
Chapter 2

Background

2.1 Gene Expression Data Analysis

Gene expression data analysis can be used to gain insight into the expressions of

genes in various biological systems. By using these techniques, researchers are

able to understand the roles of various genes in various processes, and can uncover

new therapeutic targets for various diseases.

2.1.1 Gene and Gene Expression

Gene is a unit of genetic material that is made up of DNA or sometimes RNA and

is passed from one generation to the next. The structure of a gene is shown in

Figure 2-1. It consists of a sequence of nucleotides that code for specific proteins,

enzymes, and other molecules that carry out specific functions in the organism.

Genes are located in the nucleus of each cell, and they are made up of both exons

and introns. Exons are the coding regions of the gene that are responsible for the

expression of the gene product. Introns are non-coding regions of the gene that

are spliced out of the mRNA molecule before it is translated into a protein. The

human genome is made up of about 20,000 genes, each of which is responsible for

a specific function in the body. Genes are responsible for the traits that we inherit

from our parents, such as eye color, height, and intelligence. In addition, genes

can also play a role in the development of diseases, such as cancer and diabetes.

Scientists are still studying the role that genes play in the development of diseases,

and they hope to use this information to better understand and treat diseases in

the future.
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Chapter 2. Background

Figure 2-1: Schematic representation of a Gene. Source: File:Gene.png.
In Wikipedia. https://commons.wikimedia.org/wiki/File:Gene.png, accessed on
21/07/2023

The process of utilising information from a gene in order to generate a

functional gene product is known as gene expression shown in Figure 2-2. These

products are often proteins, but in non-protein coding genes such as ribosomal

RNA (rRNA) and transfer RNA (tRNA) genes, the product is a functional RNA.

The primary way gene expression is regulated through the use of transcription

factors. These are proteins that bind to specific sequences of DNA and affect the

activity of the gene. They can either increase or decrease the amount of mRNA

produced from a gene, thus controlling the amount of protein that is produced.

Transcription factors (TFs) can also control which proteins are produced by reg-

ulating the type of mRNA that is produced. Gene expression is essential for the

development and functioning of all organisms, as it enables cells to respond to

changes in the environment and to make decisions about how to respond. In addi-

tion, gene expression is a key factor in the development, progression, and outcome

of diseases, as changes in gene expression can lead to changes in the structure,

activity, and expression of proteins and other molecules that can have a major

effect on the health and well-being of an organism.

2.1.2 Gene Expression Data

Gene expression data shows how much of a particular gene is being expressed in

a given cell or tissue. It is typically measured as the amount of messenger RNA
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Figure 2-2: Schematic representation of Gene-expression. Source:
https://www.genome.gov/genetics-glossary/, accessed on 21/07/2023

(mRNA) that is being produced from a gene. Gene expression data is typically

represented as a matrix of gene expression levels, with rows representing genes

and columns representing samples. Each cell in the matrix contains a numerical

value that indicates the expression level of the gene in the corresponding sample.

The numerical value can either be an absolute measure of gene expression, such as

the number of transcripts per million (TPM) or a relative measure of expression.

The gene expression profile refers to the cumulative expression levels observed for

a gene across different experimental conditions. Sometime, in the gene expression

matrix, the levels of annotation are also added to either the gene or the sample.

For example, the function of the genes, or the additional details are provided on the

biology of the sample, such as disease state or normal state. Gene expression data

is typically collected through high-throughput DNA sequencing technology, such

as RNA sequencing or microarray analysis. This type of data can help researchers

understand the underlying biological processes that influence a cell’s behavior,

such as how it responds to environmental changes or diseases. It can also be used

to discover new genetic pathways and develop new treatments. Additionally, gene

expression data can be used to identify genes that are associated with certain

traits, such as cancer or obesity. By analyzing gene expression data, scientists

can gain insight into the inner workings of a cell and better understand how it

functions. Gene expression data can be used to study how a gene is regulated over
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time, how it responds to different environmental conditions, or how it interacts

with other genes in a gene network. The data provide valuable insights into the

extent of expression differences that are associated with malignancy. Moreover,

it identifies certain genes that have the potential to be useful as diagnostic or

prognostic markers.

