Chapter 1

Introduction

The past decade has seen an explosive growth in the amount of biological data
being stored in databases. However, this data is essentially useless until analysed.
Bioinformatics is a cross-disciplinary field that emerged in the 1960s, pioneered
by Margaret O. Dayhoft, Walter M. Fitch, Russell F. Doolittle and others, that
is focused on managing and interpreting this data. This field combines aspects
of biology, computer science and statistics. Research in bioinformatics focuses
on interpreting, processing, analyzing and developing algorithms that can make
predictions based on biological data such as microarray /RNA-seq data and draw
biologically and clinically meaningful conclusions. Data mining has become a
popular solution to this problem, as it uses efficient and reliable computational
and mathematical techniques. This has led to improvements in critical disease

diagnostics, biomarker identification and medicine discoveries.

1.1 Central Dogma of Molecular Biology

A cell is the basic unit of life. Cells are highly organized and complex struc-
tures made up of smaller components, including DNA, proteins, carbohydrates,
and lipids. DNA, or deoxyribonucleic acid, is the genetic material that carries
the instructions needed for the cell to function properly. It is composed of two
strands of nucleotides twisted into a double helix. Fach strand is composed of four
nucleotides i.e., adenine (A), thymine (T), guanine (G), and cytosine (C) which
are the building blocks of DNA as presented in Figure 1-1. DNA is the funda-
mental building block of genes. Gene is a sequence of nucleotides that contains

the instructions for the development of a particular organism. Each gene consists
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Figure 1-1: Structures of DNA and RNA (Credit: Technology Networks,
https://www.technologynetworks.com /genomics/lists/, accessed on 21/07/2023)

of two parts: the coding region, which contains the information for a particular
protein, and the non-coding region, which is the regulatory region that controls
the expression of the gene. Genes are present in all cells and control the traits
of various characteristics in an organism. These traits can be related to either
diseases or regular growth. The process of how genes influence characteristics is
known as the Central Dogma shown in Figure 1-2. The Central Dogma of Molecu-
lar Biology explains how genetic information is passed from one generation to the
next, how it is expressed and regulated, and how different proteins are created. It
begins with the process of DNA replication, in which the double-stranded DNA
is unwound and each single strand acts as a template for a new double-stranded
DNA. This new DNA is identical to the original. The next step is transcription, in
which the sequence of DNA is copied into a complementary RNA molecule, using
the enzyme RNA polymerase. This process is known as transcription. The RNA
produced by this process is known as messenger RNA (mRNA). The mRNA is
then translated into a protein molecule by the process of translation. During this
process, the mRNA molecule is read codon by codon, and each codon is trans-
lated into an amino acid. These amino acids are then linked together to form
a protein molecule. Finally, the newly formed protein molecule carries out the
cellular activity that corresponds to the genetic code. This process is known as

gene expression.
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Figure 1-2: Central Dogma

1.2 Gene Expression Data (GED)

Gene expression is the process by which genetic information is used to synthesize
proteins and other gene products. Measuring gene expression entails analyzing
the amount of gene products (i.e. proteins, mRNA, etc) present in a sample.
There are a variety of techniques used to measure gene expression, including DNA
microarray or sequencing technologies such as bulk RNA-sequencing (RNA-seq)
and Single-cell RNA-seq (scRNA-seq). The data generated from DNA microarrays
or sequencing technologies is called as gene expression data. Gene expression data
is typically represented as a table as shown in Figure 1-3, with each row being a

gene and each column being a sample or cell.
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Figure 1-3: An example of Gene Expression Dataset
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1.2.1 DNA Microarray Data

Microarrays are a type of DNA chip technology measures the expression levels of
thousands of genes simultaneously [1]. Microarrays use DNA probes attached to a
surface to detect the presence and quantity of specific RNA molecules. Microarrays
generate data in the form of two-dimensional grids, or "spots”, which represent
the expression levels of each gene. FEach spot contains information about the
expression level of a particular gene. The intensity of the spot is proportional to
the amount of gene expression. The spots can be labeled with fluorescent dyes
or with radioactive isotopes, depending on the type of microarray used. The
spots are arranged in an array, with the rows representing different genes and the
columns representing different samples. The data generated by the microarray
is usually presented as a heatmap, which highlights the relative expression levels
of the different genes. Microarray data (figure 1-4) can be used to compare gene
expression levels between different conditions or treatments, and can be used to
identify genes involved in particular biological processes, disease, discover potential

drug targets, and develop diagnostic tests.

