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7.1 Introduction 
 

Rainfall is a major climate variable that has significant socioeconomic impact. Events 

like floods and drought is dependent on the extent of rainfall and effect the crop 

production as well as other production activities [1]. The key weather parameters that 

determine the intensity and duration of rainfall received on land are temperature, 

relative humidity, sea level pressure, wind speed, amount of sunshine etc. [2]. 
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Changes in rainfall pattern, temperature, RH, wind speed and sea level pressure 

increase the intensity, frequency, and duration of extreme weather events like drought, 

flood, cyclones and heat waves [3]. Hence, it is crucial to understand the relationships 

between rainfall and different meteorological variables. The relations among 

meteorological variables can be described by using statistical models. Vector 

autoregression (VAR) is an important statistical tool to investigate the inter 

dependencies of these meteorological variables. The VAR model is an extension of 

univariate autoregressive process that describes the linear dependencies of variables at 

time t on the values of the variables at previous time points [4]. VAR methods are 

employed by numerous researchers to study the dynamic nature of economic factors 

and predict the economic growth [5, 6]. Koitsiwe and Adachi [7] examined the 

dynamic association among mining sector, manufacturing sector, service sector and 

exchange rate by using unrestricted vector autoregressive model containing impulse 

response function (IRF), VAR Granger causality and Variance Decomposition 

(VDC). The model explained the response of a specific variable to one standard 

deviation shock of each variable in the system. Results showed that the patterns of 

variation among the variables are well explained by VAR-IRF model. Yazdi and 

Shakouri [8] used autoregressive distributed lag method of cointegration test and 

vector error-correction models and found long-term relationship between CO2 

emissions, and financial growth, renewable energy consumption, and energy use. In 

the study, the Impulse Response Function was used under the VAR method to 

estimate the shocks generated by renewable energy use. Salim et.al. [9] investigated 

relation between climate change, research and development investment and 

agricultural productivity for developing economy in Bangladesh. The climate 

variables chosen for the study are temperature and rainfall. The traditional VAR 

cannot explain the time and unit specific effects for both short- and long-term effects, 

therefore Salim et.al. [9] applied panel heterogeneous model and Pooled Mean Group 

in empirical estimation.  

VAR has been applied in many studies to predict future rainfall. Nugroho et.al. [10] 

forecasted future rainfall for five stations in Indonesia by using VAR and ARIMA 

model. The combinations of rainfall, humidity and temperature were used to develop 

the autoregressive equation. Results showed that VAR model performed better than 

the ARIMA model. Chapman et al. [11] applied as an extension of the linear inverse 
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model (LIM), a first order approximation to a dynamical system in which the 

evolution operator is reduced to a matrix product and white Gaussian noise. Only one 

SST dataset, the Kaplan historical monthly mean SST gridded dataset (5oX 5o 

resolution) was considered (http://iridl.ldeo.columbia.edu/) in this study, as much of 

the subsurface forcing in the tropical Pacific can be modeled using only SST as a 

predictor. As SST is one of the earliest oceanographic variables to be recorded, SST- 

only models are valuable for long-term and historical studies of ENSO variability. 

The results showed improvements of using VAR model in forecast skill by three-

months over the considered period (1981-2010). Ramli et.al [12] predicted rainfall for 

five years (2016-2020) using rainfall and discharge data in 2008-2015 using VAR. 

Based on Nash-Sutcliffe efficiency (NSE), the accuracy of the predicted data was 

tested for the period 2016-2017. The results obtained for this study have an NSE 

value of 0.9522, which is considered satisfactory. The relation among rainfall, 

temperature, humidity and wind speed were also studied. The impact of shocks in 

rainfall on other meteorological variables was examined using IRF. The variance 

decomposition analysis revealed that rainfall fluctuations over a period of 12 months 

become weaker when the shock to itself was introduced, while shocks of temperature, 

humidity and wind speed caused fluctuations in rainfall. In most of the studies the lag 

length was determined by using Akaike Information Criterion (AIC), Final Prediction 

Error Correction (FPE), Schwarz Information Criterion (SIC) and Hannan-Quinn 

Information Criterion (HQ) [13-15].  

The VAR model is under stationary assumption for input variables [16]. 

Differentiation is used to transform non-stationary variables into stationary variables. 

However, many proponents oppose differentiating the non-stationary variables that 

are co-integrated [17]. To extract the valuable information of non-stationary variables, 

integration of wavelet approach and VAR approach was used in various studies [18-

20]. Using wavelet decomposed variables in VAR model can offer valuable insight in 

sensitivity of the variables in different time scale domain. Therefore an integrated 

multi-resolutional approach combing wavelet and VAR was adopted in this study to 

examine the inter-relational sensitivity among rainfall, temperature, relative humidity, 

sea level pressure and wind speed. 

http://iridl.ldeo.columbia.edu/
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7.2 Methodology 

7.2.1 Vector Autoregressive Model 

The Vector Autoregressive (VAR) model is a multivariate statistical technique used to 

analyse time series data that exhibit dynamic interactions. VAR model is actually a 

combination of several autoregressive (AR) models. These models construct a vector 

between the variables that impacts each other. It describes the relationship between 

observations on a particular variable at a given time and its own observations on 

similar variables at a previous time, as well as its relationship with observations on 

other variables. 

The time series of AR of order p is denoted as: 

 

𝑌𝑡 = 𝐴𝑜 + 𝐴1𝑌𝑡−1 + 𝐴2𝑌𝑡−2 +······ +𝐴𝑝𝑌𝑡−𝑝 + 휀𝑡 

 

Here, 𝑌𝑡 is the current value, 𝑝 is the lag length, 𝑌𝑡−1 and 𝑌𝑡−𝑝 is observational values 

from 𝑡 − 1 to 𝑡 − 𝑝, 𝐴𝑜 is the intercept and 𝐴1to 𝐴𝑝 is regression coefficient from 𝑡 −

1 to 𝑡 − 𝑝 and 휀𝑡 is pure white noise error term. 

 

The VAR model used in the present study can be described as follows: 

Step 1: The stationarity of individual meteorological variables were tested using 

augmented Dickey–Fuller (ADF) test [15].  

Step 2: If data is not stationary then the differencing process was carried out. The 

optimum lag length has been determined on the basis of AIC, SIC and HQ test results 

[12]. 

Step 3: After determining the lag value the VAR analysis were performed to 

investigate the significant associations of the variable. 