2.1.3 Gene Expression Data Generation

In this section, three popular techniques to generate gene expression data such as

microarray, RNA-seq, and scRNA-seq data have been discussed.

2.1.3.1 Microarray Data

High-throughput microarray technologies are more efficient for quantifying mRNA

than low-throughput methods due to their ability to analyze a large number of

genes simultaneously [1]. Microarrays, also known as DNA chips or biochips,

allow researchers to measure gene expression levels of thousands of genes at once,

providing an unprecedented level of information. Manufacturing a microarray and

using it to measure gene expression is a complex laboratory process, consisting of

four main steps such as (a) sample preparation and labelling, (b) hybridization,

(c) washing, and (d) image acquisition (as seen in Figure 2-3). A microarray

chip refers to a slide made of glass or silicon, containing a grid of spots. Each spot

holds multiple copies of a gene sequence known as a probe. The mRNA molecules,

called the target, are extracted and labeled using fluorescent dyes, typically red

for Cy3 and green for Cy5 [8]. These labeled mRNA molecules are then applied

onto the slide, allowing them to hybridize with the complementary gene sequences

on the array. The degree of hybridization varies based on the concentration of

mRNA molecules present in the sample, particularly those genes highly expressed

in different conditions. The chip is subsequently scanned to determine the color

intensity at each spot, creating a digital image of the array that can be stored on a

computer. To measure the differential expression level of a specific gene, the ratio

between the signal intensities of the two colors is calculated. By analyzing the

fluorescent light emitted from each hybridized spot, the amount of mRNA in the

sample can be quantified. The resulting images are processed using image analysis

software, generating an intensity matrix for further analysis [9]. The data is usually

displayed in the form of a heat map, with different colors representing different

levels of gene expression which is then transformed into a matrix form called the
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Figure 2-3: Schematic representation of DNA microarray technology.

gene expression matrix or gene expression data. This gene expression matrix or

data, shown in Figure 1.4, has rows representing genes and columns representing

samples or conditions, with values that represent the expressions levels of the gene

in the sample.

2.1.3.2 High-throughput sequencing (HTS)

HTS is a newly invented cheaper, easier, and more powerful technology alterna-

tive to microarray. HTS offers many advantages over DNA microarrays [10]. In

particular, it is more precise and not subject to cross-hybridization, thereby pro-

viding higher accuracy and a larger dynamic range. Next generation sequencing

(NGS) is a powerful HTS method of DNA sequencing that uses massively parallel

sequencing to sequence DNA at a much higher throughput. It uses high-speed,

automated processes to sequence millions of DNA or RNA fragments at once,

allowing researchers to gain a detailed understanding of genetic variation or ex-

pression of genes. High-throughput sequencing is used in a variety of applications,

including genomics, epigenomics, transcriptomic, metagenomics, and clinical di-

agnostics.

A. RNA-seq Data: RNA-seq is an advanced technique that uses HTS or
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NGS technologies to decode a transcriptome. A transcriptome includes the com-

plete set of transcripts, such as protein-coding messenger RNA (mRNA) and non-

coding RNA like ribosomal RNA (rRNA), transfer RNA (tRNA), and other non

coding RNA in a tissue, organism, or a specific cell for a given physiological condi-

tion. The emergence of HTS platforms, such as the Illumina [11] or Solexa technol-

ogy, Ion Torrent semiconductor sequencing technology, Single-Molecule Real-Time

(SMRT) sequencing, and Oxford Nanopore Technologies in 2005, and revolution-

ized DNA sequencing [12]. RNA-seq is advantageous over other gene expression

techniques due to its ability to identify novel transcripts and quantify expression

levels of both known and unknown genes. Moreover, RNA-seq overcomes several

limitations associated with previous technologies, such as microarrays, which of-

ten require prior knowledge of the organism being studied and failed to quantify

the levels of the diverse RNA molecules that are expressed across a wide range

of genomes. The main steps of the RNA-seq technique include sample prepara-

tion, library preparation, library amplification, sequencing, quality control, read

alignment, transcript discovery, quantification and data analysis [13] (as seen in

