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5.1 Introduction 

Model fitting to a time series data is necessary when it comes to time series analysis. It 

is established well that the methods involved in fitting a specific model to such data 

series relies on two assumptions: viz. i) the time series is assumed to be stationary, i.e., 

the statistical properties of it being constant over time (or, to be converted to stationary 

if not by transformations such as differencing), and ii) that the time series follows a 

linear model, i.e., the values of it can be represented as linear combinations of present 

and past values of a strictly random or independent series [1]. Thus, the state of the 

statistical properties of a time series manifests the behavior of the said time series. This 

can be described with the help of the time series processes, e.g., white noise processes 
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(et), that merely consists of a sequence of independent random variables, with constant 

mean (μ) and variance (σ2) over each time point in stationary condition; autoregressive 

(AR) processes, where the current observation (xt) of a time series (X) is assumed to be 

regressed over the previous observations (xt-1, xt-2,…, xt-n); moving average (MA) 

processes, where the xt of a X is assumed to be dependent on the current and past error 

terms (εt, εt-1, εt-2,…, εt-n) of X, or a mixture of both the AR and MA processes, called 

as mixed autoregressive moving average (ARMA) process, that is known to lead to 

more parsimonious model (model with the ability to adequately describe X) than can 

be achieved by the pure AR or MA processes [1,2]. Time series may be non-stationary 

in nature, i.e., exhibiting mean and variance that changes over different time points of 

the time series. In such cases, applying differencing and incorporating the differenced 

term d into an ARMA process gives rise to a new approach of time series analysis called 

autoregressive integrated moving average, ARIMA [2, 3]. The ARIMA processes 

become weakly stationary after d is applied [4].  

Often the meteorological variables in the climate system such as temperature, wind 

speed etc. produce non-stationary time series. The non-stationarity in the 

meteorological time series is induced by the characteristics such as trend and variability 

[5]. Research around the globe has been incorporating trend and variability assessments 

to the weather forecasting of meteorological variables to co-operate in decision and 

policy making for an area. In such scenario, ARIMA is widely used in different regions 

of the globe. For example, Edwards [6] developed ARIMA models to study the 

variability in temperature and rainfall, by simulating trends in these meteorological 

parameters on a regional basis over selected regions of New Zealand. In this approach 

the ARIMA generated data was found to fit good with both the actual temperature and 

rainfall datasets for most of the regions. The different best fit ARIMA models were 

found to be able to predict rainfall and temperature trends likely for the next hundred 

years, with no significant difference in variability between the observed vs predicted 

data. Kim et al. [7] applied ARIMA in studying the spatio-temporal characteristics of 

rainfall over Mongolia. In this study, 1o ×1o gridded precipitation data for summer 

season were fitted and predicted. The summer precipitation mean intensity for the 

period 2008-2029 was predicted to be 28.2 mm. From the predicted projections it was 

found that the summer (June-August) rainfall followed a declining trend in the North-

East, North-West, South-East and South-West regions, with a decrease in rainfall by 
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1.3 mm y-1, 2.7 mm y-1, 1.7 mm y-1 and 2.7 mm y-1 respectively. Cadenas et al. [8] used 

hourly average and a ten-minute average meteorological data, such as, wind speed (ms-

1), wind direction (o), barometric pressure (mbar), air temperature (oC), solar radiation 

(W m-2), relative humidity (%) over two places of Mexico, to compare the impact of 

different meteorological variables on the performance of multivariate model (nonlinear 

autoregressive exogeneous artificial neural network, NARX) of wind speed forecasting 

and high performance univariate linear model (ARIMA). In this study the univariate 

ARIMA model was found to bring reasonable one-step ahead prediction of wind speed. 

However, NARX model was found to be better at performance than that of the ARIMA 

model. In another study by Balasmeh et al. [9], ARIMA model was used to predict the 

changes in rainfall over Wadi Shueib catchment area in Jordan. The best fit models, 

validated with a ten-year data for the period 2007-2016 were used in rainfall forecasting 

up to the year 2026, which was followed by trend projection in the precipitation records. 

Based on the monthly and seasonal analysis, the ARIMA(3,1,3), ARIMA(4,1,3) and 

ARIMA(4,2,4) were the best fitted models for monthly, average and seasonal data 

records for different stations. The ARIMA models were statistically significant at 5% 

significance level. 

Large water bodies such as dams may lead to an increase in the levels of atmospheric 

moisture, thus effecting the local climate, in terms of increasing or decreasing trends in 

the relative humidity around the dam. This importance of study pertinent to relative 

humidity over a dam area was investigated by Eymen and Köylü [10]. They tried to 

identify significant trends in seasonal meteorological time series (maximum, minimum 

and average relative humidity, and average wind speed) for the area nearby the Yamula 

Dam, Turkey. The trend identification was followed by prediction of the average 

relative humidity over the region using ARIMA. For the prediction, the time series was 

split into two parts: pre dam (1970-2004) and post dam (2005-2014) period. The pre-

dam series was used in predicting the post dam time series and validating the model 

performance by ARIMA. In this study, ARIMA was found to be a strong technique in 

predicting relative humidity.  

Statistical time series forecasting model was developed based on ARIMA by Lai and 

Dzombak [11] for near-term prediction of temperature and precipitation as an efficient 

alternative tool to GCM. For this purpose, daily time series of different climate indices 

of precipitation and temperature starting earlier than the year 1900 for 93 cities of U.S. 
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were used in model building as well as validating. Further on, quantitative analyses on 

comparison of ARIMA based forecasts with that of the other statistical techniques such 

the linear trend method were also performed. It was observed that though ARIMA 

based model could not surpass them, but the ARIMA based forecasting model proved 

to be effective, explainable, and steadfast for obtaining near-term (2-20 years) forecasts 

for regional temperature and precipitation. In another study, the seasonal ARIMA 

(SARIMA) was applied on a 25 year monthly averaged relative humidity data for the 

period 1984-2010 over North-West Iran by Shiri et al. [12] to study and forecast the 

changes in the selected parameter up to year 2014. On the basis of the parsimonious 

model SARIMA(1,0,1)(1,1,1)12, the results of the study were indicative of increasing 

trends in the relative humidity for the months May, June and September. 