A VAR model of lag order ‘p’ of rainfall (RF), maximum temperature (MaxT), 

minimum temperature (MinT), relative humidity (RH), sea level pressure (SLP), 

mean sea level pressure (MSLP), wind speed (WS) can be expressed as follows: 
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[
 
 
 
 
 

𝑅𝐹𝑡

𝑀𝑎𝑥𝑇𝑡

𝑀𝑖𝑛𝑇𝑡

𝑆𝐿𝑃𝑡

𝑅𝐻𝑡

𝑊𝑆𝑡 ]
 
 
 
 
 

=

[
 
 
 
 
 
𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6]
 
 
 
 
 

+

[
 
 
 
 
 
 
 
𝑎1,1

1 𝑎1,2
1 𝑎1,3

1 𝑎1,4
1 𝑎1,5

1 𝑎1,6
1

𝑎2,1
1 𝑎2,2

1 𝑎2,3
1 𝑎2,4

1 𝑎2,5
1 𝑎2,6

1

𝑎3,1
1 𝑎3,2

1 𝑎3,3
1 𝑎3,4

1 𝑎3,5
1 𝑎3,6

1

𝑎4,1
1 𝑎4,2

1 𝑎4,3
1 𝑎4,4

1 𝑎4,5
1 𝑎4,6

1

𝑎5,1
1 𝑎5,2

1 𝑎5,3
1 𝑎5,4

1 𝑎5,5
1 𝑎5,6

1

𝑎6,1
1 𝑎6,2

1 𝑎6,3
1 𝑎6,4

1 𝑎6,5
1 𝑎6,6

1 ]
 
 
 
 
 
 
 

[
 
 
 
 
 

𝑅𝐹𝑡−1

𝑀𝑎𝑥𝑇𝑡−1

𝑀𝑖𝑛𝑇𝑡−1

𝑆𝐿𝑃𝑡−1

𝑅𝐻𝑡−1

𝑊𝑆𝑡−1 ]
 
 
 
 
 

+ ⋯

+

[
 
 
 
 
 
 
 
𝑎1,1

𝑝 𝑎1,2
𝑝 𝑎1,3

𝑝 𝑎1,4
𝑝 𝑎1,5

𝑝 𝑎1,6
𝑝

𝑎2,1
𝑝 𝑎2,2

𝑝 𝑎2,3
𝑝 𝑎2,4

𝑝 𝑎2,5
𝑝 𝑎2,6

𝑝

𝑎3,1
𝑝 𝑎3,2

𝑝 𝑎3,3
𝑝 𝑎3,4

𝑝 𝑎3,5
𝑝 𝑎3,6

𝑝

𝑎4,1
𝑝 𝑎4,2

𝑝 𝑎4,3
𝑝 𝑎4,4

𝑝 𝑎4,5
𝑝 𝑎4,6

𝑝

𝑎5,1
𝑝 𝑎5,2

𝑝 𝑎5,3
𝑝 𝑎5,4

𝑝 𝑎5,5
𝑝 𝑎5,6

𝑝

𝑎6,1
𝑝 𝑎6,2

𝑝 𝑎6,3
𝑝 𝑎6,4

𝑝 𝑎6,5
𝑝 𝑎6,6

𝑝
]
 
 
 
 
 
 
 

[
 
 
 
 
 
 

𝑅𝐹𝑡−𝑝

𝑀𝑎𝑥𝑇𝑡−𝑝

𝑀𝑖𝑛𝑇𝑡−𝑝

𝑆𝐿𝑃𝑡−𝑝

𝑅𝐻𝑡−𝑝

𝑊𝑆𝑡−𝑝 ]
 
 
 
 
 
 

+

[
 
 
 
 
 
휀1,𝑡

휀2,𝑡

휀3,𝑡

휀4,𝑡

휀5,𝑡

휀6,𝑡]
 
 
 
 
 

 

 

The above-mentioned matrix equation can be also written as follows using regression 

notation. 

For rainfall, 

[𝑅𝐹𝑡] = 𝐶1 + 𝑎1,1
1 [𝑅𝐹]𝑡−1 + 𝑎1,2

1 [𝑀𝑎𝑥𝑇]𝑡−1 + 𝑎1,3
1 [𝑀𝑖𝑛𝑇]𝑡−1 + 𝑎1,4

1 [𝑆𝐿𝑃]𝑡−1 +

𝑎1,5
1 [𝑅𝐻]𝑡−1 + 𝑎1,6

1 [𝑊𝑆]𝑡−1 + ⋯+ 𝑎1,1
𝑝 [𝑅𝐹]𝑡−𝑝 + 𝑎1,2

𝑝 [𝑀𝑎𝑥𝑇]𝑡−𝑝 +

𝑎1,3
𝑝 [𝑀𝑖𝑛𝑇]𝑡−𝑝 + 𝑎1,4

𝑝 [𝑆𝐿𝑃]𝑡−𝑝 + 𝑎1,5
𝑝 [𝑅𝐻]𝑡−𝑝 + 𝑎1,6

𝑝 [𝑊𝑆]𝑡−𝑝+휀𝑝,𝑡 

 

7.2.2 Impulse response function 

An impulse response can be defined as a reaction of a system (system of equations, 

comprising of a multivariate autoregressive model), in response to an external change 

(shock). In a VAR model, all the variables depend on each other; therefore, individual 

coefficient estimates provide limited information on the reaction of the system to a 

shock [21]. Therefore, the need for impulse responses arises, which provide 

information about the dynamic behaviour of a VAR model. The purpose of an impulse 

response function is to describe the evolution of a VAR model’s reaction to a shock in 

one or more variables [22]. Thus, impulse response analysis employs VAR models, 

which describes how model variables respond to one standard deviation shock of the 

other variables. 

IRF in this study has been used to analyze the impact of shocks in the MaxT, MinT, 

RH, SLP, MSLP and WS on rainfall [15]. It exhibits standard error unit shocks (ε1t, 
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ε2t, …, εkt) of variables over time on the endogenous variable (Y1t, Y2t,…, Ykt). Once 

the order of the VAR process is established, the Wald representation of Yt based on 

standard error εt is given by 

𝑌𝑡 =  µ + 휀𝑡 + Ø휀𝑡−1 + Ø휀𝑡−2 + ⋯ 

Where, the Ø𝑠 are matrices of moving average (nxn) and the impulse responses to the 

shocks of εjt are 

 
𝛿𝑌𝑖,𝑡+𝑠

𝛿휀𝑗,𝑡
=

𝛿𝑌𝑖,𝑡

𝛿휀𝑗,𝑖−𝑠
= Ø𝑖𝑗

𝑠    𝑖, 𝑗 = 1,2, … , 𝑛; 𝑠 > 0 

A plot of Ø𝑖𝑗
𝑠  against s is termed impulse response function (IRF) of Yi with respect to 

εj. With n number of variables, possible numbers IRF can be n2. 

