
𝑙=0  for all n. 

{hl} is normally a high-pass filter with a band pass given by 
1

4
≤│f│≤

1

2
, while {gl} is 

nominally a low pass filter with pass band 0≤ │𝑓│ ≤
1

4
. Because each filter has a 

nominal pass band covering half and full band of frequencies, both {hl} and {gl} can 

be called half-band filters. 

With {hi} and {gi} thus defined, the pyramid algorithm for stage j consists of 

circularly filtering the Nj-1 elements of 

Vj-1 ≡ [Vj-1, 0, Vj-1, 1,…,Vj-1, N j-1-1] T 

Retaining the filtered values with odd indices – this yields the jth level wavelet and 

scaling coefficients, namely 

Wj,t≡ ∑ ℎ𝑖𝑉𝑗−1,2𝑡+1−𝑖 𝑚𝑜𝑑 𝑁𝑗−1,
𝐿−1
𝑙=0 𝐕𝐣,𝐭 ≡ ∑ 𝑔𝑖𝑉𝑗−1,2𝑡+1−𝑖 𝑚𝑜𝑑𝑒 𝑁𝑗−1

𝐿−1
𝑙=0 , 
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Here, 

t = 0, …., Nj-1 (these are the elements of Wj and Vj). 

Given Wj and Vj, the elements of Vj-1 can be reconstructed (synthesized) via the jth 

stage of the inverse pyramid algorithm, namely,  

Vj-1,t = ∑ ℎ𝑖𝑉𝑗−1,2𝑡+1−𝑖 𝑚𝑜𝑑 𝑁𝑗−1 
𝐿−1
𝑙=0 + ∑ 𝑔𝑖𝑉𝑗,𝑡+𝑖 𝑚𝑜𝑑 𝑁𝑗−1

↑𝐿−1
𝑙=0 , t=0, 1, …, Nj-1 -1,  

Where,  

𝑊𝑗,𝑡
↑ ≡ {

0, 𝑡 = 0, 2, … , 𝑁𝑗−1 − 2

𝑊
𝑗,

𝑡−1

2

, 𝑡 = 1, 3, … ,𝑁𝑗−1 − 1  

Vj
↑,t is defined similarly. 

In this chapter, the monthly rainfall time series over selected study areas were 

subjected to SSA, with the aim to decompose them into their different components 

and the contribution of each of them in constructing the original time series was then 

computed. The monthly rainfall time series were simultaneously decomposed into 

different scales using discrete series of wavelet transform (DWT) ‘symlet8’ as the 

mother wavelet. Here the original time series was decomposed in nine levels or 

resolutions, yielding ten series w1 to w10 (depending upon the signal length l=588) at 

different scales. At each level of decomposition, a signal was decomposed into 

approximations (rn; low frequency coefficients) and details (wn; high frequency 

coefficients) using a low pass and high pass filters respectively [49]. A diagrammatic 

representation of the 9-level decomposition is depicted in Figure 6.2 (b). The 

individual wavelet spectra were analysed. The inter-relationship of rainfall with other 

selected meteorological variables (MaxT, MinT, RH, SLP and WS) was studied in the 

wavelet decomposed signals with the help of cross-wavelet transform and wavelet 

coherence. Wavelet coherence analyse the linkage between two time series within the 

time-frequency space by measuring the correlation between them [20]. The cross 

wavelet transform uncovers the common power and relative phase of two time series 

in time-frequency space, while the wavelet coherence reveals the significant 

coherence between two time series even when the common power is low [50]. The 

phase of the coherence spectra was also investigated. The wavelet decomposed 10 
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series were obtained for further used. These ten series were utilised in building a 

multi-resolution model with VAR-IRF. Figure 6.2 (a) and (b) depicts the thematic 

representation of the analysis thus performed. 

a) 

b) 

 

 

 

 

 

 

 

 

 

 

 

OS= w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 

Figure 6. 2 a) Diagrammatic representation of the wavelet analysis performed on rainfall and 

the other selected meteorological variables; b) the 9-level wavelet decomposition resulting 

into ten series (w1-w10) of different resolutions (here l=588, so considering 2n<l, 

decomposition levels are n= 9).  
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6.3 Results and discussion 