Literatures are available on ARIMA in studying the behaviour of meteorological 

variables and forecasting over East Asia [13-15]. Han et al. [13] utilized ARIMA model 

in forecasting drought over Guanzhong, China. The standardized precipitation index 

(SPI), data was used as a drought quantifying tool for this region. Here, data from 1966-

2003 was utilized for model development and the year 2004 data was used for model 

validation. It was noticed in this study that ARIMA was proven as a strong tool in short-

term forecasting of drought.  Likewise, while forecasting the monthly precipitation time 

series, the influences brought about by the inter-monthly variations within each year is 

often ignored. An improved seasonal ARIMA model was developed, considering both 

inter-monthly and inter-annual variations by Wang et al. [14] for the Lanzhou region of 

China. The seasonal model was improvised by applying cluster analysis on the monthly 

data series for classifying the data series and subsequent extraction of the characteristic 

features (maximum, minimum and truncated mean of each series), followed by the 

build-up of linear regression models to determine the associated parameters for each 

monthly series. Finally, the seasonal ARIMA model was built for each characteristic 

feature as identified from the cluster analysis. From the results it was noticed that the 

accuracy of the improved model was significantly higher than that of the conventional 

seasonal model (forecasting precision increased by 21%). Li et al. [15] applied 

comparison study on ARIMA and Long Short-Term Memory (LSTM; a deep learning 

approach) in forecasting relative humidity for China, taking 300 days daily average 

relative humidity data from August 1952 to June 1953 in model building, and ten days 

data from June 19-28, 1953, for checking the model validation. Here, ARIMA(1,0,0) 
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was found to be the best -fit among the selected ARIMA models, which was used to 

predict daily average relative humidity over the next ten days. Subsequently, the same 

was performed by LSTM and Back Propagation (BP) neural network also. The RMSE 

values of the predicted models were found to be the least in case of ARIMA (5.1) than 

LSTM (7.1) and BP neural network (6.4). Thus, it was concluded that the prediction 

effect by ARIMA on relative humidity was better than the selected deep learning 

methods. However, the shortcomings such as limited experimental environment and 

problems in choosing proper parameters in neural network were also listed. 

In South-East Asia, monthly rainfall records for the period 1980-2010 were used to 

build a SARIMA model for the prediction of long-term rainfall over the Sylhet region 

of Bangladesh, by Bari et al. [16]. In this study, data from 1980-2006 were utilized in 

model building, while data from 2007-2010 were used for checking the model 

performances. Here, ARIMA(0,0,1)(1,1,1)12 was found as the most effective model in 

forecasting rainfall at 95% confidence level. Another study over Bangladesh, on 

prediction of atmospheric pollutant was investigated by Shahriar et al. [17]. He assessed 

the performance of two hybrid models, viz. ARIMA-Artificial Neural Network 

(ARIMA-ANN) and ARIMA-Support Vector Machine (ARIMA-SVM) along with 

Decision Tree (DT) and CatBoost deep learning model (Tree based soft computing 

models) in forecasting ambient PM2.5 concentrations over selected regions of 

Bangladesh from January 2013 to May 2019. The CatBoost deep learning model was 

found out to be the most effective in prediction, while ANN in combination with 

ARIMA showed accuracy in prediction for the selected stations. The ARIMA-ANN 

and deep learning techniques were revealed to be efficient in delivering useful 

manifestation for early alerts of the PM2.5 pollution over the region. In another study, 

the characteristics of rainfall in terms of variability, anomaly and trend were studied by 

Dawood et al. [18] for the Hindu Kush region using ARIMA(1,0,0). The analysis on 

annual average and mean monthly rainfall data displayed the presence of both 

increasing and decreasing trends at different locations of this region.  

In case of the research related to India, Somvanshi et al. [19] used a hundred- and four-

years rainfall data (1901-2003) over Hyderabad, India to model the behaviour of the 

rainfall time series. The first 93 years of average annual rainfall were used for model 

training, while the rest ten years of data were utilized in forecasting by ARIMA(4,2,1) 

and ANN(4 0 0). From the comparison of the results, ANN was found to be 



P a g e  | 5-6 

 

outperforming ARIMA and the concluding remark was drawn that ANN could be used 

as an appropriate prediction method for rainfall in this region. Chattopadhyay and 

Chattopadhyay [20] developed a univariate model to forecast the monsoonal rainfall 

(June-August) over India using ARIMA. Here, three models, i.e., ARIMA(0,1,1), 

ARIMA(0,2,2) and ARIMA(1,1,1) were built, among which the ARIMA(0,1,1) was 

identified as a suitable  representative model. Finally it was concluded that the 

ARIMA(0,1,1) might be an substitute model for predicting rainfall in monsoon season 

over India, provided there’s no scope for neural network modelling. In another case, 

Chaudhuri, and Dutta [21] utilised ARIMA in their study with the purpose to provide 

accurate daily forecasted data on concentration of the meteorological parameters 

(surface temperature and relative humidity) and air pollutants (SO2, NO2, PM10, CO 

and O3) over Kolkata. In this study, three ARIMA models, viz. ARIMA(1,1,1), 

ARIMA(2,1,2) and ARIMA(0,2,2) were built and the performance was assessed at 95% 

confidence level. The best fit model selection was accomplished with the help of 

different information criteria. The selection through the validation with the observed 

data for the year 2012 revealed that ARIMA(0,2,2) was the best among the three models 

in predicting both pollutant and meteorological time series over Kolkata during 2002 

to 2012. In recent past, Hosamane et al. [22] (2020) used ARIMA to predict PM10 

concentration over SG Hali area of Bangaluru, using daily PM10 concentration data 

from July 2019 to January 2020. The results showed that ARIMA (2,1,3)(1,0,0) was 

the best-fit model for the prediction over the selected area of Bangalore city. It was 

concluded that the use of ARIMA was beneficial in reducing the measurement 

uncertainty associated with PM10 concentration. 