 

7.2.3 Coupling Wavelet and VAR model 

To understand the significant associations among the meteorological variables with 

reference to time in different resolutions, wavelet decomposed time series data 

(obtained from wavelet decomposition in chapter 6) were taken as input for the VAR 

analysis. The individual meteorological variable was subjected to wavelet 

decomposition using symlet8 wavelet. As a result of the symmetrical decomposition 

of the data, signals at various scales were generated and used as input in the VAR 

model. 1σ shocks of the individual wavelet decomposed series (w1-w10) of the 

meteorological variables were applied on the total monthly rainfall over the NER 

(selected locations as per chapter 2). The response of rainfall against these shocks was 

then observed. A thematic representation of the working principle is given below: 
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Figure 7. 1 Thematic representation of VAR-IRF model applied on the monthly total 

series of rainfall over NER 

 

7.3 Results and discussions 

7.3.1 VAR model estimation 

The master equations for rainfall per selected locations of NER were generated from 

the VAR estimates considering a lag length of two. The Equations for Rainfall (RF) 

as an impulse towards shock of MaxT, MinT, RH, SLP and WS considering a lag 

length of 2 (for wavelet decomposed series w1-w10) are as follows (The boldface 

indicates significant values of the parameters): 

1. For CHR 

i. [RF]= 631.342[MaxTw1]t-1 -369.196[MinTw1]t-1 -1.501[SLPw1]t-1 -

36.373[RHw1]t-1 --99.125[WSw1]t-1 +0.697[RF]t-1 + 113.506[MaxTw1]t-2 -

210.418[MinTw1]t-2 -11.525[SLPw1]t-2 -12.752[RHw1]t-2 -10.351[WSw1]t-2 -

0.112[RF]t-2 +401.552 

ii. [RF]= 123.621[MaxTw2]t-1 -119.372[MinTw2]t-1 +12.902[SLPw2]t-1 

+15.524[RHw2]t-1 --75.959[WSw2]t-1 +0.547[RF]t-1 +395.555[MaxTw2]t-2 -

290.596[MinTw2]t-2 -20.416[SLPw2]t-2 +2.878[RHw2]t-2 -49.217[WSw2]t-2 

+0.045[RF]t-2 +394.647 

iii. [RF]= 9.265[MaxTw3]t-1 +475.600[MinTw3]t-1 +7.539[SLPw3]t-1 

+47.220[RHw3]t-1 +147.200[WSw3]t-1 +0.010[RF]t-1 +1.290[MaxTw3]t-2 -

Wavelet 

decomposed 

time series 

Variables: 

RF/ 

MaxT/ 

MinT/ 

RH/ 

SLP/ 

WS 

w1 

w2 

w3 

w4 

w5 

w6 

w7 

w8 

w9 

w10 

V

A

R

-

I

R

F 

 

Rainfall time 

series 

(Monthly 

total) 
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493.200[MinTw3]t-2 +28.030[SLPw3]t-2 -20.520[RHw3]t-2 -84.560[WSw3]t-2 

+0.0530[RF]t-2 +905.200 

iv. [RF]= -140.644[MaxTw4]t-1 +585.472[MinTw4]t-1 +67.122[SLPw4]t-1 

+55.845[RHw4]t-1 +105.682[WSw4]t-1 +0.552[RF]t-1 -237.974[MaxTw4]t-2 -

566.338[MinTw4]t-2 +10.648[SLPw4]t-2 -44.421[RHw4]t-2 -40.166[WSw4]t-2 

+0.002[RF]t-2 +429.854 

v. [RF]= -38.380[MaxTw5]t-1 +197.700[MinTw5]t-1 +297.600[SLPw5]t-1 

+217.600[RHw5]t-1 +260.400[WSw5]t-1 +0.571[RF]t-1 -158.800[MaxTw5]t-2 -

137.400[MinTw5]t-2 -242.600[SLPw5]t-2 -245.900[RHw5]t-2 -219.300[WSw5]t-2 -

0.0140[RF]t-2 +428.200 

vi. [RF]= -133.600[MaxTw6]t-1 -737.800[MinTw6]t-1 +990.600[SLPw6]t-1 -

1065.000[RHw6]t-1 -230.600[WSw6]t-1 +0.572[RF]t-1 -143.800[MaxTw6]t-2 

+806.600[MinTw6]t-2 - 1089.000[SLPw6]t-2 +1055.000[RHw6]t-2 

+397.600[WSw6]t-2 -0.015[RF]t-2 +423.000 

vii. [RF]= 15320.000[MaxTw7]t-1 +7086.000[MinTw7]t-1 -5461.000[SLPw7]t-1 -

1175.000[RHw7]t-1 -1422.000[WSw7]t-1 +0.577[RF]t-1 -15770.000[MaxTw7]t-2 -

7134.000[MinTw7]t-2 +5511.000[SLPw7]t-2 +1197.000[RHw7]t-2 

+1438.000[WSw7]t-2 -0.012[RF]t-2 +411.600 

viii. [RF]= -19140.000[MaxTw8]t-1 -127.300[MinTw8]t-1 -3932.000[SLPw8]t-1 

+1648.000[RHw8]t-1 +1495.000[WSw8]t-1 +0.577[RF]t-1 +42270.000[MaxTw8]t-

2 +9085.000[MinTw8]t-2 +5983.000[SLPw8]t-2 -2245.000[RHw8]t-2 

+768.700[WSw8]t-2 -0.012[RF]t-2 +453.600 

ix. [RF]= 11790.000[MaxTw9]t-1 -33410.000[MinTw9]t-1 +4260.000[SLPw9]t-1 

+19950.000[RHw9]t-1 +9980.000[WSw9]t-1 +0.575[RF]t-1 +4309.000[MaxTw9]t-

2 +9216.000[MinTw9]t-2 +11290.000[SLPw9]t-2 -18630.000[RHw9]t-2 -

28790.000[WSw9]t-2 -0.0120[RF]t-2 +302.700 

x. [RF]= -266000.000[MaxTw10]t-1 +132300.000[MinTw10]t-1 

+2525.000[SLPw10]t-1 +20300.000[RHw10]t-1 -57780.000[WSw10]t-1 

+0.579[RF]t-1 +247300.000[MaxTw10]t-2 -138000.000[MinTw10]t-2 -

922.900[SLPw10]t-2 -20910.000[RHw10]t-2 +52530.000[WSw10]t-2 -0.009[RF]t-2 

+31680000.000 

 

2. For DBR 

i. [RF]= 34.159[MaxTw1]t-1 +13.903[MinTw1]t-1 -39.916[SLPw1]t-1 -

23.730[RHw1]t-1 -20.402[WSw1]t-1 +0.817[RF]t-1 -0.606[MaxTw1]t-2 

+16.776[MinTw1]t-2 +11.850[SLPw1]t-2 -8.085[RHw1]t-2 -19.520[WSw1]t-2 -

0.201[RF]t-2 +85.571 
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ii. [RF]= 13.223[MaxTw2]t-1 -28.611[MinTw2]t-1 -96.424[SLPw2]t-1 -3.675[RHw2]t-