6.3.1 SSA Analysis of rainfall 

The results of SSA are described selected site wise in this section. The diagnostics of 

the computation for each site are elaborated with the help of the 1D plots of 

eigenvectors (a; Figures 6.3-6.7), the paired plots (2D scatterplots) for the first six 

eigenvectors pairs (b; Figures 6.3-6.7) and the screeplots of eigenvalues (c; Figures 

6.3-6.7) of the decomposed rainfall series. The usefulness of these 1D and 2D graphs 

lies in the fact that the singular values of the two eigentriples (ET) of a harmonic 

series are often very close to each other, which makes the visual identification of the 

harmonic components easier. Also, an analysis of the scatterplots of the eigen vectors 

in a pairwise way allows clear visual identification of those eigentriples 

corresponding to the harmonic components of the series, provided those components 

are separable from the residual component [6]. The weighted (w-) correlation matrix 

for each original and reconstructed series was calculated, that can be explained with d; 

Figures 6.3-6.7. The w-correlation matrix is the matrix of weighted correlations 

between the elementary reconstructed components [5], that helps in checking for 

weak separability between the elementary components. The structure of each 

reconstructed component of the original series along with the residuals can be viewed 

in e; Figures 6.3-6.7. 

As evident in Figure 6.3 (a), two slowly varying trend components (ET1 and ET6) 

were present in the deconstructed rainfall time series at CHR. Among them, ET1 

contributed to a major percentage (42.06%) of the original series. The trend 

component ET6 seemed to be mixed with the signal, due to the appearance of 

seasonality within. Along with trend existed the periodic components that can be 

identified in the paired plots of the eigenvectors (Figure 6.3 b). The paired plot 

showed that the ET pairs 2-3 and 4-5 are produced by modulated sine waves, since the 

pure sine and cosine with equal frequencies, amplitudes, and phases create the 

scatterplot with the points lying on a circle, resembling regular polygons [51][6]. 

Thus, by counting the numbers of vertices in the paired plots the periods of the sine 

waves could be determined as 12 (ET 2-3) and 6 (ET 4-5). The contributions of these 

pairs were found to be the next highest (18.56+18.36% and 2.01+2% respectively). 

Thus, the 1st six components had a total of ~85% contribution to the original rainfall 
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series at CHR. The proportion of variance explained by each component constructing 

the original time series could be described with the help of the screeplot also (Figure 

6.3 c). A significant drop in the eigenvalues was observed around component 6 in the 

x axis, beyond which could be considered as the residuals or noise. The weighted 

correlation between the ET pairs (up to ET10) were calculated and presented in the w-

correlation matrix (Figure 6.3 d). Here, the matrix of absolute values of w-correlations 

was depicted in grayscale (the color from white to black corresponding to the absolute 

values of correlations from zero to one). It could be seen that the pairs ET2-3 and 

ET4-5 were separated between themselves as well as from the trend component 

(ET1). The final yield of the reconstruction could be seen in Figure 6.3 e, depicting 

clear view of the components (Trend, component1 and component2). In the 

reconstruction plots, the component 3 could be the manifestation of ET6, however the 

characteristics were not clearly identified. 

a) b) 

c) 
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d)  

 e) 

Figure 6. 3 CHR: a) Eigen vectors for the 1st six components of the deconstructed monthly 

rainfall series, b) Paired plots for the 1st six eigen vectors of the decomposed series of 

rainfall, c) Screeplots of the eigenvalues in the decomposed rainfall series, d) W Correlation 

matrix for the original and reconstructed rainfall series and e) Reconstructed rainfall series 

(Original, Trend, Component 1, 2, 3 and Residuals); here the x axis denoted months 

 

In case of monthly rainfall at DBR, the deconstruction resulted into a trend 

component (ET1) that contributed the highest (56.9%) among all as evident in Figure 

6.4 a. The scatterplots of the eigenvector pairs (Figure 6.4 b) revealed that the 

components ET2-3 and ET4-5 were harmonic, with the periods of 12 and 6 

respectively, similar to CHR. From both the 1D and 2D plots it was evident that these 

periodic components along with the trend component contributed ~88% to the 

original series. The w-correlation matrix supported the grouping of these paired 

components (Figure 6.4 d). The proportion of variance explained by each component 

constructing the original series can be seen in the screeplot (Figure 6.4 c), that 
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resembles similarity in structure with that in CHR. Finally, the outputs of 

reconstruction are presented in Figure 6.4 e, where the trend and the periodic 

components of 12- and 6-months present in the rainfall series were plotted. Similar to 