The seasonal behaviour of rainfall over India has been studied in recent past [23-25]. 

Narayanan et al. [23] used ARIMA in forecasting rainfall for the period 2010-2030, 

following the detection of rainfall trends at 10% significance level in pre-monsoon 

season over the western region of India- a semi-arid region, characterized by intense 

dust-storms. Here, the forecasted rainfall series showed the signs of significant increase 

in the pre-monsoonal rainfall over the region. On the other hand, Narayanan et al. [24] 

used sixty-year continuous rainfall data from 1949-2009 for twenty IMD stations over 

India to forecast the pre-monsoon rainfall for the period 2010-2030. The results upon 

comparison with the report by the Indian Network of Climate Change Assessment 

(INCCA, 2010) showed agreeability in forecasting rainfall for 2030, i.e., the projection 
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of increase in pre-monsoon rainfall (~5% increase in ensemble average) for stations in 

a Himalayan region (North-West, West, and entire Indo-Gangetic Plain). 

ARIMA(4,1,1) and ARIMA(1,2,2) were found to be the parsimonious models in 

forecasting the pre-monsoon rainfall at two stations of NER of India, namely, 

Cherrapunji and Guwahati respectively. 

Studies are available on the application of SARIMA modelling approach in developing 

forecasting model for monthly prediction of meteorological variables in India also. In 

this context, Nirmala and Sundaram [26] utilised monthly total rainfall for a period of 

136 years, from 1871 to 2006 over Tamilnadu, India. The authors’ concluding remarks 

was that SARIMA could give better prediction accuracy for monthly rainfall over 

Tamilnadu, provided that more input parameters such as El Nino Southern Oscillation 

(ENSO), land surface temperature were available. In another study, an SARIMA model 

(SARIMA(1,2,1)(1,0,1)12) was developed for the prediction of monthly rainfall by 

Swain et al. [27] over Khordha district, Odisha, India. The model was trained by 

monthly rainfall data for over 80 years (1901-1982), and the forecasting efficiency was 

tested for 20 years (1983-2002) by Nash-Sutcliffe efficiency and coefficient of 

determination, R2. The results revealed an excellent consistency of the forecasted values 

for 20 years monthly rainfall with respect to the observed rainfall. Dimri et al. [25] 

utilised a hundred years (1901-2000) monthly averaged data on precipitation and 

temperature (maximum and minimum) in forecasting for the next twenty years (2001-

2020) using SARIMA over the Bhagirathi River basin, Uttarakhand, India. The best fit 

models for the rainfall and temperature were found to be SARIMA(0,1,1)(0,1,1)12 and 

SARIMA(0,1,0)(0,1,1)12 respectively. The forecasted data seemed to fit well with the 

trend upon comparison. However, over-prediction was observed in case of extreme 

rainfall events. In a recent finding, Shad et al. [28] executed SARIMA and ANN with 

multilayer perceptron (MLP) methods to forecast the monthly relative humidity over 

Delhi, India for the period 2017 to 2025 using time series data of relative humidity from 

2000 to 2016. From the AIC scores the best fit model was found to be 

SARIMA(1,0,0)(0,1,1)12. However, it was concluded that ANN with MLP was more 

effective in predicting relative humidity for the region. 

While talking to the NER, India, rather limited research has been observed pertinent to 

the behaviour of meteorological variables using statistical approaches such as ARIMA 

as per the literature survey. Most of the studies were found to be focused on Assam 
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only. Goswami et al. [29] used SARIMA models were developed in prediction of long-

term monthly temperature data over Dibrugarh, India for a period of fifty years (1966-

2015). (2017). They developed two seasonal ARIMA models, SARIMA(2,1,1)(0,1,1)12 

and SARIMA(2,1,1)(0,1,1)12 to forecast temperature (maximum and minimum 

temperature respectively) over Dibrugarh, which seemed effective in forecasting 

temperature for this region. In 2018, Murthy et al. [30] adopted SARIMA in forecasting 

monsoonal rainfall in NER and concluded that SARIMA(0,1,1)(1,0,1)4 was appropriate 

in forecasting rainfall during monsoon except for some extreme values. Das et al. [31] 

studied the temporal variation of temperature in Guwahati, Assam with the application 

of SARIMA. The selected models SARIMA(3,0,3)(1,1,2)12 and 

SARIMA(3,0,2)(1,1,0)12 for maximum and minimum temperature respectively. The 

models forecasted the respective time series for ten years at 5% significance level, 

which was concluded as in very good agreement with the previously recorded findings. 

Among the recent findings, Kumar et al. [32] and Barman et al. [33] applied SARIMA 

in monthly analysis of air pollution and rainfall over Assam respectively. The study by 

Kumar et al. [32] was a comparative account of performance of models on SO2, NO2 

and RSPM, generated by a number of machine learning algorithms and 

SARIMA(3,1,3)(1,1,1)12 for 17 years (2003-2019) over selected districts of Assam. It 

was seen that among ARIMA approach outperformed the machine learning approaches. 

However, it was concluded that the prediction was poor by all the methods. On the other 

hand, Barman et al. [33] utilised monthly rainfall data for the period 1901-2017 in 

forecasting by both ARIMA and SARIMA. The performance of model by SARIMA 

was found to be best fit for Assam in this study, with the suggestion for the scope of 

support vector regression (SVR), ANN and recurrent neural network (RNN) in the 

same. Thus, the studies pertinent to ARIMA is limited with lack of focus on other 

meteorological variables governing the meteorology of NER, in a changing climate 

scenario. 

Therefore, in this chapter, we’ve tried to study the behaviour of rainfall as well as the 

other meteorological variables as mentioned in Chapter 2, using a linear statistical 

method, ARIMA as follows. All the analyses were carried out using EasyReg package 

under R programming language. 
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5.2 Methods 

In the following sub-sections, a detailed account on the methods of ARIMA modelling 

is described. For the whole analysis, monthly time series of rainfall, temperature, 

relative humidity, sea level pressure and wind speed were considered and analysed as 

per the following. 