Conditions/samples

GSMS09787  GSMS509788 GSM509789  GSM509790  GSMS509791 GSM509792 GSMS09793 GSMS509794  GSM509795 GSMS509796  GSMS09797  GSMIS09798  GSMS09799  GSMS09800 ¢
(CEPBALZT) 796107869 751137711 778307144 850704467 81913541 8.36601732 7.03481193 8.66582042 812068213  7.95849708  7.77655454 7.82936431 834414174  7.82633025
RANBPY | 1154896377 11.25279603 11.57632674 11.5142908 11.61996627 11.74401624 10.61640278 11.52906263 11563744 1145575274 10.83307651 1145473463  11.93191005 11.26435837
SLC16A6 7.8423694 833443858  7.62012844 8.05212903 8.62282939 7.18953661 7.81870787 7.74137775 8.34961035  7.85854343 79025169 8.24760848  8.20900451  8.02338355

FSCNL 6.78340679 6.68913587  7.41367985 7.11485005 6.63969062 5.9376409 7.58898913 6.9794353 7.14723148 798872799  8.00038582  6.90404125 7.38844145  7.80849944
GDPD3 943012447 9.24243335 8.970373  9.14781515 961033623 8.82296019 7.82755142 9.21235259 9.07976646  9.0381833 540466241 93405242  9.41372639  8.94412226
EREG 803127583 65416408 9.08118733 912228646 7.32847272 9.64284988 7.22367182 9.52066398 842199186  9.63568737  8.04056903 9.17639902 852282964  9.10776348
CRISP3 1193222084 114194722 1142656186 1212604111 1145925929 11.9527276 7.87165328 1173253037 1146731017 1142901565 10.28243205 1124465  11.60885208 11.23936505
UBL3 963180043 949566458  9.45048977  9.624586 9.4695193 9.82360029  8.6285181 9.89365598 9.65644587 945231315  8.81612014 9.64770509  9.98186207 9.73625642
TRIOBP 979696627 9.3720506  9.32087282 9.68384375 9.30867575 9.05650293 8.78329709 943724623 9.09555976 91163538  9.2200571  9.50650124 9.1768034  9.6954669
RANBPS 9.14469218 850698268  8.66233454 9.15089179 8.48595947 8.65937717 7.51046681 8.82616581 8.58442148  8.07544395  7.89858482  8.93466164 9.93584113 84457737
FAM14981(  6.96854958 6.7962464  6.71135083  6.91958476 6.66371913 6.82714724 6.79986308 6.71683086 6.43507177  6.52650027  6.35059105  6.86129036 6.71007622  6.80344271
BLNK 10.38627788 9.79680142 10.06247884 10.53005956 10.16400727 10.23601124 8.56516599 10.25174803 9.90803806 10.13749399  9.77519173 10.48275219  10.43408308  9.82093778
HEBP2 1135292152 1122411775 11.18643908 11.55722831 1131957739 11.29084292 10.74650906 113256872 11.16647434 1131621292 10.90901618 1128055317 1110121923 1114483178
KLK13 849109866 8.80056926  8.83325052 §.20921315 9.92221155 8.83180137 8.52054202 9.33087443 $.58505736  9.69257112  8.23633455 8.97438075  10.30042811  9.0461709

Mcm2 680254474 676132546  6.7221078 658257457 6.63512799 6.15491162 6.98196483 684080839 6.74581108  6.64652786 6.90539176 697524065 673739376  6.67072198
/ FSCNL 5.58097175 573400886  6.15116764 6.37586549 6.18683064 5.73815063 6.38052578 5.92890253 641724064 676733105  6.37971502 599062112 647341362 652587951
TFAP28 876437684 858098941  8.42627148  $.86030463 8.10156673 5.52050965 8.50749448 9.14675583 7.40956193  7.04659044  8.03834689 818337258  8.75220045  8.14235459
Gene UBAP2L 782383534 791391525 779998602 797951233 7.87052275 7.23139608 7.87519579 8.02109606 7.85160498  8.24172978 826038794 81598215  7.78151093  7.89434663
WDHD1 447411767 441635533  4.68545963 4.16764851 446463956 4.4207664 4.82998998 4.80551327 426847224 478011255 479363478 4.89966324  4.74103876  4.66812537
SASHL 10.51628004 9.77458953 10.06392153 10.24652252 10.52139155 10.34614978 9.82613469 10.19883101 10.18060538 1052746536 10.09555394 1005591852  10.59693249 10.37839378
FBXLS 10.22845899 1005411357 100939945  10.3364397 9.85867141 10.03325375 10.11321207 10.14854794 9.97014252 977136451  9.63273219 10.31882603 979133142 9.82887199
EPCAM 861529182 8.89009342  8.51409588  8.7431051 8.04392178 6.5041083 7.21078739  9.1182256 §.70950584  8.06121087 B8.80129021 9.47734776  7.70436757 8.33651964