1 +7.258[WSw2]t-1 +0.597[RF]t-1 +15.552[MaxTw2]t-2 -9.195[MinTw2]t-2 -

89.619[SLPw2]t-2 -1.280[RHw2]t-2 -2.834[WSw2]t-2 +0.013[RF]t-2 +87.288 

iii. [RF]= 30.927[MaxTw3]t-1 +3.241[MinTw3]t-1 +29.019[SLPw3]t-1 

+23.726[RHw3]t-1 -7.448[WSw3]t-1 +0.043[RF]t-1 -20.102[MaxTw3]t-2 -

8.625[MinTw3]t-2 +44.982[SLPw3]t-2 -15.642[RHw3]t-2 +9.429[WSw3]t-2 

+0.071[RF]t-2 +197.991 

iv. [RF]= -94.377[MaxTw4]t-1 +217.854[MinTw4]t-1 +109.666[SLPw4]t-1 

+7.913[RHw4]t-1 +21.740[WSw4]t-1 +0.588[RF]t-1 -1.614[MaxTw4]t-2 -

183.275[MinTw4]t-2 -128.848[SLPw4]t-2 -17.749[RHw4]t-2 +0.080[WSw4]t-2 -

0.020[RF]t-2 +95.539 

v. [RF]= -77.070[MaxTw5]t-1 +149.332[MinTw5]t-1 +812.595[SLPw5]t-1 -

22.212[RHw5]t-1 -68.128[WSw5]t-1 +0.626[RF]t-1 +63.989[MaxTw5]t-2 -

141.234[MinTw5]t-2 -886.684[SLPw5]t-2 +24.828[RHw5]t-2 +69.361[WSw5]t-2 -

0.047[RF]t-2 +94.310 

vi. [RF]= 19.090[MaxTw6]t-1 -142.200[MinTw6]t-1 +2570.000[SLPw6]t-1 -

34.730[RHw6]t-1 +71.480[WSw6]t-1 +0.628[RF]t-1 -3.286[MaxTw6]t-2 

+154.400[MinTw6]t-2 -2695.000[SLPw6]t-2 +43.610[RHw6]t-2 -73.480[WSw6]t-2 -

0.047[RF]t-2 +93.360 

vii. [RF]= -3631.000[MaxTw7]t-1 -1421.000[MinTw7]t-1 +6545.000[SLPw7]t-1 -

253.500[RHw7]t-1 +328.500[WSw7]t-1 +0.627[RF]t-1 +4078.000[MaxTw7]t-2 

+1677.000[MinTw7]t-2 -9397.000[SLPw7]t-2 +212.100[RHw7]t-2 -

379.000[WSw7]t-2 -0.047[RF]t-2 +92.950 

viii. [RF]= 19340.000[MaxTw8]t-1 +4477.000[MinTw8]t-1 +21410.000[SLPw8]t-1 -

8746.000[RHw8]t-1 +6477.000[WSw8]t-1 +0.623[RF]t-1 -8666.000[MaxTw8]t-2 

+923.000[MinTw8]t-2 +28060.000[SLPw8]t-2 +10260.000[RHw8]t-2 -

6854.000[WSw8]t-2 -0.044[RF]t-2 +95.570 

ix. [RF]= -10130.000[MaxTw9]t-1 -3048.000[MinTw9]t-1 -11020.000[SLPw9]t-1 

+12110.000[RHw9]t-1 -12930.000[WSw9]t-1 +0.627[RF]t-1 -4395.000[MaxTw9]t-

2 -3894[MinTw9]t-2 -19910.000[SLPw9]t-2 -19600.000[RHw9]t-

2+27150.000[WSw9]t-2 -0.050[RF]t-2 +148.700 

x. [RF]= -2933.000[MaxTw10]t-1 +28990.000[MinTw10]t-1 +395.800[SLPw10]t-1 -

6682.000[RHw10]t-1 -495.600[WSw10]t-1 +0.620[RF]t-1 +3181.000[MaxTw10]t-2 -

32410.000[MinTw10]t-2 -404.400[SLPw10]t-2 +4972.000[RHw10]t-2 

+5009.000[WSw10]t-2 -0.039[RF]t-2 +1687000.000 
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3. For GHY 