5.2.1 Stationarity testing 

The Augmented Dickey-Fuller (ADF) test [34] was applied on the time series to check 

for the presence of unit roots. This test is used as a tool for checking stationarity in time 

series [35-38]. The ADF test uses a high order autoregressive process to examine the 

unit roots present in the time series data. The testing procedure is like Dicky Fuller test 

except lags with respect to the variable that were incorporated in the model [39-41]. 

∆𝑌𝑡 =  𝛼 + 𝛽𝑡 + 𝛾𝑖𝑌𝑡−1 ∑ 𝛿𝑖∆𝑌𝑡−𝑖 + 𝜀𝑡

𝑛

𝑖=1

 

Here, 

 ΔYt = difference operator 

 α = intercept constant 

β = coefficient on a time trend 

γ = coefficient presenting process root 

n = optimal lagged length 

δi = time trend 

εt = independently and identically distributed sequence of random variables 

 

The chances to reject the null hypothesis of presence of a unit root in the time series 

becomes more with the more negative values of the test statistics of the ADF test 

applied on that time series. 

5.2.2 Selection of lag order 

 Autocorrelation Function and Partial autocorrelation function 

The correlation between two random variables, W and Z, is defined as [2]: 

𝜌𝑊𝑍 =  
𝐶𝑜𝑣(𝑊, 𝑍)

√𝑉(𝑊)𝑉(𝑍)
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The autocorrelations at lag k refers to the correlation between any two observations in 

a time series that are k periods apart. Thus, autocorrelations at lag k can be defined as, 

𝜌𝑘 =
𝐶𝑜𝑣(𝑥𝑡, 𝑥𝑡+𝑘)

√(𝑉(𝑥𝑡) ∙ 𝑉(𝑥𝑡+𝑘)
=

𝛾𝑘

𝛾0
 

The graphical representation of 𝜌k vs. the lag k is called autocorrelation function (ACF) 

of the process and is denoted by {𝜌k}. The autocorrelation functions characterize its 

respective time series models. It is dimensionless and always -1 ≤  𝜌k ≤ 1.  

Another concept in the description of time series models is partial correlation. 

Let’s consider three random variables W, Y and Z. The conditional distribution of W 

and Y given Z, when the joint density function of W, Y and Z be f (w, y, z), can be 

defined as, 

ℎ(𝑤, 𝑦 | 𝑧) =
𝑓(𝑤, 𝑦, 𝑧)

∫ ∫ 𝑓(𝑤, 𝑦, 𝑧)𝑑𝑤 𝑑𝑦
∞

−∞

∞

−∞

 

The correlation coefficient between W and Y in the conditional distribution h (w, y | z) 

is defined as the partial (or conditional) correlation coefficient. 

In case of a time series, it is convenient to think of the partial autocorrelation at lag k 

as the correlation between xt and xt+k with the effects of the intervening observations 

(xt+1, xt+2, …, xt+k-1) removed. A graphical representation of the partial autocorrelation 

ϕk vs. lag k is called partial autocorrelation function (PACF) and is denoted by {ϕk}.  It 

should be noted that ϕ00 = ρ0 = 1 and ϕ11 = ρ1.  

5.2.3 Autoregressive Integrated Moving Average model 

The Autoregressive Integrated Moving Average model (ARIMA) has been used in 

forecasting hydro-meteorological variables [20][23][42-43]. 

An autoregressive process combined with a moving average process of order (p,q) is 

called an autoregressive-moving average process of order (p,q) [ARMA(p,q)], can be 

expressed as follows: 

𝑦𝑡 = 𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2 + ⋯ + 𝜃𝑝𝑦𝑡−𝑝 + 𝑣𝑡 + 𝛼1𝑣𝑡−1 + ⋯ + 𝛼𝑞𝑣𝑡−𝑞 …………….(1) 
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Equation (1) can be rewritten alternatively as 

(1 − 𝜃𝑡𝐿 − ⋯ − 𝜃𝑝𝐿𝑝)𝑦𝑡 = (1 + 𝛼1𝐿 + ⋯ + 𝛼𝑞𝐿𝑞)𝑣𝑡 ……………………………(2) 

To ensure both stationarity and invertibility of this process it is required that 

𝜃𝑝(𝑧) = 1 − 𝜃1𝑧 − ⋯ − 𝜃𝑝𝑧𝑝 ≠ 0  𝑓𝑜𝑟 |𝑧| ≤ 1 

and   

𝛼𝑞(𝑧) = 1 + 𝛼1𝑧 + ⋯ + 𝛼𝑞𝑧𝑞 ≠ 0  𝑓𝑜𝑟 |𝑧| ≤ 1 

In case of a non-stationary AR process of the form 𝑦𝑡 = 𝑦𝑡−1 + 𝑣𝑡, it is easy to 

transform yt such that a stationary process results by simply considering the first 

differences 𝑧𝑡 = 𝑦𝑡 − 𝑦𝑡−1 = (1 − 𝐿)𝑦𝑡. Generally saying, if the AR operator θ(L) of 

the ARMA process yt has unit roots [i.e., θ(1) = 0], these can be removed by 

differencing, thereby making the time series stationary. Considering d unit roots, a 

general process is obtained: 

𝜃𝑝(𝐿)(1 − 𝐿)𝑑𝑦𝑡 = 𝛼𝑞(𝐿)𝑣𝑡 ………………………………………………………(3) 

where, vt is the zero mean white noise. 

Equation (3) is called an autoregressive integrated moving average process of order (p, 

d, q), abbreviated as ARIMA(p, d, q) [44]. It is a general model capable of representing 

a wide class of nonstationary time series. The AR part of ARIMA (p) depicts that the 

time series is regressed on its own past data value, while the MA part (q) represents that 

the forecast error is a linear combination of respective past errors. Lastly, the I part (d) 

integrates these two processes together by differencing (replacing the original series yt 

by a new series 𝑦𝑡
′, calculating the change between two consecutive data points in the 

yt, so that 𝑦𝑡
′ = 𝑦𝑡 − 𝑦𝑡−𝑚), smoothing the series and making it stationary. Thus, the 

prediction is the differenced yt in the dth order [45]. 