CENPF 718018831 671475711  6.62484846  7.02900027 7.12576751 5.56987455 7.11194288 6.597154118 6.74309438 677157275  6.97706221 743078186  7.06325181  6.88658241
RMNDSB 891992524 846617882  8.57319034 8.99077997 8.66416775 8.30445149 7.72932036  8.6089726 8.67996088 874918258  8.34268347 895482214  B.7632243 87184919
SLC24A3 9.01076924 85135893 8.55237991 883654721 849417680 8.92448917 8.08629533 843685508 841843275  7.83138939 82920076 859603257  8.84372144  8.26406624
ILIRN 981298433 10.13060881  9.49465421 10.15752977 9.56325814 9.84435532  9.2397254 9.84504361 9.83368354 981933024  9.33028142 10.70624468  11.34185209 10.54933699

STX17 7.22318187 757868402  7.30954538  7.67453407 7.55892368 7.32687365 7.27900088 7.46006892 7.39409634  7.63119976 711785218  7.35046781 7.6086393  7.38041299
HNRNPU 7.89923302 7.60689437  7.79762839 776678328 7.79922603 7.34188635 7.76583094  7.6761859 7.65665287  7.73766043  7.90336851 7.34030232  7.83931773  7.90933183

STX12 948911146 9.3871369  9.57480415 998088038  9.2831292 9.52294837 9.07204994 9.31115937 9.61557043  9.58081206  9.27689903 993610707  9.40033347  9.49130314
UBL3 10.13141731 9.98550226  9.93407372 10.68976477 10.36172037 10.67341163 8.89095513 10.11172099 10.20462046 991750173  9.21107221 10.10136649  10.7824468  9.98650529
CRYLL 7.83009616 8.06710065 7.93285956 7.87164775 8.03184772 8.08723193 8.46287386 81500022  7.69867131  7.76465061  8.31067522 840983759  7.82833084
SASH1 10.72056055 10.27921883  10.54207274 10.71198049 10.69189942 10.0173829 10.44926593 10.40168463 10.67509997 10.35114865 10.34908469  10.86818786 10.54391943
GYS2 5.22167031 6.1679072  6.96654828 5.85227365 6.69744432 4.54601979 7.06086179 6.82353544  7.07158754  5.86860954 6.1929242 7.33323%49  6.88343265
ITPR2 548040257 547993416  6.10075794 528078196 4.78318409 5443267 5.66045258 5.26109871 518276394  5.65382643 5.59884468  5.57363046  5.54764629
DLG2 492436349 444317328 4.88158247 4.71845457 434698864 4.38577727 470126627 4.33550294 437569332 448383667 4.92462479  A.67677217 4.66811537[
M S N - . B .. . - T - - ~
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Figure 1-4: Screenshot of a micoarray dataset
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1.2.2 RNA sequencing (RNA-seq) Data

RNA-seq technology is used to quantify the expression levels of all genes in a
sample of tissue. It is similar to microarray analysis, but instead of measuring the
presence and amount of specific DNA probes, RNA-seq measures the presence of
amount of all RNA molecules in the sample. RNA-seq is based on next-generation
sequencing (NGS) technology, which uses high-throughput sequencing to deter-
mine the order of the nucleotides in a given RNA molecule [2]. It determines
the exact sequence of nucleotides (A, C, G, and U) in a given RNA molecule.
RNA-seq data is used in a wide range of applications, including the study of gene
expression, the identification of novel transcripts, the detection of gene regulation,
and the study of post-transcriptional processing. RNA-seq can also be used to de-
tect mutations and to provide insight into the regulation of gene expression. One
common approach to analyzing RNA-seq data is by creating a count matrix that
represents the gene counts per sample (figure 2-4) . This matrix is then analyzed
using count-based models, which are often constructed based on the negative bi-
nomial distribution. The data can also include additional information such as the
type of tissue or cell the sample was taken from, the age of the sample, and the
environment in which the sample was taken. This additional information helps to
understand the gene expression levels better in the sample. Count data can be
used to identify differentially expressed genes and pathways, as well as to identify
changes in gene expression over time. Count data can also be used to quantify
gene expression levels, allowing the identification of potential biomarkers and the
development of therapeutics. Count data can also be used to compare expression
levels between different tissue types or developmental stages. Count data is an
invaluable tool in the study of gene expression and can provide valuable insights

into gene regulation and disease.