i. [RF]= 38.792[MaxTw1]t-1 -5.556[MinTw1]t-1 -11.325[SLPw1]t-1 -

12.302[RHw1]t-1 +14.282[WSw1]t-1 +0.685[RF]t-1 -3.130[MaxTw1]t-2 

+13.194[MinTw1]t-2 -5.263[SLPw1]t-2 -6.559[RHw1]t-2 +9.600[WSw1]t-2 -

0.085[RF]t-2 +59.349 

ii. [RF]= 4.267[MaxTw2]t-1 +5.194[MinTw2]t-1 +5.451[SLPw2]t-1 +6.754[RHw2]t-1  

+18.019[WSw2]t-1 +0.546[RF]t-1 +37.261[MaxTw2]t-2 -30.292[MinTw2]t-2 

+23.809[SLPw2]t-2 +5.323[RHw2]t-2 +8.286[WSw2]t-2 +0.037[RF]t-2 +62.283 

iii. [RF]= -17.476[MaxTw3]t-1 +27.885[MinTw3]t-1 +117.058[SLPw3]t-1 

+8.578[RHw3]t-1 -13.446[WSw3]t-1 +0.013[RF]t-1 +3.059[MaxTw3]t-2 -

42.238[MinTw3]t-2 -112.147[SLPw3]t-2 -9.545[RHw3]t-2 +16.768[WSw3]t-2 

+0.063[RF]t-2 +137.456 

iv. [RF]= -22.016[MaxTw4]t-1 +73.554[MinTw4]t-1 -92.738[SLPw4]t-1 +6.495[RH]t-

1 +9.962[WS]t-1 +0.535[RF]t-1 -18.413[MaxT]t-2 -67.479[MinT]t-2 

+55.652[SLP]t-2 -20.881[RH]t-2 -4.476[WS]t-2 +0.031[RF]t-2 +64.070 

v. [RF]= -80.610[MaxTw5]t-1 +90.050[MinTw5]t-1 -232.100[SLPw5]t-1 

+0.171[RHw5]t-1 +70.950[WSw5]t-1 +0.562[RF]t-1 +70.680[MaxTw5]t-2 -

99.300[MinTw5]t-2 +236.600[SLPw5]t-2 +3.235[RHw5]t-2 -78.610[WSw5]t-2 

+0.009[RF]t-2 +63.780 

vi. [RF]= -134.400[MaxTw6]t-1 +14.480[MinTw6]t-1 -523.800[SLPw6]t-1 

+3.125[RHw6]t-1 -17.230[WSw6]t-1 +0.565[RF]t-1 +122.600[MaxTw6]t-2 -

25.130[MinTw6]t-2 +666.000[SLPw6]t-2 -6.965[RHw6]t-2 +20.870[WSw6]t-2 

+0.009[RF]t-2 +63.720 

vii. [RF]= 1464.000[MaxTw7]t-1 -37.350[MinTw7]t-1 -4935.000[SLPw7]t-1 

+177.600[RHw7]t-1 +348.400[WSw7]t-1 +0.565[RF]t-1 -1427.000[MaxTw7]t-2 

+51.840[MinTw7]t-2 +4672.000[SLPw7]t-2 -165.400[RHw7]t-2 -329.500[WSw7]t-2 

+0.010[RF]t-2 +62.790 

viii. [RF]= 6074.000[MaxTw8]t-1 -5855.000[MinTw8]t-1 -9348.000[SLPw8]t-1 

+1532.000[RHw8]t-1 -108.400[WSw8]t-1 +0.566[RF]t-1 -14050.000[MaxTw8]t-2 

+14090.000[MinTw8]t-2 +20760.000[SLPw8]t-2 -4074.000[RHw8]t-2 

+1181.000[WSw8]t-2 +0.007[RF]t-2 +63.720 

ix. [RF]= 18210.000[MaxTw9]t-1 +13600.000[MinTw9]t-1 -320.800[SLPw9]t-1 -

1637.000[RHw9]t-1 -194.100[WSw9]t-1 +0.569[RF]t-1 -5561.000[MaxTw9]t-2 -

10110.000[MinTw9]t-2 +5786.000[SLPw9]t-2 +4172.000[RHw9]t-2 -

5576.000[WSw9]t-2 +0.005[RF]t-2 +63.930 

x. [RF]= 1004.000[MaxTw10]t-1 +5765.000[MinTw10]t-1 -165.900[SLPw10]t-1 -

7852.000[RHw10]t-1 -10070.000[WSw10]t-1 +0.563[RF]t-1 -7297.000[MaxTw10]t-
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2 +5231.000[MinTw10]t-2 +425.600[SLPw10]t-2 +3269.000[RHw10]t-2 

+6640.000[WSw10]t-2 +0.011[RF]t-2 +307800.000 

 

4. For KSH 

i. [RF]= 64.217[MaxTw1]t-1 +6.080[MinTw1]t-1 -109.270[SLPw1]t-1 -

23.284[RHw1]t-1 +7.208[WSw1]t-1 +0.703[RF]t-1 +9.229[MaxTw1]t-2 

+16.514[MinTw1]t-2 -89.747[SLPw1]t-2 -7.939[RHw1]t-2 -12.368[WSw1]t-2 -

0.112[RF]t-2 +93.600 

ii. [RF]= 27.558[MaxTw2]t-1 -16.472[MinTw2]t-1 -5.123[SLPw2]t-1 +1.847[RHw2]t-1 

+6.283[WSw2]t-1 +0.587[RF]t-1 +41.751[MaxTw2]t-2 -31.298[MinTw2]t-2 -

19.786[SLPw2]t-2 -2.382[RHw2]t-2 +7.780[WSw2]t-2 +0.012[RF]t-2 +91.790 

iii. [RF]= -66.978[MaxTw3]t-1 +74.107[MinTw3]t-1 +144.158[SLPw3]t-1 -

9.131[RHw3]t-1 -9.558[WSw3]t-1 +0.164[RF]t-1 +32.552[MaxTw3]t-2 -

84.478[MinTw3]t-2 -64.010[SLPw3]t-2 -8.702[RHw3]t-2 +16.912[WSw3]t-2 

+0.021[RF]t-2 +186.087 

iv. [RF]= -113.261[MaxTw4]t-1 +120.949[MinTw4]t-1 -214.917[SLPw4]t-1 -

3.928[RHw4]t-1 +61.662[WSw4]t-1 +0.565[RF]t-1 +64.153[MaxTw4]t-2 -

103.246[MinTw4]t-2 +251.143[SLPw4]t-2 -17.074[RHw4]t-2 -41.590[WSw4]t-2 -

0.017[RF]t-2 +102.688 

v. [RF]= -148.686[MaxTw5]t-1 +115.031[MinTw5]t-1 +799.601[SLPw5]t-1 -

63.755[RHw5]t-1 -131.134[WSw5]t-1 +0.591[RF]t-1 +139.169[MaxTw5]t-2 -

111.575[MinTw5]t-2 -681.022[SLPw5]t-2 +60.552[RHw5]t-2 +142.232[WSw5]t-2 -

0.032[RF]t-2 +100.732 

vi. [RF]= -679.527[MaxTw6]t-1 +241.404[MinTw6]t-1 +106.020[SLPw6]t-1 -

26.088[RHw6]t-1 +269.240[WSw6]t-1 +0.593[RF]t-1 +643.091[MaxTw6]t-2 -

242.658[MinTw6]t-2 +293.921[SLPw6]t-2 +30.468[RHw6]t-2 -255.575[WSw6]t-2 -

0.032[RF]t-2 +100.072 

vii. [RF]= 5569.000[MaxTw7]t-1 +1033.000[MinTw7]t-1 -27350.000[SLPw7]t-1 -

1.375[RHw7]t-1 +1737.000[WSw7]t-1 +0.597[RF]t-1 -5280.000[MaxTw7]t-2 -

997.500[MinTw7]t-2 +25200.000[SLPw7]t-2 -14.800[RHw7]t-2 -1687.000[WSw7]t-

2 -0.040[RF]t-2 +102.800 

viii. [RF]= -95.900[MaxTw8]t-1 -6208.000[MinTw8]t-1 -5543.000[SLPw8]t-1 

+1058.000[RHw8]t-1 -+2781.000[WSw8]t-1 +0.591[RF]t-1 +4316.000[MaxTw8]t-

2 +6110.000[MinTw8]t-2 -2120.000[SLPw8]t-2 -646.000[RHw8]t-2 -

3204.000[WSw8]t-2 -0.038[RF]t-2 +112.200 

ix. [RF]= -41450.000[MaxTw9]t-1 -12360.000[MinTw9]t-1 -12510.000[SLPw9]t-1 -

3993.000[RHw9]t-1 -19090.000[WSw9]t-1 +0.603[RF]t-1 +14330.000[MaxTw9]t-2 
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+11320.000[MinTw9]t-2 +136.100[SLPw9]t-2 -11.130[RHw9]t-2 

+18240.000[WSw9]t-2 -0.044[RF]t-2 +130.700 

x. [RF]= -6403.000[MaxTw10]t-1 +2411.000[MinTw10]t-1 +96.170[SLPw10]t-1 -

3991.000[RHw10]t-1 +2720.000[WSw10]t-1 +0.593[RF]t-1 -8489.000[MaxTw10]t-2 

-2541.000[MinTw10]t-2 -63.310[SLPw10]t-2 +2258.000[RHw10]t-2 -

7801.000[WSw10]t-2 -0.034[RF]t-2 +654600.000 

 