In our study, ARIMA modelling approach was applied on the meteorological variables 

rainfall, maximum (MaxT) and minimum temperature (MinT), relative humidity (RH), 

sea level pressure (SLP) and wind speed (WS). A flow chart showing the model 

construction is depicted in Figure 5.1. 
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Figure 5. 1 Flow chart of the steps involved in ARIMA model implemented in the study 

Process identification 

The prior requisite to fit an ARIMA model in a time series is the data to be stationary 

(constant variance and mean). Stationarity could be attained in the variance by having 

log transformation and differencing of the original data to attain stationarity in the 

mean. In case of a non-stationary data series, a seasonal first difference (D = 1) of the 

original data is to be performed to obtain stationarity. 

Models’ parameter estimation 

Since the orders p, d, and q are necessary to adequately model for a time series process, 

it is required to determine the model that best fits the data based on the observations of 

the ACF and the PACF plots of the differenced data. Alternatively, different 

information criteria can also be utilized for this task. Based on these, several models 

may be estimated for the specific time series dataset.  

In our study, the stationarity tests were applied and a few ARIMA models were fitted 

to the data based on the ADF and PP test as well as from the ACF and PACF results. A 

Parameter estimation of model 

Time series 

Identification of the process 

(stationary/non-stationary) 

Transformation 

Differencing 

Parameter estimation of model 

Model used for forecasting 

Diagnostic checking (model 

adequate/not adequate) 

No 
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total of 24 models with different combinations of (p, d, q) were fitted to the test data 

and the parameters were estimated.  

Diagnostic Checking of the fitted models 

Initialization of several diagnostic checking of the fitted models is done once the models 

were fitted to the time series. If the model fits well, the residuals should be uncorrelated 

with constant variance. Moreover, in developing model this is often assumed that the 

errors are normally distributed. Therefore, it is expected for the residuals to be normally 

distributed. Standard checks for ARIMA are to compute the ACF and the PACF of the 

residuals. Further diagnostics checking can be done by looking at the residuals in 

various ways. If the residuals are normally distributed, they should all lie on a straight 

upward sloping line [46]. A fitted model transforms the observations to a white noise 

process at last, if it is suitable [2]. Different information criterions may be used as a tool 

for diagnostic checking also, among which the popular ones are the Akaike Information 

Criterion (AIC), Hannan-Quinn Information Criterion (HIC) and Schwarz Information 

Criterion (SIC, or otherwise known as Bayesian Information Criterion, BIC). In case 

that all the models under evaluation if fit poorly with respect to a given set of 

observations or data, the lowest values of these information criterions are taken into 

consideration to indicate the best suitable among them. 

The mathematical equations governing these information criterions are as follows [47]: 

𝐴𝐼𝐶 = 2 ∙
𝑘

𝑛
− 2 ∙

𝑙

𝑛
 

𝐻𝐼𝐶 = 2 ∙
𝑘 ∙ ln(ln 𝑛)

𝑛
− 2 ∙

𝑙

𝑛
 

𝑆𝐼𝐶 =
𝑘 ∙ ln 𝑛

𝑛
− 2 ∙

𝑙

𝑛
 

Where, 

n = number of observations,   

k = number of estimated parameters in the model 

 l = the log likelihood function (assuming normally distributed errors), which is 

determined as follows: 
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𝑙 =  −
𝑛

2
∙ (1 + ln(2 ∙ 𝜋) + ln (

1

𝑛
∙ ∑ (𝑦𝑖 − 𝑦̂𝑖)2)

𝑛

𝑖=1
) 

𝑙 = −
𝑛

2
∙ (1 + ln(2 ∙ 𝜋) + 𝑙𝑛 (

1

𝑛
∙ ∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1
)) 

In this study, the model with the lowest value of among AIC, HIC or SIC was selected 

to be the best fitted model for the selected meteorological time series. The performance 

of the modelled forecasted series was checked with the help of scatter plots. All the 

statistical analyses in this study were performed on RStudio and EasyReg software. 

 

5.3 Results and discussions 

The monthly time series of different meteorological variables were used in this study. 

The results are described in the following sub-headings: 

5.3.1 Stationarity checking 

The results of ADF test are elaborated in table 5.1. It was seen from the results that the 

ADF test statistics in majority of the meteorological variables across the selected 

locations of NER were positive. Only rainfall time series at CHR. DBR, GHY and TUL, 

MinT at CHR, RH at CHR and DBR, SLP at TUL and WS at CHR, GHY, KSH and 

TUL were displaying negative ADF statistics. After calculation of the p values, it was 

seen that none of the ADF statistics values of the time series were significant (at 5% 

significance level). Therefore, from the results it can be said that all the time series of 

meteorological variables across the selected locations of NER were non-stationary in 

nature.  
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Table 5. 1 The ADF test results performed on the monthly time series of meteorological 

variables in different locations of NER. Here, Variable_site denotes the meteorological 

variable per studied location in NER.  

Variable_site 
ADF 

Variable_site 
ADF 

Statistics p Statistics p 

RF_CHR -0.847 0.367 RH_CHR -0.254 0.400 

RF_DBR -0.576 0.600 RH_DBR -0.226 0.400 

RF_GHY -0.558 0.500 RH_GHY 0.217 0.800 

RF_KSH 0.112 0.800 RH_KSH 0.303 0.400 

RF_TUL -0.121 0.700 RH_TUL 0.575 0.500 

MaxT_CHR 0.224 0.600 SLP_CHR 0.358 0.500 

MaxT_DBR 0.224 0.600 SLP_DBR 0.159 0.400 

MaxT_GHY 0.468 0.700 SLP_GHY 0.359 0.800 

MaxT_KSH 0.330 0.700 SLP_KSH 0.128 0.700 

MaxT_TUL 0.287 0.700 SLP_TUL -0.149 0.400 

MinT_CHR -0.243 0.600 WS_CHR -3.651 0.100 

MinT_DBR 0.382 0.700 WS_DBR 0.346 0.800 

MinT_GHY 0.733 0.800 WS_GHY -0.784 0.400 

MinT_KSH 0.733 0.900 WS_KSH -1.086 0.200 

MinT_TUL 0.467 0.700 WS_TUL -0.860 0.400 

 

 

5.3.2 Inferences from the ACF and PACF plots (/Lag order detection) 

Further on, ACF and PACF plots were prepared for the better understanding of the 

time series process of the selected variables of interest. 