1.2.3 Single-cell RNA sequencing (scRNA-seq) Data

scRNA-seq technology allows researchers to measure the expression levels of all
genes in a single cell instead of an entire population [3]. Unlike other RNA-seq
techniques, scRNA-seq does not require the sample to be homogenized, so it can
be used to analyze the gene expression profiles of individual cells (Figure 1-6).
scRNA-seq technique generated count data (figure 1-7) can be represented as a
matrix, where rows correspond to genes and columns represent individual cells.
The elements of the matrix indicate the expression levels of genes in each cell. This

high-throughput technique allows researchers to detect and analyze rare cell types,
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SRR26781(SRR26782{5RR26781{5RR206781;SRR26781{5RR26781{5RR26781|SRR26781]SRR26781|5RR26781
TSPANG 487334 230175 755395 218735| 594013 203803 664028 30823 607115 301120
TNMD 112 6456 1796 a0 48 0 400 0 200 0
DPM1 130067 211354 217312| 232908 85679 294578| 143579 28671 123227 236740
SCYL3 108222 100620 66834 95177 54686 T1X12 82816 33331 51244 178516
Clorf112 53729 497231 278301 100881 26806 53459 32015 25674 33208| 148618
FGR 33130 214516 57784 16410 22689 33222 03777 29546 17222] 120581
CFH 847044\ 1554904\ 377713 61958| 585824| 286227| 617931 796034| 367293| 243260
FUCA2 89570 341181| 165196 180166| 116103 206711 83445| 114527 85872 489335
GCLC 215471 185091| 189275 54752 50163 343843 192132 48493 80959 592239
NFYA 76475 66384 35952 102050 29133 137503 73524 18113 25154| 217990
STPG1 34929 14858 24034 59440 27644 105327 26984 16414 36852 157836
NIPAL3 186828 56228 160763 140235| 155540 66789 133236 39284 147123 171077
LASIL 92300 135241| 108714| 304423 82360 182414| 110260 149210 107593| 427382
ENPP4 34348 68509 40635 2300 24910 34229 26384 17575 18619 76788
SEMA3F 214580 78107 185093 76068 178335 234022| 451588 176560 234422| 522379
CFTR 18917 867 22755 55 4292 3509 5644 0 3148 5704
ANKIB1 199254\ 234024| 113331 116170 48746 259979 84899 14156 47035 174066
CYP51A1 142065 118713 237043| 247544 130928 247156 308330 50933 131501| 340706
KRIT1 205150 158209 70091 46962 43050| 173460 70020 18889 34930 150663

gene expression variations between cell types, and the heterogeneity of complex
tissues and measure alterations in gene expression over time or in response to an
environmental stimulus. scRNA-seq is more expensive and time-consuming than

traditional RNA-seq, but provides a much more detailed view of gene expression

Figure 1-5: Screenshot of a RNA-seq count data

in individual cells.

Gene expression  Gene expression

Gene expression Gene expression

A=

Cell2

A

L >~

Cella

Figure 1-6: In different types of cells within the same tissue, a gene can be
expressed at different levels and regulated by different control mechanisms.
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Gene_names SRR3579502 SRR3579503 SRR3579504 SRR3579505 SRR3579506 SRR3579507 SRR3579508 SRR3579509 SRR3579510 SRR3579511 SRR3579512