5. For TUL 

i. [RF]= 33.081[MaxTw1]t-1 -31.127[MinTw1]t-1 +12.221[SLPw1]t-1 -

9.063[RHw1]t-1 +5.410[WSw1]t-1 +0.586[RF]t-1 +1.884[MaxTw1]t-2 -

7.329[MinTw1]t-2 +13.247[SLPw1]t-2 -5.969[RHw1]t-2 -9.835[WSw1]t-2 -

0.012[RF]t-2 +51.875 

ii. [RF]= 20.899[MaxTw2]t-1 -4.856[MinTw2]t-1 -15.305[SLPw2]t-1 +8.650RHw2]t-1  

-1.303[WSw2]t-1 +0.436[RF]t-1 +24.924[MaxTw2]t-2 -23.857[MinTw2]t-2 -

4.052[SLPw2]t-2 +3.611[RHw2]t-2 -6.744[WSw2]t-2 +0.101[RF]t-2 +56.595 

iii. [RF]= -30.451[MaxTw3]t-1 -4.518[MinTw3]t-1 -18.353[SLPw3]t-1 

+8.741[RHw3]t-1 +7.377[WSw3]t-1 +0.050[RF]t-1 +14.622[MaxTw3]t-2 -

1.386[MinTw3]t-2 +7.690[SLPw3]t-2 -10.481[RHw3]t-2 -4.775[WSw3]t-2 

+0.102[RF]t-2 +103.351 

iv. [RF]= 7.554[MaxTw4]t-1 +62.285[MinTw4]t-1 -94.262[SLPw4]t-1 +6.038[RHw4]t-

1 +18.155[WSw4]t-1 +0.418.000[RF]t-1 -44.061[MaxTw4]t-2 -56.492[MinTw4]t-2 

+52.924[SLPw4]t-2 -11.156[RHw4]t-2 +9.502[WSw4]t-2 +0.093[RF]t-2 +59.319 

v. [RF]= -95.880[MaxTw5]t-1 +46.392[MinTw5]t-1 -151.071[MSLPw5]t-1 -

6.737[RHw5]t-1 +212.912[SLPw5]t-1 +137.234[WSw5]t-1 +0.448[RF]t-1 

+100.295[MaxTw5]t-2 -52.599[MinTw5]t-2 +187.564[MSLPw5]t-2 +9.551[RHw5]t-

2 -248.971[SLPw5]t-2 -124.357[WSw5]t-2 +0.078[RF]t-2 +57.723 

vi. [RF]= -316.86[MaxTw6]t-1 -205.747[MinTw6]t-1 +188.81[SLPw6]t-1 

+56.996[RHw6]t-1 +41.744[WSw6]t-1 +0.448[RF]t-1 +293.766[MaxTw6]t-2 

+198.399[MinTw6]t-2 -175.300[SLPw6]t-2 -56.995[RHw6]t-2 -45.937[WSw6]t-2 

+0.078[RF]t-2 +57.533 

vii. [RF]= 2516.000[MaxTw7]t-1 +1017.000[MinTw7]t-1 -788.200[SLPw7]t-1 -

136.800[RHw7]t-1 +319.200[WSw7]t-1 +0.444[RF]t-1 -2324.000[MaxTw7]t-2 -

980.500[MinTw7]t-2 +380.700[SLPw7]t-2 +136.100[RHw7]t-2 -274.900[WSw7]t-2 

+0.074[RF]t-2 +59.470 

viii. [RF]= -10130[MaxTw8]t-1 -6679.000[MinTw8]t-1 +6378.000[SLPw8]t-1 

+1476.000[RHw8]t-1 -628.700[WSw8]t-1 +0.439[RF]t-1 -5118.000[MaxTw8]t-2 -
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372.100[MinTw8]t-2 +2131.000[SLPw8]t-2 -713.700[RHw8]t-2 

+1941.000[WSw8]t-2 +0.081[RF]t-2 +57.230 

ix. [RF]= 1029.000[MaxTw9]t-1 +1309.000[MinTw9]t-1 -1862.000[SLPw9]t-1 

+532.800[RHw9]t-1 -8265.000[WSw9]t-1 +0.450[RF]t-1 -3292.000[MaxTw9]t-2 -

5979.000[MinTw9]t-2 +3023.000[SLPw9]t-2 +505.400[RHw9]t-2 

+7120.000[WSw9]t-2 +0.073[RF]t-2 +66.310 

x. [RF]= -5484.000[MaxTw10]t-1 -1181.000[MinTw10]t-1 +107.000[SLPw10]t-1 -

3927.000[RHw10]t-1 +6806.000[WSw10]t-1 +0.451[RF]t-1 +4651.000[MaxTw10]t-

2 +1475.000[MinTw10]t-2 -306.700[SLPw10]t-2 +3766.000[RHw10]t-2 -

7604.000[WSw10]t-2 +0.081[RF]t-2 +365400.000 

 

7.3.2 IRF approach 

The Responses of rainfall as impulse towards shocks of selected meteorological 

variables (wavelet decomposed series w1-w10) at different locations of NER are 

described with the help of the IRFs location wise in this section. The IRFs were 

plotted for lags up to 25th months. In each plot the response of rainfall to a shock is 

represented by the solid black line and the confidence interval (95% significance 

level) is plotted in red dotted lines. The magnitude of response is represented in the 

vertical axis, while the horizontal axis shows the duration after the initial shock (lag) 

in months. 

At CHR 

As evident in Figure 7.2, varied response of rainfall was observed upon shocks in 

different resolutions of MaxT (w1-w10). A shock in the MaxT(w1-w2) led to initial 

increase in rainfall from its present value and after attaining peak after certain months 

(~2 months in w1 and 4 months in w2 respectively), the response again starts 

decreasing and attained negative minimum. Rainfall responded in a cyclical manner 

afterwards, upon further shocks given to these two series and finally the effect settles 

after the 12th months in case of w1, while this cyclical mode continued on to an 

indefinite period in case of w2. The IRF exhibited fluctuating patterns up to w4 of 

MaxT, however, these fluctuations seemed to low down from w1-w4 and finally 

subsided in w5. The reason behind the fluctuations was because of the high frequency 

noise prevailing in the high pass filter series generated as a result of wavelet 

decomposition (see last part of the section 6.2.2 in chapter 6; where the order of 

frequency in the wavelet decomposed series was w1>w10). This pattern in the IRFs 
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was constant in case of impulse in w1-w4 of each meteorological variable throughout 

the studied locations. In can be seen that when a shock is given to w5 of MaxT, 

rainfall responded positively at the 1st month, after which its positive response 

decreased. The IRF converged near to zero after six months of receiving the shock in 

MaxT, became negative afterwards up to 18th months lag. After the 18th months lag, 

the response in rainfall reached zero, beyond which it started increasing positively, 

but stayed near zero and stabilised for an indefinite period. The response of rainfall to 

shock in MaxT was stabilised after this 6-month lag in case of w7 too, while in case 

of w8 the response was stabilised after 12 months lag. However, in case of w6, 

rainfall responded negatively at 1 month, after which its negative response started 

declining and stabilised after 6 months.  The w8-w10 series were the low frequency 

noise containing series (see last part of the section 6.2.2 in chapter 6; where the order 

of frequency in the wavelet decomposed series was w1>w10), hence the response of 

rainfall in the IRFs can be regarded as containing biasness (in case of all the variables 

per site).  