Figure 2-5 and 2-4). In the sample preparation step, total RNA is isolated from

the sample and then purified to remove any potential contaminants. In the

Figure 2-4: RNA-seq data generation steps

library preparation step, cDNA molecules are generated by reverse transcribing

mRNA molecules from a given sample. The resulting cDNA molecules are frag-

mented into smaller pieces to enable sequencing, added sequencing adapters and

amplified by PCR to enhance fragments. Next, they can be sequenced using one

of the many available high-throughput sequencing platforms. A sequenced frag-

ment is called a ”read” and it can be classified as: exonic reads, junction reads and

poly(A) end reads. The sequencing step involves passing the library of fragmented

RNA molecules through a sequencing machine, which reads the sequence of the

nucleotides in each fragment in a single direction (single-end) or both directions

(paired-end). Single-end reads are typically cheaper and simpler to generate, but

paired-end reads generate better alignments and assemblies for transcript isoform
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Figure 2-5: Schematic representation of RNA-seq technology. Source:
https://en.wikipedia.org/wiki/RNA-Seq, accessed on 21/07/2023

discovery. The sequencing data is then processed for quality checking to assess

the quality of the raw sequence reads and filtering out any reads that may be of

poor quality. Once the quality of the data has been determined, the reads must be

aligned to the reference genome or transcriptome. Alignment of the reads to the

reference is done using a sequence alignment software, such as TopHat, Bowtie2,

BWA, HISAT, AlignerBoost, GSNAP or STAR [14]. The main aim of alignment

is to align sequence reads to intron boundaries accurately. If a reference genome or

transcriptome is available, high-quality reads can be aligned to the reference using

a reference sequence. However, if no reference is available, de novo transcript re-

construction is required to align the reads to the transcriptome. After alignment,

the mapped reads for each sample are assembled into gene-level, exon-level, or

transcript-level information to quantify expression levels. Each RNA-seq exper-

iment produces a vector of read counts for genes, resulting in a matrix of count

data. This matrix count data is the number of reads mapped to each gene, which

can be used for downstream analyses, such as differential expression analysis [15].

Count data follows a discrete data distribution such as poisson and negative bino-

mial. The datasets in RNA-Seq are larger and more complex, and the generated

data cannot be interpreted easily without extensive bioinformatics intervention.

Integration of results from RNA-Seq data with other biological data sources can

help generate a better picture of gene regulation.
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RNA-Seq helps to understand many biological phenomena, such as the

underlying mechanisms and pathways controlling disease initiation, develop-

ment, and progression. Initial transcriptomic studies were conducted using

hybridization-based microarray techniques, but such RNA-Seq provides deeper

coverage and resolution of the transcriptome, facilitating RNA editing, newly

transcribed region detection, analysis of alternative splicing and allele-specific ex-

pression.

B. scRNA-seq Data: Single-cell sequencing is awarded as the method of

the Year for 2013 by Nature Methods [16]. The first publication on next-generation

sequencing platform for scRNA-seq analysis was published in 2009. It became

more popular after 2014, when new protocols and lower sequencing costs made it

more available. Single-cell RNA sequencing is used to understand gene expression

patterns in individual cells. It allows scientists to study gene expression in a single

cell instead of an entire population, providing a more detailed view of cellular

biology. This technique enables researchers to identify gene expression differences

between cell types and measure changes in gene expression over time or in response

to an environmental stimulus. scRNA-seq uses a combination of high-throughput

Figure 2-6: Schematic representation of scRNA-seq technol-
ogy. Source:https://www.stephaniehicks.com/2018-bioinfosummer-
scrnaseq/introduction-to-single-cell-rna-seq.html, accessed on 21/07/2023

sequencing and bioinformatics to analyze the transcriptome of individual cells. By
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sequencing millions of cells, scientists can identify cell-specific genes and construct

a gene expression profile for each cell. This allows researchers to group cells into

cell types and identify distinct gene expression patterns. The process of scRNA-

seq data generation begins with the isolation of single cells from a tissue sample.