AlBG 0.192859 0.211661 3.55604 0 0.401412 0.418335 0.405444 0.523657 11.28916 0.3493 0.072501
A4GALT 10.504582 0.773935 3.715087 0 1.054334 0 0 0 1.297082 1.294943 4.462896
AAAS 48.951829 13.84899 45.174011 39.946515  43.560397 1.013684 58.434871 29.633865 26.521199 25.392367 21.284159
AACS 22.217662 11.977955 33.459868 53.372515 12116112 19.715317 2.860383 14.372082 18.838499 14.135527 22.638465
AAGAB 39.517958 72.703458 35.182839 44.250956  46.378565 39.47878 17.598419 52.656031 62.282032 20.783167 31.188088
AAK1 52.09774 42708846 46.559193 25916817  25.253448  54.435199 57.494816 33.649443 33.664663 68.158958 53.628838
AAMDC 144826506 107.434854  150.823233 157.339122  121.284586  80.318793 63.006427  144.285432 71.151353  186.144802  142.544412
AAMP 129.215682 95.372441  146.797158 119.283556  61.644767 107.991105 65.969273 58.13599  159.060605 101.25939  140.003466
AAR2 5.589466 21.09468 36.007997 24.135579 15.911111 7.006115 20.468391 36.907712 9.621016 28.972602 16.9755
AARD 0 3.542869 0.872424 5.840985 1.18377 0.823942 8.213304 0.159437 7.491501 8.145478 11.218729
AARS1 48.090528 47.888851 29.495752 38.226956 57.47265  20.339344 74.211613 46.288428 28.482507 25.267587 38.116794
AARS2 4.667899 12921247 1.689467 10.626074 14927309  11.802244 2.314338 0.32045 1.200465 9.424335 3.540092
AARSD1 59.888556 37.506091 52.471751 27.136306  60.495912 85.26328 37.371126 21.691603 68.790125 139.172657  106.621989
AASDH 0.957921 7.140927 3.776621 4.13682 5.237583 1.306455 0 5.640572 2.155313 4.650174 8.23874
AASDHPPT 15.994185 16.941843 25.964272 10.928822  31.878405  26.683659 36.275853 24.104862 22.524238 17.789242 51.069216
AATF 79.464873 49.154692 79.071922 62.478139 106.153541  64.551695 69.044752  119.071379 64.908246 84.495662 33.063324
ABAT 2.499635 0.255089 2581853 6.767813 6.856265 0.718548 0.152603 0 6.513614 2.564187 0
ABCA2 2.346874 1.711131 4.761079 7.984226 8.307341 5.951667 1.619915 2.073505 18.386521 2.875179 8.949066
ABCAS 6.774078 13.077227 0 39.031999  20.707156 3.949336 4.544848 1.165851 5.749682 6.073585 28.000378
ABCA7 24.364671 21.166474 15.538966 12.369079 8.07234 4.010337 14.120329 6.366498 45.086304  55.791649 68.030182
ABCB10 1.908987 8.169665 0.503502 3.135993 7.764868  12.294037 0.04426 6.277526 8.606598 0.051903 0
ABCB6 22.651755 48.301889 33.743603 38.796391  23.703894  19.054547 21.613972 34.396242 9.283182 9.987846 10.424255
ABCB7 34.074408 40.688008 41.282732 30.976323  34.867599 12.56416 32.68343 49.217807 33.281148 19.563709 32.367798
ABCBS 59.421594 33.730001 40.190206 10.640185 10.440431 3.89409 10.179389 56.190167 2.259351  48.961104 31.883583
ABCB9 0.196685 5.969372 9.274591 1.103959 15.857321 8.357322 13.83864 1.105176 1.953963 4.034054 8.287256
ABCC1 £.818969 6.559603 6.200729 13.156986 4.143248  14.166628 11171353 10.74096 13.412867 10.284897 7.512505
ABCC10 6.5646 8.887373 6.277798 0 13.509573 3.085832 0.726301 14.80424 2.057119 11.442354 14.175067

Figure 1-7: Screenshot of a scRNA-seq count data

1.3 Gene Expression Data Analysis

The amount of messenger RNA (mRNA) produced by a gene in a particular sit-
uation is represented by its expression profile. With the advent of newer tran-
scriptomic technologies, it has become possible to measure the gene expressions
inside millions of cells in a single experiment. A biologist generates the biological
data whereas a computational expert has the job of mining the information hid-
den inside the high dimensional biological data using efficient algorithms. Gene
expression data such as DNA microarray, RNA-seq, and scRNA-seq are high di-
mensional. Data analysis in biological research is performed in a systematic way
and the validation of the final findings is an absolute necessity. Gene expression
data analysis is a systematic approach to understand the functions and interac-
tions among genes. Datasets have different characteristics and the type of dataset
determines which tools and techniques can be used to process and analyze the
data.

Gene expression data is used to study gene expression levels in various or-
ganisms, including humans, animals, plants, and bacteria. It is also used to study
the effects of gene expression on phenotypes, diseases, and other traits of interest.
The data is used in a variety of fields, including bioinformatics, genetics, and ge-
nomics. Gene expression data can provide valuable insight into the functioning of
a gene. For example, it can reveal whether a gene is upregulated or downregulated
in response to a particular stimulus. It can also indicate the level of expression

of a particular gene in a given cell type or tissue. Furthermore, it can be used
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to compare the expression of a gene in two different samples, such as normal and
cancerous tissues. It can also be used to make predictions about gene function

and to identify potential therapeutic targets.