CHR, the component3 in this reconstructed plot could be the residuals as no 

information could be drawn from the plot. 

a) b) 

c) 

d) 
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e) 

Figure 6. 4 DBR: a) Eigen vectors for the 1st six components of the deconstructed monthly 

rainfall series, b) Paired plots for the 1st six eigen vectors of the decomposed series of 

rainfall, c) Screeplots of the eigenvalues in the decomposed rainfall series, d) W Correlation 

matrix for the original and reconstructed rainfall series and e) Reconstructed rainfall series 

(Original, Trend, Component 1, 2, 3 and Residuals); here the x axis denoted months 

 

The deconstruction of monthly rainfall at GHY revealed the presence of trend 

components (ET1, 4 and 5), among which ET1was the highest contributor (52.85%), 

as evident in Figure 6.5a. However, like CHR, ET5 seemed to be mixed with the 

signal, due to the appearance of seasonality within. Two harmonic pairs of 

components ET2-3 and ET6-7, of periods 12 and 2.4 months respectively were 

identified along with the trend component behind the original rainfall series at GHY 

(Figure 6.5 b). However, the contribution of the ET6-7 to the original series was low 

(0.62%) as evident from the scatterplot. The screeplot (Figure 6.5 c) and the w-

correlation matrix (Figure 6.5 d) identified the presence of other two pairs of 

components ET8-9, ET10-11, although the variance described by these pairs were 

minute (the F11 was not included while computing the w-correlation; hence the later 

pair was not detected clearly in the matrix). The reconstruction revealed the structure 

of the trends (depicted as trend and component 2 in Figure 6.5 e) and the periodic 

component 1 and 3 (corresponding to ET2-3 and ET6-7 respectively). 
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a) b) 

c) 

d) 
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e) 
Figure 6. 5 GHY: a) Eigen vectors for the 1st six components of the deconstructed monthly rainfall series, b) 

Paired plots for the 1st six eigen vectors of the decomposed series of rainfall, c) Screeplots of the eigenvalues in 

the decomposed rainfall series, d) W Correlation matrix for the original and reconstructed rainfall series and e) 

Reconstructed rainfall series (Original, Trend, Component 1, 2, 3 and Residuals); here the x axis denoted months 

 

 

Similar to all the selected study sites, the deconstruction of monthly rainfall at KSH 

confirmed the presence of the trend component ET1 as the principle component of the 

original series, with a 56.10% contribution (Figure 6.6 a). Besides ET1, ET4 also 

revealed to be a trend component. The paired plots (Figure 6.6 b) identified two 

periodic components of 12 months and 4 months corresponding to the eigenvector 

pairs ET2-3 and ET5-6. The screeplot and the w-correlation matrix supported the 

grouping of the components. W-correlation matrix also grouped ET8-9. However, as 

the 1st six eigenvectors explained their largest cumulative contribution (~84%), ET8-9 

was not characterised here. Structure of the final reconstruction plots of the trends and 

other components were similar to that in GHY. 
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a) b) 

c) 

d) 
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e) 

Figure 6. 6 KSH: a) Eigen vectors for the 1st six components of the deconstructed monthly 

rainfall series, b) Paired plots for the 1st six eigen vectors of the decomposed series of 

rainfall, c) Screeplots of the eigenvalues in the decomposed rainfall series, d) W Correlation 

matrix for the original and reconstructed rainfall series and e) Reconstructed rainfall series 

(Original, Trend, Component 1, 2, 3 and Residuals); here the x axis denoted months 

 

 

 

 

 

At TUL three trend components (ET1, 4 and 5) could be identified from the 

eigenvectors plots (Figure 6.7 a). The paired plots identified ET2-3 as the harmonic 

components with 12 months period.  From the w-correlation matrix (Figure 6.7 d) the 

grouping of ET4 and 5 suggested that they might be of similar forms. W-correlation 

matrix also grouped ET8 and 9, but from the screeplot (Figure 6.7 c) however, 

component6 (ET6) seemed to be starting of the noisy floor as was evident in CHR. 