This can be done by either microfluidic sorting or manual sorting, depending on

the type of cells being studied. In addition to isolating individual cells, scRNA-seq

also requires the addition of barcodes or tags to each cell. These tags provide a

unique identifier for each cell, which helps to distinguish it from other cells in the

sample. Cell barcodes are used to identify the origin of a read, indicating which

cell it came from, while UMI (Unique Molecular Identifier) helps to identify the

specific mRNA molecule from which the read originated. This UMI information

is useful in detecting and eliminating potential PCR duplicates in the data. This

is especially important when analyzing large datasets, as it helps to ensure that

each cell is accurately identified and analyzed. Once the cells are isolated, they are

lysed to release their contents, including the mRNA molecules (as seen in Figure 2-

6). The mRNA molecules are then reverse transcribed into cDNA and amplified

to produce enough material for sequencing. The cDNA is then sequenced using

a high-throughput sequencing platform such as Illumina. Thus short sequencing

reads are obtained. The sequencing reads are then aligned to a reference genome

to identify the expressed genes in each cell. Finally, the expression levels of these

genes are quantified and used to generate a gene expression profile for each cell.

The data generated by scRNA-seq can then be used for a variety of applications,

including the identification of cell types, the discovery of novel genes, and the

analysis of gene expression patterns. It can also be used to study the function of

genes, as well as to identify potential therapeutic targets. scRNA-seq can be used

to study gene expression in healthy cells as well as diseased tissue.

Microarray and RNA-seq technologies provide average gene expression val-

ues of cells, while scRNA-seq technology can quantify gene expressions at a cell

level. Before conducting downstream analyses such as differential expression anal-

ysis, co-expression analysis, or differential co-expression analysis, each of these

three technologies requires specific preprocessing techniques. Here, we will discuss

some commonly used preprocessing methods for both RNA-seq and scRNA-seq

data.

23



Chapter 2. Background

2.1.4 Preprocessing of RNA-seq data

2.1.4.1 Elimination of low read counts

Low read counts can be due to technical or biological reasons which affects the

downstream analysis results. Low-expression genes of RNA-seq data may be indis-

tinguishable from sampling noise, which can decrease the sensitivity of detecting

DEGs [17]. Identification and filtering of these low-expression genes or low read

counts may improve DEG detection sensitivity. The removal of low read count

can be done in a number of ways, but a simple way is to discard any entries in the

count matrix that have a read count less than a certain threshold. This is done

to improve the accuracy of the results.

2.1.4.2 Normalization

Normalization is a process of adjusting the data to account for differences in library

size, sequencing depth, and other factors that can affect the data. The goal of

normalization is to reduce the effect of these factors and make the data more com-

parable across samples. Normalization is used to remove technical variation from

noisy data. Normalization techniques for RNA-seq include Quantile [18], Reads

Per Kilobase of Transcript Per Million Mapped Reads (RPKM) [19], logarithmic

transformation, Counts Per Million (CPM), Transcripts Per Million (TPM) [20],

Upper Quartile (UQ) [21], Trimmed Mean of the M-values (TMM) [22], Poisson-

Seq and DESeq [23]. For microarray data pre-processing, Min-Max normalization,

Z-score normalization and Decimal scaling normalization are commonly used.

2.1.4.3 Transformation

Transformation of RNA-seq data, which are discrete measurements of gene ex-

pression, is necessary for the application of statistical methods that assume a nor-

mal distribution. Transformation techniques include log transformation, variance-

stabilizing transformation (VST), rank-based transformation, and Box-Cox trans-

formation [24]. Log transformation is the most commonly used technique to trans-

form RNA-seq data. Log transformation involves taking the natural logarithm of

each expression value. This transformation is used to normalize the data and

reduce variance. Variance-stabilizing transformation (VST) is another commonly

used technique for transforming RNA-seq data. This transformation is based on
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the quantile normalization of expression values across multiple samples. It is used

to normalize the data and reduce the variance of the expression values. Rank-

based transformation is a transformation technique based on the ranking of the

expression values across multiple samples. This transformation is used to normal-

ize the data and remove any bias from the data. Lastly, Box-Cox transformation

is a statistical technique used to transform data to a normal distribution. This

transformation is based on the principle of maximum likelihood and is used to

normalize the data and improve its statistical properties.