Extracting a set of modules (i.e., groups of closely associated genes) with
high biological significance from a biological (co-expression or regulatory) network
supports identication of interesting behavior of a set of participating driver or
causal genes across the states of a disease. Identifying causal or driver genes or
interesting biomarkers for a given disease across conditions with high precision is
the initial step in isolating genetic causes of diseases. To identify such biomarkers,
the process exploits co-expression, diferential co-expression, or diferential gene
expression analysis approach that uses statistical, data mining or machine learning

techniques to analyze gene expression data [4].

1.4 Data Mining

Machine learning is a type of data analysis that uses algorithms to identify patterns
in data sets and make predictions or decisions based on the data. Data Mining,
a crucial part of Machine Learning, is the process of exploring large datasets to
discover patterns, trends, and correlations that may be used to make predictions
or decisions [5]. It involves the use of sophisticated algorithms and software to
analyze large datasets to identify patterns, find relationships, and uncover trends.
Supervised learning and unsupervised learning are two main categories of ma-
chine learning techniques, and they differ in their approach to handling labeled
or unlabeled data. In supervised learning, the algorithm is trained on a labeled
dataset, where each input is paired with the corresponding correct output. The
goal is to learn a mapping from inputs to outputs. Unsupervised learning is a
type of machine learning where the algorithm is presented with data that has no
predefined labels or target outputs. The goal is to discover patterns, structures, or
relationships within the data without explicit guidance on what to look for. Un-
supervised learning is particularly useful for exploratory analysis and uncovering
hidden insights. Clustering is one type of unsupervised learning techniques. Data
mining algorithms are used to identify patterns in data that may be too complex
or too large for humans to identify. These algorithms can be used to classify data,
cluster data, and detect anomalies. Data mining is an important tool in bioinfor-
matics and has been used to uncover new knowledge and insights into biological
systems. With the increasing volume of biological data, the relevance of data

mining techniques has also been increasing simultaneously. Data mining tasks are
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the specific objectives or goals that a data mining process aims to achieve. These
tasks define what the analyst or data scientist intends to discover or extract from
the data. Data mining tasks can broadly be categorized into predictive and de-
scriptive tasks [6]. Data mining techniques, on the other hand, are the methods
or algorithms used to perform these tasks. These techniques are the tools that

enable the extraction of valuable patterns, insights, or knowledge from the data.

1.4.1 Predictive Data Mining Tasks

Predictive data mining tasks involve forecasting future trends or outcomes based
on historical data. Algorithms analyze past observations to make predictions
about unknown future events. Examples include predicting stock prices, customer
churn, or medical diagnoses. Examples of data mining techniques used in predic-

tive task include:

Classification: In classification tasks, data mining algorithms assign prede-
fined labels or categories to new data based on the characteristics of previously
labeled data. Classification is used to predict the class label of objects for which
the the class label is unknown. This is useful for tasks such as spam email de-
tection, sentiment analysis, disease detection, or disease diagnosis. Classification
analysis uses popular methods such as Decision Trees (e.g., C4.5, CART), Ran-
dom Forest, Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and

Naive Bayes.

Regression: Regression tasks involve predicting a continuous numerical value
based on input variables. Algorithms build models to estimate relationships be-
tween variables and make predictions. Examples include predicting house prices
based on features like location and size or forecasting sales revenue based on mar-
keting expenditure. Linear Regression, polynomial regression, Ridge regression,

and Lasso Regression are some popular methods under regression analysis.

1.4.2 Descriptive Data Mining Tasks

Descriptive data mining tasks focus on summarizing and understanding the char-
acteristics and patterns present in the data. These tasks aim to provide insights
into the underlying structure of the data without making predictions about future

outcomes. Examples of data mining techniques used in descriptive task include:
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Clustering: Clustering tasks involve grouping similar data points together
based on their attributes or features. This helps identify natural groupings or clus-
ters within the data, revealing patterns or relationships that may not be apparent
initially. The formation of clusters ensures that objects or data points within the
same cluster exhibit high similarity to each other but are notably dissimilar to
objects in other clusters. Each cluster can be interpreted as a distinct class of
objects, from which rules can be derived. Clustering methods include K-Means,
hierarchical clustering, DBSCAN, Gaussian Mixture Model, Agglomerative Clus-
tering. Examples: disease biomarker discovery, social network analysis, traffic flow

analysis etc.