MaxTw1 MaxTw2 

MaxTw3 MaxTw4 
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MaxTw5 MaxTw6 

MaxTw7 MaxTw8 

MaxTw9 MaxTw10 

Figure 7. 2 Response of rainfall towards MaxT (w1-w10) at CHR 

 

 

Response structure of rainfall to shocks in all the MinT (Figure 7.3) was like that of 

MaxT in case of w1-w4. The immediate response by rainfall at the shock was positive 

in case of w5, which rapidly declined and reached zero after six months. This 

response started increasing positively after 12 months, however it became stabilised 

afterwards soon. In case of w6 and w7 however, the initial response of rainfall was 

negative, which stabilised at zero after six months same as that in case of w5.  
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MinTw1 MinTw2 

MinTw3 MinTw4 

MinTw5 MinTw6 

MinTw7 MinTw8 
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MinTw9 MinTw10 

Figure 7. 3Response of rainfall towards MinT (w1-w10) at CHR 

 

In case of RH, the response of rainfall (Figure 7.4) was initially positive, but it slowly 

declined and attained zero at 10 months lag, after which the response continued 

declining in the same slow way along the negative vertical axis and was stabilised at 

indefinite period. In case of w6, the initial response of rainfall was negative; however, 

the negative response started declining and after the 20th months the response died out 

as zero. In w7, the initial negative response of rainfall became zero after four months. 

RHw1 RHw2 

RHw3 
RHw4 
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RHw5 RHw6 

RHw7 RHw8 

RHw9 RHw10 

Figure 7. 4 Response of rainfall towards RH(w1-w10) at CHR 

 

In case of SLP (Figure 7.5), the response of RF was positive to the initial shock in 

w5-w6, and this response became zero at 6 and 9 months respectively. In case of w5 

the response further on stayed negative to the 18th months lag, after which a slight 

positive increase was observed. However, the increasing positive response stabilised 

near zero same as in w5 of MaxT. In case of w7, the initial response was negative, 

and it reached its negative maximum at 2.4/2.5 months, after which the response 

shifted toward the positive vertical axis and attained zero after 12 months.  
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SLPw1 
SLPw2 

SLPw3 SLPw4 

SLPw5 SLPw6 

SLPw7 SLPw8 
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SLPw9 SLPw10 

Figure 7. 5 Response of rainfall towards SLP (w1-w10) at CHR 

 

In case of WS (Figure 7.6), the response of rainfall to w5-w6 was positive at the 1st 

months lag, after which it eventually decreased and became stable after 5th-6th months 

in case of w6. On the other hand, the response of rainfall became negative after the 

18th months lag and stabilised soon after. In case of w7 however, rainfall responded 

negatively after receiving the initial shock, but the response died quickly within five 

months.   

WSw1 WSw2 

WSw3 WSw4 
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WSw5 WSw6 

WSw7 WSw8 

WSw9 WSw10 

Figure 7. 6 Response of rainfall towards WS (w1-w10) at CHR 

 

 

At DBR 

In case of MaxT (Figure 7.7), rainfall responded positively to the initial shocks and 

this response settled eventually after 5-6 months (w5-w7). The IRFs in case of the 

other high and low frequency noise containing series were similar to that in CHR. 
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MaxTw1 MaxT w2 

MaxT w3 MaxT w4 

MaxT w5 
MaxT w6 

MaxT w7 MaxT w8 
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MaxT w9 MaxT w10 

Figure 7. 7 Response of rainfall towards MaxT (w1-w10) at DBR 

 

As depicted in the IRFs for rainfall to MinT (Figure 7.8), the response of rainfall to 

the initial shock was negative, which eventually declined and diminished after 6th-7th 

months in case of w6. In case of w5 and w7 the response became stable after 18th and 

12th months (in case of w7 the initial response was positive, which declined 

eventually and became negative after the second lag till 12th lag). 

MinTw1 MinT w2 

MinT w3 MinT w4 
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MinT w5 MinT w6 

MinT w7 MinT w8 

MinT w9 MinT w10 

Figure 7. 8 Response of rainfall towards MinT (w1-w10) at DBR 

 

In case of RH (Figure 7.9) the initial response of rainfall to impulse in RH (w1-w10) 

was negative in w5 and w7, which eventually settled after 5-6th lag. However, rainfall 

was not found to show any response toward shock in w6 at all. 
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RH w2 

RH w3 RH w4 

RH w5 RH w6 

RH w7 RH w8 
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RH w9 RH w10 

Figure 7. 9Response of rainfall towards RH (w1-w10) at DBR 

 

In case of SLP, the initial response of rainfall (Figure 7.10) was positive (w5, w6 and 

w8), which decreased and became stable after the 8-9th lag in w5 and w6, whereas the 

initial positive response reached peak at 3rd lag and again declined to be stable at 

indefinite time in w8. The same happened in case of w7 also, though the initial 

response of rainfall was negative. 

SLPw1 SLP w2 

SLP w3 SLP w4 
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SLP w5 SLP w6 

SLP w7 SLP w8 

SLP w9 SLP w10 

Figure 7. 10 Response of rainfall towards SLP (w1-w10) at DBR 

 

 

The response of rainfall to impulse in WS (w5-w7) as depicted in Figure 7.11 was 

positive, which declined and settled after 5-6th and 7-8th lag in w5 and w6-w7 

respectively. 
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WS w3 WS w4 

WS w5 
WS w6 

WS w7 
WS w8 
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WS w9 
WS w10 

Figure 7. 11 Response of rainfall towards WS (w1-w10) at DBR 

 

At GHY 

The response of rainfall to shocks in MaxT series of different resolutions are 

presented in Figure 7.12. As evident from the IRFs, the response of rainfall was 

positive, which declined and became zero after 3-4 months and became negative. The 

response stayed negative for the next few months, after which it became positive after 

15-16 months and for an indefinite period became stable. In w6 however, the initial 

response was negative, and it became stable after 8-10 months. The response in case 

of w7 was unclear. 

MaxT w1 MaxT w2 

MaxT w3 MaxT w4 
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Figure 7. 12 Response of rainfall towards MaxT (w1-w10) at GHY 

 

 

In case of w5 of MinT, the rainfall response was initially negative, but it became zero 

after 3 months (Figure 7.13). The response pattern seemed to be the inverse pattern of 

the response that was observed in case of MaxT; only the moment of delay in the 

response was different. The initial response in rainfall was negative also while shock 

was applied to w6, but the strength of this response declined and became zero after 6-

10 months. In case of w7 the no clear response by rainfall could be identified. 
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Figure 7. 13 Response of rainfall towards MinT (w1-w10) at GHY 

 

 

 

 

 

In case of w5 of RH, no clear response was observed in rainfall towards impulse in 

w5 (Figure 7.14). The initial response of rainfall to shock in w6 was negative, which 

died off after 6 months. On the other hand, the initial response by rainfall was positive 

to shock in w7, but the response became stable after 6 months. 
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RH w3 RH w4 
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Figure 7. 14 Response of rainfall towards RH (w1-w10) at GHY 

 

 

 

 