Rainfall 

As the ACF and PACF plots of the rainfall series (Figure 5.2) suggest, the 

autocorrelation persisted for two months after lag 0 at all the selected locations of NER. 

Two cyclic periodicities of six and 12 months were also observed in the ACF plots. 

This clearly indicates the rainfall time series at these locations as non-stationary. 

Additionally, on the other hand, the PACF becomes significantly negative at lag 3 

which persists up to lag 8 before reversing back to positive. The tails of the PACF plots 

geometrically declines repeating this pattern. Thus, these whole observations indicated 

towards the need for differencing prior to fitting ARIMA model of appropriate order to 

the rainfall data series for NER. 
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a) 

b) 

c) 

d) 
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e) 

Figure 5. 2 ACF and PACF plots of the original rainfall time series at a) CHR, b) DBR, c) 

GHY, d) KSH and e) TUL. Here x- axis denotes monthly lags. The confidence bands are 

depicted in dashed lines. 

Temperature 

As evident from Figure 5.3, the ACF and PACF plots of the temperature series (both 

MaxT and MinT) over the NER display similar non-stationary features in the time series 

as observed in case of rainfall. Here also the autocorrelation persisted for two months 

after lag 0 at all the selected locations of NER and the six- and 12-months cyclic 

periodicities were also prominent in the ACF plots. In case of PACF, the temperature 

at all the locations sharply cuts off significantly after lag 1. The tails of the PACF plots 

geometrically declines in all the cases. Thus, here too these whole observations 

indicated towards the need for differencing before going for fitting ARIMA model of 

appropriate order to the data series. 

a) 
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b) 

c) 

d) 

e) 
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f) 

 g) 

h) 

i) 



P a g e  | 5-20 

 

j) 

Figure 5. 3 ACF and PACF plots of the original MaxT time series at a) CHR, b) DBR, c) 

GHY, d) KSH and e) TUL and of MinT time series at f) CHR, g) DBR, h) GHY, i) KSH and j) 

TUL. Here x- axis denotes monthly lags. The confidence bands are depicted in dashed lines. 

RH 

In case of RH, the autocorrelation persisted for two lags after zero at CHR and TUL 

only (Figure 5.4). In other three locations of NER, the autocorrelation became negative 

sharp after lag 1. The twelve-months cyclicity was observed in RH at all selected 

locations of NER too. The six-months cycle was prominent in RH at CHR only. No 

inference could be drawn from the PACF plots. Thus, the raw data series of RH also 

suggested differencing prior to the fitting of ARIMA model in the RH data. 

a) 

b) 
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c) 

d) 

e) 

Figure 5. 4 ACF and PACF plots of the original relative humidity time series at a) CHR, b) 

DBR, c) GHY, d) KSH and e) TUL. Here x- axis denotes monthly lags. The confidence bands 

are depicted in dashed lines. 

 

SLP 

The autocorrelation in the SLP time series (Figure 5.5) revealed the same feature 

regarding persistence as that in case of rainfall and the temperature time series. Here 

too, the persistence of two months autocorrelation was observed. The six- and twelve-

months cyclical behaviour was also exhibiting in the time series, depicting non-

stationarity in the time series. The PACF plots were gradually declining, thus 

suggesting towards an underlying AR process of order 2. However, from the existing 



P a g e  | 5-22 

 

cyclicities in the ACF plots, rather differencing seemed to be the necessity at first and 

that fitting an ARIMA model to the data was needed. 

a) 

b) 

c) 

d) 
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e) 

Figure 5. 5 ACF and PACF plots of the original sea level pressure time series at a) CHR, b) DBR, c) GHY, d) KSH 

and e) TUL. Here x- axis denotes monthly lags. The confidence bands are depicted in dashed lines. 

WS 

From the Figure 5.6, WS at CHR showed gradual decline in both ACF and PACF 

values. The persistence of autocorrelation for two (at DBR), three (at GHY and KSH) 

and four (TUL) months were detected in the ACF plots. The twelve months cycle was 

prominent in the ACF plots at all the selected location of NER except CHR, otherwise 

no definite pattern was seen in the ACF and PACF at these locations. No clear-cut 

information about the lags could be obtained from the PACF plots also. Thus, all the 

WS time series pointed towards non-stationarity existing within them. Thus, in the 

further steps differencing was performed. 

a) 

b) 
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c) 

d) 

e) 

Figure 5. 6 ACF and PACF plots of the original wind speed time series at a) CHR, b) DBR, c) GHY, d) KSH and 

e) TUL. Here x- axis denotes monthly lags. The confidence bands are depicted in dashed lines. 

 

5.3.3 The best fit ARIMA model 

Keeping in view of the presence of 1-4 months autocorrelation (from the ACF plots) in 

the time series of the selected meteorological variables, we subjected the time series to 

differencing, followed by ARIMA model built up. 80% of the total data were used for 

model building, while the rest of the data (20%) were used for forecasting. A total of 

24 models were tested for best fitting. The results are presented in Table 5.2. 