Thus, the contribution of ET8-9 was not depicted here, considering very low. The 

reconstructed series could be seen in Figure 6.7 e, with the detected periodic 

component (as component 1 in the figure) and the trend components (as trend and 

component 2 in the figure). The reconstruction plots revealed ET4 and 5 to be of 

similar form, as component 3 in the figure. 
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a) b) 

c) 

d) 
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e) 

Figure 6. 7 TUL: a) Eigen vectors for the 1st six components of the deconstructed monthly 

rainfall series, b) Paired plots for the 1st six eigen vectors of the decomposed series of 

rainfall, c) Screeplots of the eigenvalues in the decomposed rainfall series, d) W Correlation 

matrix for the original and reconstructed rainfall series and e) Reconstructed rainfall series 

(Original, Trend, Component 1, 2, 3 and Residuals); here the x axis denoted months 

 

 

 

 

6.3.2 Wavelet Analysis of monthly rainfall 

Wavelet power spectrum 

As evident in the Figure 6.8 (a-e), the rainfall time series at all studied sites displayed 

significant (1% significance level, showed within white colored contour) high power 

(as designated by the wavelet power levels in the right) in the 8–16 month-band in the 

period throughout the 588 months (1969-2017). In this band, the one-year period (i.e., 

12 months) was of the highest wavelet power (Figure 6.8 a-e, black coloured ridge). 

The one-year period of high power could be attributed to the monsoonal influence of 

rainfall in this reason. High frequency oscillations were also prominent in the 2-8 

months band in the period, per every 10 months during 1969-2017, in the rainfall time 

series at all selected locations of NER. In case of KSH and TUL, significant high 

powers were detected in the 16-32 months band in around the 280th-320th month 

(1992-1996). The strength of this high power was greater in TUL than in KSH. 
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a) 

b) 

c) 
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d) 

e) 

Figure 6. 8Wavelet power spectrum of rainfall at a) CHR, b) DBR, c) GHY, d) KSH, e) TUL of 

NER. The cone of influence is designed as a lighted shadow; here the Y axis indicates Fourier 

period in months. 

 

 

 

Cross-wavelet transform, and Wavelet coherence transform 

The results of cross-wavelet transform, and wavelet coherence transform applied on 

the time series of meteorological variables can be elaborated with the help of the 

cross-wavelet spectrum (XWT) plot and wavelet coherence transform (WCT) plot for 

each association. The sign conventions for understanding a cross-wavelet and wavelet 

coherence plot are as follows: 

In phase association is indicated by  “ ” (Horizontal arrows pointing to right) 

Anti-phase association is indicated by “ ” (Horizontal arrows pointing to left) 

When the 1st variable (rainfall) is leading  “ ” or  “ ” 

When the 2nd variable (the other one) is leading  “ ” or “ ” 
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Rainfall with MaxT 

As evident from the XWT plots (Figure 6.10 a-e), significant strong common power 

was present in the period band of 8-16 months for rainfall and MaxT, continuous 

throughout the study period across all the selected regions of NER. It was also evident 

that these parameters were in-phase with significant common power. Significant 

strong intermittent powers in anti-phase could be found in the period band of 4-8 

months in the cross-wavelet spectrum at CHR, GHY and KSH around the 270th-280th 

month (1991-1992), but the power was relatively weaker than that in the 8-12 months 

period band. The WCT plots (Figure 6.10 a-e) also revealed the features that were 

detected in the XWT plots. Additionally, it detected strong significant associations 

between rainfall and MaxT even in the regions of low common powers of the XWT, 

e.g., strong significant associations could be seen in the low frequency bands (period 

band of 64-128) at DBR (starting from the 340th month, i.e., the year 1997), CHR and 

the other locations (localised patches) in the WCT plots. All of these associations 

were anti-phase in nature. The WCT plots at CHR, DBR and KSH exhibited much 

localized significant common powers at the frequency band 32-64. Inter-decadal 

coherence was present at CHR in the high frequency band of 4-8 months, and this 

coherence were anti-phase, most prominent in between the 300th-500th months 

duration (1994-2010). 

 XWT WCT 

a)   

b)    
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c)    

d)    

e)   

 

Figure 6. 9 The Cross wavelet power spectra (XWT) and wavelet coherence spectra (WCT) of 

rainfall with MaxT at a) CHR, b) DBR, c) GHY, d) KSH and e) TUL of NER. The cone of 

influence, where the edge effects might distort the picture, is designed as a lighted shadow; 

here, the relative phase relationship is indicated by the arrow- pointing right (left) depicting 

in phase (anti-phase) association. 