2.1.4.4 Imputation

Imputation of missing values is a statistical technique used in RNA-seq to fill

in missing values in the data. Missing values often occur in RNA-seq data due

to technical limitations in the sequencing process and can lead to inaccurate re-

sults. Imputation pre-processing works by using the data that is available to

estimate the values of missing data. The most common methods used for imputa-

tion pre-processing in RNA-seq include k-nearest neighbors (kNN), singular value

decomposition (SVD), and multiple imputation by chained equations (MICE). .

2.1.4.5 Removal of Batch Effect

Batch effects are a common challenge in RNA-seq data analysis. They can arise

from differences in experimental conditions or in the sequencing process itself.

Batch effects can cause spurious differences in gene expression levels between

samples, and can complicate the identification of differentially expressed genes.

COMBAT [25] and ARSyN [26] are two methods used in removing batch effects

from RNA-seq data, as well as microarray data.

2.1.5 Preprocessing of scRNA-seq data

2.1.5.1 Elimination of low read counts

Low read counts can indicate that the cell has a low abundance of the targeted

transcript or could indicate technical issues with the sequencing. By removing

these cells, it can help improve the accuracy of downstream analysis.
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2.1.5.2 Imputation in scRNA-seq data

ScRNA-seq datasets typically experience high levels of zero inflation and dropout

events, which can lead to inaccurate downstream analysis. To combat this, several

imputation methods such as scUnif [27], MAGIC [28], scImpute [29], DrImpute

[30], SAVER [31], and BISCUIT [32] have been developed. These imputation

techniques allow researchers to fill in missing values in scRNA-seq datasets and

to reduce the effect of dropout events. scUnif and MAGIC are two unsupervised

methods, while scImpute, DrImpute, SAVER, and BISCUIT are supervised meth-

ods. Unsupervised methods use the gene expression data itself to infer missing

values, while supervised methods use external information and reference datasets.

All of these methods have the potential to improve the quality and accuracy of

scRNA-seq data. scUnif uses a univariate normal distribution to impute missing

values, while MAGIC uses a non-parametric nearest-neighbor imputation. scIm-

pute uses a low-rank matrix approximation to impute missing values, while DrIm-

pute uses a deep learning approach to impute missing values. SAVER uses a

probabilistic model to impute missing values, while BISCUIT uses a Bayesian

nonparametric model to impute missing values. These methods help to improve

downstream analysis by reducing the effect of dropouts and zero inflation, as well

as by providing more accurate estimates of gene expression levels.

2.1.5.3 Removal of low quality and doublet cells

The removal of low-quality and doublet cells preprocessing step is an important

part of single-cell RNA-seq (scRNA-seq) data analysis, and involves the elimina-

tion of low-quality cells and doublets. Low-quality cells are typically identified as

those with low sequencing depth, low gene expression, or low signal-to-noise ratio.

Doublets are two cells that are usually captured in the same droplet accidently,

resulting in a combined pseudo-single cell. Removal of these cells is important

to ensure the accuracy and reliability of downstream analyses. This process can

be done using various software tools, such as Cell Ranger, Cell Ranger ATAC, or

Seurat. These tools can identify and remove low-quality cells and doublets based

on a variety of metrics, such as gene expression, principal component analysis, or

a combination of both. This preprocessing step also helps remove unwanted cells,

such as dead cells or cells from other species, which could introduce noise into the

data set.
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2.1.5.4 Batch Effect Removal in scRNA-seq data

This step can be used to correct the differences in sample preparation, library

construction, sequencing platform, and other sources of technical variability. It is

important to ensure that the data is not biased in any way and that the results

are representative of the true biological state. This preprocessing step can be

executed in a number of ways, including adjusting data normalization, specific to

scRNA-seq data, or using a dimensionality reduction technique such as Principal

Component Analysis (PCA).

2.1.5.5 Normalization

Normalization of scRNA-seq data is the process of adjusting the read counts for

each gene across cells to ensure that technical biases are removed and that the ex-

pression values are comparable across cells. This is typically done using a scaling

factor to make the sum of the read counts in each cell equal to a predetermined

number, such as 10,000 or 1,000,000. Normalization also ensures that the overall

expression distributions are consistent across all cells. This is important for pro-

ducing accurate downstream analyses such as clustering, differential expression,

and trajectory inference.