As depicted in Table 5.2, a varied number of ARIMA models were found to be the best 

fit for different meteorological variables per selected locations in NER. Across all the 
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selected locations in our study, the model 22 [ARIMA(2,1,4)] was fitted as the 

parsimonious one for the maximum number of times (7); for MaxT at CHR, MinT at 

DBR and GHY, SLP at DBR, GHY, KSH and TUL. Contrary to model 22, model 12 

[ARIMA(2,1,2)] was the best fitted model that appeared for only once, in case of MaxT 

at KSH. In all the cases, the AIC values were the determining factor governing the 

selection of the best fitted model than the other two criterions (HIC and SIC). 

In case of rainfall, models 19 [ARIMA(4,1,3)], 14 [ARIMA(4,1,2)] and 23 [ARIMA 

(3,1,4)] were found to be best fitted with the time series for CHR, GHY and KSH 

respectively. Model 24 was detected as the best fit for DBR and TUL. It was found to 

be best fit for MaxT at DBR and TUL also. MaxT at the other sites, viz., CHR, GHY 

and KSH showed that among the tested combinations, models 22, 18 and 12 were the 

best fit for this meteorological variable respectively. In case of MinT, performance of 

model 22 was found to be better than the other models at DBR and GHY. The model 

17 [ARIMA(2,1,3)] seemed to be best fitted for KSH and TUL, while at CHR, model 

23 showed the best performance in MinT. In case of RH, both model 23 and 24 

[ARIMA(4,1,4)] showed better performances for a pair of locations; model 23 for CHR 

and DBR, while model 24 for KSH and TUL. At KSH however, model 19 was fitted as 

the best fit. Model 22 among the other ones was the best fit in predicting SLP over all 

the studied locations except CHR, where model 23 showed the best performance. In 

case of WS over the locations of NER, model 19 was found to be best fit at DBR, KSH 

and TUL. At the other two locations- CHR and GHY, models 18 [ARIMA(3,1,3)] and 

23 were detected to be the best among the fitted models in WS. 
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Table 5. 2 The best fit ARIMA model for different meteorological variables in the selected locations of NER. Here, 

the best fit model is shown in the arrangement ARIMA (p, d, q)[model number] 

Variable

_site Best Fit Model AIC 

Variable

_site Best Fit Model AIC 

Variable

_site Best Fit Model AIC 

RF_CHR ARIMA (4,1,3) [19] 13.566 MinT_CHR ARIMA (3,1,4) [23] 0.608 SLP_CHR ARIMA (3,1,4) [23] 5.301 

RF_DBR ARIMA (4,1,4) [24] 9.866 MinT_DBR ARIMA (2,1,4) [22] 0.859 SLP_DBR ARIMA (2,1,4) [22] 0.879 

RF_GHY ARIMA (4,1,2) [14] 9.330 MinT_GHY ARIMA (2,1,4) [22] 0.710 SLP_GHY ARIMA (2,1,4) [22] 0.967 

RF_KSH ARIMA (3,1,4) [23] 10.079 MinT_KSH ARIMA (2,1,3) [17] 1.164 SLP_KSH ARIMA (2,1,4) [22] 0.721 

RF_TUL ARIMA (4,1,4) [24] 8.695 MinT_TUL ARIMA (2,1,3) [17] 1.181 SLP_TUL ARIMA (2,1,4) [22] 0.901 

MaxT_CHR ARIMA (2,1,4) [22] 0.874 RH_CHR ARIMA (3,1,4) [23] 3.906 WS_CHR ARIMA (3,1,3) [18] 1.851 

MaxT_DBR ARIMA (4,1,4) [24] 0.838 RH_DBR ARIMA (3,1,4) [23] 3.305 WS_DBR ARIMA (4,1,3) [19] 0.940 

MaxT_GHY ARIMA (3,1,3) [18] 1.147 RH_GHY ARIMA (4,1,3) [19] 3.345 WS_GHY ARIMA (3,1,4) [23] 0.933 

MaxT_KSH ARIMA (2,1,2) [12] 1.010 RH_KSH ARIMA (4,1,4) [24] 2.526 WS_KSH ARIMA (4,1,3) [19] 1.057 

MaxT_TUL ARIMA (4,1,4) [24] 0.971 RH_TUL ARIMA (4,1,4) [24] 3.355 WS_TUL ARIMA (4,1,3) [19] 0.188 

 

5.3.4 Performance of the best fit ARIMA model in forecasting 

The performance evaluation of the best fitted ARIMA model to the time series of the 

selected meteorological variables over NER could be explained with the help of the 

comparison graphs (scatter plots as well as the respective time series plots) of forecasted 

vs original series in the following sub-sections. 

Rainfall 

The performance of ARIMA modelling in rainfall is elaborated with the help of the 

Figures 5.7 a-e (i and ii). In a close look on scatter plots of original vs. forecasted series 

of rainfall at all the five studied locations in NER revealed a rather weak resemblance 

of forecasted series with the original one. A typical representative time series plot of 

the original series (solid black line) and forecasted series (solid red line) in plot (ii) of 

Figure 5.7 also reveal the same in forecasting in rainfall. 
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(i) 

(ii) 

Figure 5. 7 Details of original vs. forecasted time series of rainfall at a representative 

location of NER (DBR), (i) denotes scatter plot of original vs. forecasted series, (ii) denotes 

time series plot of original and forecasted series at each site (a-e). 

 

MaxT and MinT 

The performance of ARIMA in forecasting MaxT and MinT time series can be 

described with the help of Figure 5.8 and Figure 5.9 respectively. 

As evident from the Figure 5.8 (i and ii), the scatter plot (i) revealed a relatively positive 

association of the predicted and original time series at DBR and GHY. This association 

was evident in the time series plots of the forecasted and original series also, with 

similar pattern and inherent lag structure to be present in the forecasted series in red. 

The other locations in NER showed no specific association in the original and 

forecasted MaxT series. 
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a-(i) 

a-(ii) 

b-(i) 

b-(ii) 

Figure 5. 8 Details of original vs. forecasted time series of MaxT at a) DBR and b) GHY. (i) 

denotes scatter plot of original vs. forecasted series, (ii) denotes time series plot of original 

and forecasted series at each site (a-e). 
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A relatively better performance of ARIMA was evident in the prediction of MinT time 

series than rainfall also. (Figure 5.9). Among all the selected study sites, the prediction 

by ARMIA at TUL was the best as evident in the representative plots (Figure 5.9). 