The response pattern of rainfall toward shock in w5 of SLP was similar to that in w5 

of MaxT at GHY. In case of w6, an initially positive response was observed in 

rainfall, but it lasted for less than five months. In case of w7, no clear response was 

observed by rainfall (Figure 7.15). 
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Figure 7. 15 Response of rainfall towards SLP (w1-w10) at GHY 

 

As evident from the IRFs in Figure 7.16, an initial positive response by rainfall was 

detected towards shock in w5, while the opposite was observed in case of w6 and w7 

of WS. In case of w5 the response declined gradually and after crossing zero near 9th 

lag, the response became negative and stable after 12 months, while the response by 

rainfall became nil and stable after 6 and 4 months respectively in case of w6 and w7. 
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Figure 7. 16 Response of rainfall towards WS (w1-w10) at GHY 

 

 

 

 

 

At KSH 

The response of rainfall as impulse towards shock in different resolutions of 

meteorological variables for KSH is presented in Figure 7.16-7.21. In case of MaxT, 

initial positive response was detected in w5-w7, which gradually declined and became 

zero after 5-6 months in case of w5, the response revered to become negative in case 
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of w6 after 2-3 months for an indefinite period and in case of w7 the response kept 

declining for an indefinite period. 
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P a g e  | 7-38 

 

MaxT w9 MaxT w10 

Figure 7. 17 Response of rainfall towards MaxT (w1-w10) at KSH 

 

 

In case of w5 of MinT, same pattern of response as that in w5 of MaxT was observed, 

only the effect of the initial shock lasted for a little long (~8 months). On the other 

hand, in case of both w6 and w7 of MinT, the initial response shown in rainfall 

towards the shock in MinT was negative and it became zero after 6 and 4 months 

respectively for w6 and w7 (Figure 7.18). 
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Figure 7. 18 Response of rainfall towards MinT (w1-w10) at KSH 

 

 

Initial negative response was observed in rainfall (Figure 7.19) towards shock in w5 

of RH, which died off after 8-9 months. No response was observed in rainfall towards 

shock in w6 of RH. In case of w7, a low negative response in rainfall could be seen in 

case of w7, but the response reversed after less than 3 months and then slowly became 

zero.  



P a g e  | 7-40 

 

RH w1 RH w2 

RHw3 RH w4 

RH w5 
RH w6 

RH w7 RH w8 



P a g e  | 7-41 

 

RH w9 RH w10 

Figure 7. 19 Response of rainfall towards RH (w1-w10) at KSH 

 

 

 

Rainfall showed positive response at the beginning to the shocks in w5-w7 of SLP 

(Figure 7.20. The response declined became stable after 8 and 5 months in case of w5 

and w6, while case of w7 the response became negative quickly, and afterwards 

stayed as such for an indefinite period. 
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Figure 7. 20 Response of rainfall towards SLP (w1-w10) at KSH 

 

 

 

In case of WS, initial negative response was observed by rainfall towards shock in w5 

and w7, while the opposite was detected in case of w6. The response became stable 

after 10 and 18 months in case of w5 and w6. In case of w7, the persistence period of 

the initial negative response was less than 5 months, which afterwards became 

positive and stable for an indefinite period (Figure 7.21). 
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Figure 7. 21 Response of rainfall towards WS (w1-w10) at KSH 

 

At TUL 

Response of RF as impulse towards shock of different meteorological variables (for 

wavelet decomposed series w1-w10) for TUL is presented in Figure 7.22-7.26. 

It can be seen that rainfall initially responded positively after the shock was applied 

on w5-w7. However, the response declined quickly and became negative after 5, 2 

and ~10 months in case of w5, w6 and w7 respectively. It was observed that the 

response became stable at negative state for an indefinite time except w5. In case of 

w5 the negative response reversed after nearly 20 months (Figure 7.22).   

MaxTw1 MaxT w2 
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Figure 7. 22 Response of rainfall towards MaxT (w1-w10) at TUL 

 

 

In case of MinT (Figure 7.23), the initial response of rainfall was found to be slightly 

negative when shock was applied on w5 and w6, and the response became stable soon 

(before 5 months) for an indefinite time. To the contrary, the initial response of 

rainfall was positive at the application of shock to w7, and it also became stable for an 

indefinite period after 5 months. 
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Figure 7. 23 Response of rainfall towards MinT (w1-w10) at TUL 

 

 

 

In case of RH also, rainfall initially responded negatively to w5 and w6, but either 

very soon the response became zero (w6, after <5 months) or reversed and remained 

positive for indefinite period (w5). In case of w7 the initial response was the opposite 

and it became stable after 5 months (Figure 7.24). 
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Figure 7. 24 Response of rainfall towards RH (w1-w10) at TUL 

 

 

 

As evident in Figure 7.25, Rainfall responded positively, as shock was applied on w5 

of SLP, while the opposite initial response was observed in case of w6 and w7. 

However, like the previous cases, the response became zero quickly (on or before 6 

months) in case of w5 and w7, while in case of w6 the response fluctuated weakly 

between positive and negative Y axis at certain lags and no clear conclusion could be 

drawn.  
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Figure 7. 25 Response of rainfall towards SLP (w1-w10) at TUL 

 

 

The initial response of rainfall was positive towards w5-w7 of WS at TUL (Figure 

7.26). In case of w5 of WS, response of rainfall became negative from the initial 

positive response after 15 months and on the other hand the response of rainfall 

became zero after 6 months in case of w6. In case of w7, the response of rainfall 

became stable as a negative response after 6 months.  
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Figure 7. 26 Response of rainfall towards WS (w1-w10) at TUL 

 

7.4 Summary 

The determination of inter-association of meteorological parameters is crucial for 

understanding the sensitivity and sustenance of a region in a changing climatic 

scenario. The VAR method along with IRF approach is such a technique that explores 

the inter-relationships among different meteorological variables with change in time. 

In this study, an attempt was made to study the inter-relational sensitivity of rainfall 

with different meteorological variables such as temperature (MaxT and MinT), RH, 

SLP and WS using VAR-IRF modelling technique, coupled with wavelet. The 

sensitivity of rainfall was studied on different resolutions of the selected 

meteorological variables. The time series of meteorological variables of different 

resolutions were obtained from the wavelet decomposition. Depending upon the data 
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length, ten such series were obtained for each variable for the selected locations of 

NER and 1σ shock was applied on each resolution to see the behaviour of monthly 

rainfall total as an impulse. It could be seen that the response of rainfall in the high 

and low frequency series (w1-w4 as the high frequency series and w8-w10 as the low 

frequency series) was cyclical, as induced by noise. The observations from the 

climatic series (w5-w7) revealed that the response of rainfall upon changes to each of 

these different resolution’s series per variable could last for 5-12 months of initial 

application of shocks. It could be seen that the initial response by rainfall in most of 

the cases was sharp in either negative or positive way, but the response died off soon. 

Also, in some of the cases the response of rainfall was found to be persisting for an 

indefinite period. 
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