  

Rainfall with MinT 

As depicted by the XWT plots (Figures 6.10 a-e) all the studied locations of NER 

exhibited significant, strong common powers in rainfall and MinT to be in-phase also 

in the period band of 8-16 months. No strong powers could be seen to be anti-phase at 

any site (except in KSH around 100th and 260th month of observation period, i.e., 

around the year 1977 and 1990 in the period band of 4-8 months). However, a detailed 

view could be seen in the WCT plots (Figures 6.10 a-e), where inter-decadal, anti-

phase association of rainfall with MinT were present in the high frequency bands (4-8 

months period) in case of CHR. The other locations also exhibited intermittent anti-

phase associations in the same band. On the other hand, the low frequency band of 
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64-128 months period displayed in phase association mostly after the 340th month of 

observational data (after year 1997) at CHR and KSH. 

 XWT WCT 

a) 

  

b) 

  

c) 

  

d) 
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e) 

  

Figure 6. 10 The Cross wavelet power spectra (XWT) and wavelet coherence spectra (WCT) 

of rainfall and MinT at a) CHR, b) DBR, c) GHY, d) KSH and e) TUL of NER. The cone of 

influence, where the edge effects might distort the picture, is designed as a lighted shadow; 

here, the relative phase relationship is indicated by the arrow- pointing right (left) depicting 

in phase (anti-phase) association. 

 

 

 

 

Rainfall with RH 

The XWT plots (Figure 6.11 a-e) revealed significant strong common power in the 8-

16 months period band between rainfall and RH like the earlier cases. The power in 

this band was in phase at CHR and DBR, however, the rest of the studied locations 

showed intermittent phase reversal. The WCT plots (Figure 6.11 a-e) revealed a 

detailed view where the 8-16 months period band could be seen to be present in a 

rugged manner at most of the locations except CHR. Among the study areas, KSH 

showed the most discontinuity in coherence structure here. The phase reversals were 

the same as in the XWT results. Significant coherence could be seen in the period 

band of 64-128 months at CHR from the starting to the 150th, around 250th-290th 

month of observation (year 1981 and 1989-1993 respectively), DBR from 340th-500th 

month of observation (year 1997-2010), GHY from 400th-500th month of observation 

(year 2002-2010), KSH between 140th-160th and around 300th month of observation 

(year 1980-1982 and 1994) and TUL before 210th month of observation (before year 

1986). 
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 XWT WCT 

a)  

  

b)  

  

c)  

  

d)  
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e)  

  

Figure 6. 11 The Cross wavelet power spectra (XWT) and wavelet coherence spectra (WCT) 

of rainfall with RH at a) CHR, b) DBR, c) GHY, d) KSH and e) TUL of NER. The cone of 

influence, where the edge effects might distort the picture, is designed as a lighted shadow; 

here, the relative phase relationship is indicated by the arrow- pointing right (left) depicting 

in phase (anti-phase) association. 

 

 

 

Rainfall with SLP 

The XWT plots between rainfall and SLP also displayed significant strong common 

power in the period band of 8-16 months (Figure 6.12 a-e). However, this power was 

anti-phase throughout the study period across all the selected locations. The WCT 

plots (Figure 6.12 a-e) detected strong significant coherence in this band and the 

phase-lock pattern was prominent. Intermittent strong, significant coherence was 

observed in the period band of 4-8 months also in case of CHR and DBR. WCT at 

CHR also revealed strong significant coherence between the 150th-300th month and 

340th-400th month () in the 32-64 months period band. The later coherence structure 

was also seen in case of GHY and TUL in the same period band. Other than this, all 

the selected location of NER exhibited strong coherence in the low frequency band of 

64-128 months period. After the year 1992 (after the 280th month of observation 

period), KSH displayed another strong coherence in the low frequency band of 128th 

month period. 
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 XWT WCT 

a)  

  

b)  

  

c)  

  

d)  
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e)  

  

Figure 6. 12 The Cross wavelet power spectra (XWT) and wavelet coherence spectra (WCT) 

of rainfall with SLP at a) CHR, b) DBR, c) GHY, d) KSH and e) TUL of NER. The cone of 

influence, where the edge effects might distort the picture, is designed as a lighted shadow; 

here, the relative phase relationship is indicated by the arrow- pointing right (left) depicting 

in phase (anti-phase) association. 