(i) 

(ii) 

Figure 5. 9 Details of original vs. forecasted time series of MinT at TUL. (i) denotes scatter 

plot of original vs. forecasted series, (ii) denotes time series plot of original and forecasted 

series at each site (a-e). 

RH 

In case of RH, the ARIMA modelling approach adopted in this study didn’t show a 

descent result in predicting the time series at all the studied locations in NER accurately. 

A detailed view of the scatter plots from a typical representative scatter plot and time 

series plot of original Vs. forecasted RH at GHY is presented in Figure 5.10. 

SLP 

Among all the selected locations of NER, prediction of SLP was somewhat better only 

at TUL as shown in Figure 5.11. The time series of the forecasted SLP depicted seasonal 

behaviour intact as in the other meteorological variables. 
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(i) 

(ii) 

Figure 5. 10 Details of original vs. forecasted time series of RH at GHY (i) denotes scatter 

plot of original vs. forecasted series, (ii) denotes time series plot of original and forecasted 

series at each site (a-e). 

 

 

 

 

e-(i) 
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e-(ii) 

Figure 5. 11 Details of original vs. forecasted time series of SLP at TUL. (i) denotes scatter 

plot of original vs. forecasted series, (ii) denotes time series plot of original and forecasted 

series at each site (a-e). 

 

WS 

The results of WS forecasting by ARIMA for two representative locations of NER are 

presented here as the worst and relatively best prediction among all (Figure 5.12 a-b (i) 

and (ii) for DBR and KSH respectively). As evident from the scatter plots, and time 

series plots, the performance of ARIMA model in WS was not satisfactory at all in case 

of DBR.  

a-(i) 
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a-(ii) 

b-(i) 

b-(ii) 

Figure 5. 12 Details of original vs. forecasted time series of WS at a) DBR and b) KSH. (i) 

denotes scatter plot of original vs. forecasted series, (ii) denotes time series plot of original 

and forecasted series at each site (a-e). 
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5.4 Summary 

Regional climate is influenced by the conditions of the meteorological variables. 

Therefore, studying the behaviour of a meteorological time series becomes imperative 

as any fluctuations or changes in their statistical properties may lead to fuel the climate 

crisis that’s happening over the globe at regional scale. In this concern, here in this 

study we’ve tried to analyze time series of meteorological variables rainfall, 

temperature (both MaxT and MinT), RH, SLP and WS over selected locations of NER 

to understand the individual behaviour of the variables in terms of their stationarity, 

persistence, autoregressive behaviour, seasonality and subsequently used them as input 

variables in building ARIMA models. As per the results suggested, it was revealed that 

all the original time series were non-stationary in nature, exhibiting seasonality. Two 

cyclic patterns- of six months and a year were observed in the ACF plots except for RH 

(at DBR, GHY and KSH, where only twelve months’ cyclicity was observed) and WS 

(twelve months’ cyclicity was present across all sites except at CHR and six months’ 

cyclicity was observed only at KSH). The persistence of two months autocorrelation 

was noticed in the ACF plots of rainfall, temperature, RH (at CHR and TUL only), SLP 

and WS (at DBR only), as an indicative of two months lagged dependence of each point 

of time upon its previous value in each of the said meteorological variable. Likewise, 

three months (at GHY and KSH) and four months (at TUL) persistence as noticed in 

the ACF plots of WS indicated three and four months lagged association of each point 

of time upon its previous value in WS, respectively. Among the meteorological 

variables, RH at DBR, GHY and KSH exhibited one month’s persistence of 

autocorrelation. 

Keeping in view of the lagged autocorrelation of 1-4 months observed in the 

meteorological variables, 24 different ARIMA models were built, and the 

meteorological variables showed different best fit models per site of NER. The model 

ARIMA(2,1,4) was best fit in most of the cases (7), followed by ARIMA(4,1,4). 

ARIMA(2,1,4) was best fit for MaxT at CHR, MinT at DBR and GHY, SLP at all sites 

except CHR. ARIMA(4,1,4) on the other hand, was found as the best fit for rainfall and 

MaxT at both DBR and TUL, RH at KSH and TUL. As evident in the table 5.2, it can 

be noticed from the best fit ARIMA models, that, rainfall was auto regressed over 3 and 

4 past months observation in NER. Autoregression of 2, 3 and 4 months were prominent 
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in MaxT. Likewise, MinT and SLP for most of the sites was auto regressed over 2 past 

months observation. 3 and 4 months autoregression were prominent in RH and WS. 

The ARIMA best fit models were used for predicting the meteorological variables. It 

was noticed from the time series plots that the association of original and forecasted 

series was negligible in rainfall (Figure 5.7 (i)). The similar feature was prominent in 

case of temperature also, except for MaxT and MinT at both DBR and GHY, where a 

weak positive association was seen between the original and the predicted time series. 

In case of SLP the forecasted series showed relatively a weak positive association with 

the original series at TUL of NER. The prediction of WS by the best fit ARIMA was 

also not satisfactory. It is to be noted that quantitative estimation of prediction 

efficiency by ARIMA is excluded in this study. In most of the studies, ARIMA model 

gave better performance in short-term forecasting [11]. It is established that the Box-

Jenkins seasonal ARIMA forecasting model provides more statistical information than 

other techniques of analysis [7]. However, the addition of ANN to ARIMA has been 

suggested as a measure to further improvement of forecasting by the proposed ARIMA 

model [14]. Recent findings also suggest that the efficiency of combined statistical and 

neural network models is higher than either of the single models [20][48-49]. Therefore, 

it is to be noted that there’s a scope in making better performance by our best fit ARIMA 

models in prediction with the incorporation of such artificial intelligence-based 

modification. Also, preference of SARIMA is suggested over ARIMA as the best fit 

models in our study detected the presence of seasonal signatures in the studied 

meteorological time series for the NER. 
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