Association rule mining: Association mining tasks discover relationships
and associations between variables in large datasets. These tasks identify frequent
patterns, co-occurrences, or correlations among variables, which can be used for
market basket analysis, recommendation systems, or cross-selling strategies. Al-

gorithms for association mining include Apriori and FP-Growth (Frequent Pattern
Growth).

Outlier analysis: Outlier analysis, also known as anomaly detection, is a
data mining technique that focuses on identifying data points or instances that
deviate significantly from the general pattern or behavior of the dataset. Outliers
are observations that are rare, unusual, or different from the majority of the data.
The goal of outlier analysis is to recognize these exceptional cases, which could
represent errors, anomalies, or valuable insights depending on the context of the
data. Example: Credit card fraud detection. Isolation Forest, One-Class SVM,

and Local Outlier Factor (LOF) are some examples of outlier analysis methods.

1.5 Motivation

Interesting biomarker identification for a given disease is a challenging task. Gen-
erally, differential and (differential) co-expression analysis of gene expression data
are commonly used to find interesting biomarker(s). Integration of multiple data
sources or methods during such analysis increases accuracy and robustness of
the results. There are many tools available for differential and (differential) co-
expression analysis of GED. But, they have many limitations and handling of these
limitations is important before potential biomarker(s) identification. From our
study, we observe that although the researchers have been able to identify biomark-

ers for some diseases, some diseases still need serious attention for biomarker(s)
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identification. These problems motivate to develop effective differential and (dif-
ferential) co-expression analysis for effective interesting genes finding. Generally,
all genes present in a dataset are not interesting. An optimal group(s) of genes
play key roles in disease developmental stages or progression or tissue types differ-
entiation. Have all the data mining techniques for gene expression data analysis
reported so far, been able to extract interesting novel and crucial genes that can
be used as disease biomarkers? In our opinion the answer is no and this has

motivated us to carry out our present study.

1.6 Research Objectives

The objective of my Ph.D. work is to analyze gene expression data to identify
potential biomarker(s) and to evaluate the analysis results using ground truth
knowledge and gold standards available with the external resources. In order to

achieve this objective, the following steps have been carried out.

e The first objective is to study the performance of existing biclustering meth-
ods over a number of microarray datasets for ESCC disease and observe the
variations in the performance obtained. Moreover, most of the bicluster-
ing techniques are limited to finding biclusters but it is important to per-
form gene-based analysis to identify relationships and potential biomarkers
among genes to establish the association with disease in progression. Hence,
it is aimed to develop a biclustering approach to support identification of
interesting biomarkers for a disease dataset. It was expected that this multi-

objective study will enable us to identify several interesting biomarkers for
ESCC dataset.

e It has been found that Esophageal Squoumous Cell Carcinoma (ESCC) dis-
ease has not been clearly understood using only microarray data. So, next
objective is to find interesting and novel disease biomarker(s) using DE anal-
yses on RNA-seq datasets for ESCC disease.

e The experiments carried out with a single source of data often have been
found biased. It can be believed that a use of a combination of multiple
sources of data will give unbiased results. Next objective is to develop an
integrated framework to support handling of multiple sources of data to iden-
tify DE genes towards finding of potential gene biomarkers for microarray
as well as RNA-seq datasets for ESCC disease.

11
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e Development of a measure which can identify positive and negative shifting,
scaling and shifting-and-scaling patterns at the same time is my next ob-
jective. It was also aimed to find important and enriched genes using the

proposed measure to extract biollogically significant network modules.

e In recent gene expression data analysis research, an attention has been in-
creased by scRNA-seq data due to its information rich contents. So, it is
aimed to explore identifying potential biomarkers for scRNA-seq data of

ESCC disease using an integrative method.

1.7 Research Contributions

To address issues associated with different problems in gene expression analysis
mentioned above, a number of solutions have been introduced which are described,

next.

1.7.1 Biclustering-based Biomarker Identification in
ESCC Microarray Data

A potential biomarker identification method called PD_BiBIM has been developed.
The method is based on biclustering approaches and uses microarray datasets of
esophageal squamous cell carcinoma (ESCC) disease to extract insights relevant
to ESCC. Here, several biclustering techniques have been considered and accepted
those techniques which are found effective from enrichment perspective for subse-
quent analysis. Based on biclustering results, gene networks have been constructed
and carried out a topological, pathway and causal analysis on the modules ex-
tracted from the networks. This method identifies several potential biomarkers
for esophageal squamous cell carcinoma (ESCC) such as IFNGR1, CLIC1, CDK4,
and COPSb5, after applying a ranking scheme.