 

 

 

Rainfall with WS 

As the observational pairs, rainfall with WS exhibited strong common powers (in 

phase) in the 8-12 months period band at all the studied locations of NER as evident 

in the XWT plots (Figure 6.13 a-e). However, the distribution of this power was 

discontinuous throughout the observational period at CHR and TUL. All the locations 

exhibited common significant power in the low frequency band too (≥128 months 

period band). The WCT plots (Figure 6.13 a-e) provided a detailed view. Here, the 

discontinuity in the coherence in 8-16 months period band could be distinctly seen 

with variation in phase structure.  The WCT plots however, did not clearly reveal the 

coherence in the low frequency band (≥128 months period band). But intermittent 

coherence was evident in the low frequency band 16-64 months period band. 

 

 XWT WCT 

a)  
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b)  

  

c)  

  

d)  

  

e)  

  

Figure 6. 13 The Cross wavelet power spectra (XWT) and wavelet coherence spectra (WCT) 

of rainfall with WS at a) CHR, b) DBR, c) GHY, d) KSH and e) TUL of NER. The cone of 

influence, where the edge effects might distort the picture, is designed as a lighted shadow; 

here, the relative phase relationship is indicated by the arrow- pointing right (left) depicting 

in phase (anti-phase) association. 
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6.4 Summary 

SSA and wavelet tools are recognized as an effective tool in identification and 

isolation of dominant features present in a time series and are widely used in the field 

of climate science for their efficiency in use. Wavelet is a relatively newer technique 

than SSA, which explores the characteristics of a time series or the commonalities in 

the features of two time series in both time-frequency domain, while SSA only 

operates in time domain. In this regard, we applied both of these tools in identifying 

the contributing components of a series and their variable contribution by 

deconstruction and reconstruction. In this study, we’ve analyzed the rainfall series 

separately, to look for the characteristic structures constituting each one of them over 

different selected locations of NER, as well as the contribution of these features to the 

rainfall series using SSA. It was found that, the major contribution to a series (about 

>45%) comes from the trend component, followed by a periodic component of 12 

months over NER. Another periodic component of 6 months was also prominent in all 

the studied locations, while periodicities of 4 and 2.4 months were also noticed in 

some of the locations. It was noticeable that in some of the cases more than two trend 

components were also present. 

Wavelet analyses covered the purpose of determining the locations of the possible 

periodic components in individual rainfall series in both time and frequency domain. 

In all of the rainfall series detection of significant periodic components were noticed 

to be existing in the 8-16 months period band. A ridge in the 12 months period of the 

wavelet spectra confirmed the findings from chapter 4 as well as from SSA analyses. 

Commonality was found in the higher power of this 8-16 months period band between 

rainfall and different meteorological variables of interest across all sites. Significant 

strong association of rainfall with MaxT, MinT, RH, SLP and WS was also evident in 

this period band as per the results obtained from wavelet coherence analyses. Apart 

from this period band, both high and low frequency bands (2-8 months period bands 

and 64-128 months period bands respectively) displayed inter-relationship between 

rainfall and selected variables at some locations. Intermittent strong association of 

rainfall with other variables were also evident in some cases. As evident from the 

wavelet analyses, inter-decadal associations were also detected in some period bands 

at certain locations. Among these explored associations, the strong significant 

association that was present in the 8-12 months period band was in phase (usually the 



P a g e  | 6-40 

 

second variable was leading) with almost all the variables except SLP. Anti-phase 

associations were mostly distinct in the low frequency bands, while in the high 

frequency bands most of the associations were in phase. Significant phase reversal of 

180o was also evident in some cases. Significant inter-relations could be seen in the 

association of rainfall with most of the variables, after 1997 or between the year 1997-

2010. In case of the intermittent coherence, rainfall displayed significant association 

with the other meteorological variables near the year 1977 and 1992 in some of the 

studied locations. Thus, by exploring the meteorological time series with these two 

tools, we could see probable induced changes occurring after certain time frame 

leading into existence of repeating patterns at localized portions of the time series in 

time-frequency scale. The inter-associations of rainfall and other meteorological 

variables in multi-resolution had been dealt in the next chapter (Chapter 7). 

In this section prediction of characteristic feature in the rainfall series are not 

included. Future works may include the scope of extracting the trends and forecasting 

the trends in an increasing climate scenario.  
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