2.1.5.6 Highly variable gene selection

Highly variable gene selection is an important preprocessing step for scRNA-seq

data that allows researchers to identify genes that are most informative and vari-

able, and to reduce the dimensionality of the data. This process involves selecting

a subset of genes that have the highest average expressions across all cells, as

well as the higher amount of variability among the cells. The selection process is

typically based on the coefficient of variation (CV) or dispersion measures such

as the median absolute deviation (MAD). Genes with the highest CV or MAD

values are selected as the most informative and variable across all cells. Once the

highly variable genes are identified, one can perform downstream analyses such as

clustering, biclustering or triclustering.
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2.1.5.7 Transformation

Log transformation and variance stabilization transformation (VST) are com-

monly employed for the analysis of scRNA-seq data [33].

2.1.5.8 Dimensionality Reduction

Dimensionality reduction is a preprocessing step used to reduce the dimensions

(or features) of scRNA-seq data. This is done to remove redundant and irrelevant

features that do not contribute to the overall structure of the dataset, as well as

to reduce the complexity of the data. Dimensionality reduction is typically per-

formed using Principal Component Analysis (PCA) [34] or t-distributed Stochastic

Neighbor Embedding (t-SNE) [35]. PCA is a linear transformation technique that

creates a new coordinate system with fewer dimensions that still captures most of

the variance in the original data. t-SNE is a nonlinear transformation technique

that creates a low-dimensional embedding of the data in which similar samples

are closer together and dissimilar samples are further apart. Both techniques can

be used to reduce the dimensionality of scRNA-seq data and make it easier to

visualize.

2.1.6 Gene Expression Data Analysis

This section presents three prominant gene expression data analysis approaches

such as differential expresssion analysis, co-expression analysis and differential co-

expression analysis.

2.1.6.1 Differential Expression Analysis (DEA)

DEA is used to compare gene expression levels between two or more biological

conditions. It is used to determine how differentially expressed genes (DEGs) are

related to specific biological processes or diseases. DEA can be used to identify

genes that are up- or down-regulated in response to stimuli, such as drugs, hor-

mones, or environmental conditions. Differential analysis between two conditions

can be viewed as clustering into two categories, changed or not changed[36].

DEA is an important tool used in understanding the molecular basis of

diseases and in the development of new therapeutic agents. By studying which
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Figure 2-7: An example of differential expression pattern. The gene expression of
G1 varies (increases) significantly in disease conditions. Whereas, gene G2 shows
almost steady expression in disease condition. So, gene G1 may be considered
as a differentially expressed gene. In this figure, first 5 samples are from normal
condition and rest are from disease condition.

genes are expressed differently in different samples, one can gain insight into which

genes are associated with certain diseases or processes. This can help to identify

potential drug targets and guide drug development. Additionally, DEA can be

used to identify novel diagnostics or prognostics biomarkers. In Table 2.1, various

widely used DEA tools have been listed. There are different methods for DEA

such as edgeR[37], DESeq[38], DESeq2[39] NBPseq[40], baySeq[41] and EBSeq[42]

which are Bayesian approaches based on a negative binomial model. From the

literature, it is found that the best performing tools[43] tend to be edgeR[37],

DESeq/DESeq2[38][39], and limma-voom[44]. DESeq and limma-voom tend to

be more conservative than edgeR (better control of false positives), but edgeR is

recommended for experiments with fewer than 12 replicates[45].