1.7.2 Identifying Crucial Genes in ESCC GED using Dif-

ferential Expression Analysis

In this method an attempt has been made to identify a set of crucial genes for
Esophageal Squamous Cell Carcinoma (ESCC) using Differential Expression anal-

ysis followed by gene enrichment analysis. To validate the method, RNA-seq
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datasets are used. Initially, a subset of up-regulated and down-regulated genes
are identified based on adjusted P-value and log-fold change value. Then, co-
expression networks and PPI networks are constructed on selected genes to inves-
tigate the interactions and associations among these genes. Finally, enrichment
analysis is performed to filter out the most crucial subset of genes which are also
established to have strong association with the ESCC. Three genes, namely TNC,
COL1A1, and FN1 are found most closely relevant to ESCC.

1.7.3 Identifying Crucial Genes in Esophageal Squamous

Cell Carcinoma using an Ensemble Approach

This method has been introduced to remove the biasness of resulting DEGs given
by a DEG tool towards the identification of critical genes for ESCC. It is a con-
sensus function on which user can rely on the output generated by differential
expression analysis methods applied on multiple sources of data. Both microar-
rays and RNA-seq data are used in the analysis. Initially, independent downstream
analysis on each type of data using six differentially expressed gene identification
tools followed by an integrative analysis supported by an effective consensus func-
tion is conducted to identify an unbiased set of differently expressed genes. Next,
differential co-expression analysis is performed and identified a set of low preserved
modules. Finally, hub genes are identified from the selected low preserved modules
and validated both topologically and biologically. A set of hub genes are identified
such as SOX11, COL27A1, TOP3A, BAG6, CDC6, EZH2, COL7A1, G6PD, and
AKR1C2 which have been established to be critical for ESCC.

1.7.4 An Advanced Measure for Co-expression Network

Analysis

A novel similarity measure called SNMRS has been developed based on existing
NMRS measure [7]. SNMRS yields correlation values in the range of 0 to +1 cor-
responding to negative and positive dependency. To study the performance of our
measure, internal validation of extracted clusters resulted from different methods
is carried-out. Based on the performance, hierarchical clustering has been chosen
and applied the same using the corresponding dissimilarity (distance) values of
SNMRS scores, and utilized a dynamic tree cut method for extracting the dense
modules. Modules are validated through literature search, KEGG pathway, and

gene-ontology analyses on the genes representing the modules. Our measure can
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handle all types of correlations and provides a better performance than several
other measures in terms of cluster-validity indices. Also, SNMRS based mod-
ule detection method have been found to extracts more biologically relevant and

interesting patterns from gene microarray and RNA-seq data.

1.7.5 Identification of Potential Prognostic Biomarkers for
ESCC using Single-cell RNA Sequencing Data Anal-

ysis

This chapter analyses the difference between parental cells and cells that acquired
radioresistance using scRNA-seq data and investigates the dynamic changes of
the transcriptome of cells in response to fractionated irradiation (FIR) towards
the identification of potential biomarkers for Esophageal Squamous Cell Carci-
noma (ESCC). We use an effective pipeline to investigate cell heterogeneity and
to identify potential biomarkers in scRNA-Seq data using differential expression
analysis (DEA). The divergence of gene expressions is analyzed in response to FIR
and the dynamic changes in differentially expressed genes (DEGs) of KYSE-180
cells with two different cumulative doses of FIR (12-Gy and 30-Gy). We construct
several biological networks and observe relative to control (0-Gy), 30-Gy induced
higher variability of genes. Four hub genes TXN, IER2, PCNA, and CENPF are

identified which are involved in ESCC progression.

1.8 Organization of the Thesis

Chapter 2 presents background of gene expression data analysis, Microarray, RNA-
seq, scRNA-seq, ESCC disease, biomarker identification, and the use of data min-
ing in these analyses are discussed in details. Various datasets and tools that are
used in my research work are also discussed in the chapter. Chapter 3 discusses
biclustering techniques and presents own biclustering approach called PD_BiBIM
to find biomarkers from ESCC datasets. Chapter 4 presents an ensemble of dif-
ferential expression analysis methods to identify potential biomarkers from ESCC
microarrays and RNA-seq data. Chapter 5 presents a similarity measure named
SNMRS and an approach to find biomarkers. Chapter 6 introduces and explains
scRNA-seq data analysis techniques and explains the proposed framework to iden-
tify biomarkers from ESCC data. Finally, Chapter 7 presents concluding remarks
and highlights the future directions of research.
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