2.1.6.2 Gene Co-expression Network Analysis (GCNA)

The co-expression network was first introduced in the year 1999 by Butte and Ko-

hane [68]. A gene co-expression network (GCN) is an undirected graph extracted

from a gene expression dataset, where the strength of associations between a gene

pair is represented with the help of nodes and edges. The higher value of associa-

tion corresponds to high biological significance. A GCN highlights the statistical

correlations or semantic similarities among the genes. To find a GCN, a correla-

tion matrix is computed on the pre-processed dataset. This matrix consists of all

possible genes including those that are highly co-expressed, loosely co-expressed,

and zero co-expressed. If a change in one gene tends to follow a change in another
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Table 2.1: Differential Gene Expression Analysis Methods/Tools

Methods Year Type of software

limma[46] 2004 R package

DEGseq[47] 2009 R package

edgeR[37] 2010 R package

DESeq[23] 2010 R package

baySeq[41] 2010 R package

Cuffdiff[48] 2010 Command-line user interface

Cuffdiff2 2013 Command-line user interface

BBSeq[49] 2011 R package

DEXseq[50] 2012 R package

EDAseq[51] 2012 R package

Bitseq[52] 2012 R package

ShrinkSeq[53] 2012 R package

QuasiSeq[54] 2012 R package

SAMseq[55] 2013 R package

Ebseq[42] 2013 R package

rSeqDiff[56] 2013 R package

DSGSeq[57] 2013 R code

DESeq2[39] 2014 R package

ShrinkBayes[58] 2014 R code

edgeR-Robust[59] 2014 R code

limma-voom[44] 2014 R package

NBPSeq[60] 2014 R package

ImpulseDE[61] 2016 R package

SARTools[62] 2016 Standalone

NOISeq[63] 2016 R package

BNP-Seq[64] 2016 Standalone

DEApp[65] 2017 Web tool

iDEP[66] 2018 Web tool

ideal[67] 2020 R package

gene, it is assumed that the two genes are associated or correlated and this in-

terdependence is called correlation or covariation, and the pair of genes are called

co-expressed genes. A co-expressed gene may be either positively co-expressed or

negatively co-expressed. Two genes G1 and G2 are called positively co-expressed,

if an increase in G1 is associated with an increase in G2, exhibiting a positive cor-

relation score close to 1. Two genes G1 and G3 are called negatively co-expressed

if an increase in G1 is associated with a decrease in G2, exhibiting a correlation

score close to -1 or 0 depending on the correlation strength. A GCN module M,

is a dense sub-network of a GCN consisting of highly co-expressed genes with

common biological processes and similar functions.

Figure 2-9 depicts the classification and types of GCN. To obtain the degree

of correlation between a pair of genes, several similarity and distance measures
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Figure 2-8: An example of co-expressed module.

Figure 2-9: Types of GCNs and types of co-expression measures and topological
properties

are available among which the Pearson Correlation Coefficient is the most reli-

able one. If the correlation value between two genes exceeds a certain threshold,

they are considered to be related. A GCN is a single, large, complicated network,

that helps to perform (i) downstream analysis, which includes the discovery of

comparatively small groups of co-expressed genes, and hub genes, (ii) guilt by

association analysis, (iii) transcriptome regulatory network construction, and (iv)

preservation and disruption analysis. Hence, the importance of GCN analysis in
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biological research can not be overstated. A GCN allows researchers to investigate

the roles of undiscovered genes and their links to illnesses, prioritization of candi-

date genes, and identification of regulatory genes. The functional linkage between

genes can be identified by observing and analyzing the coordinated behaviour of

pairs of genes across samples [69]. Weirauch [70] reported that co-expressed genes

are regulated by the same regulator, functionally linked, or are participants of the

same pathway or protein complex. The patterns of co-expressed genes follow ab-

solute, shift-or/and-scale, inverse/cross and re-wiring (means rearranging the ties

in a graph) expression patterns across a variety of experimental samples [71]. A

GCN analysis method must have the ability to handle all types of such expression

patterns. A GCN can be of different types: weighted or unweighted based on the

type of strength and directed or undirected based on the type of relationship. A

GCN is characterized by topological properties, modularity, presence of intra/inter

hub genes, and power-law degree distribution. Though GCNs and PPI are static

in nature, they include a great deal of information regarding dynamic processes

such as genetic network activity in response to DNA damage, protein function,

and genetic interaction [72].

Several methods have been proposed in the past for GCN analysis. We

have come across a few extensive surveys related to GCN analysis for all types of

gene expression datasets. Extensive surveys on GCN, found in Aoki et al. [69],

Van Dan et al.[73], Horvath et al.[74], and Chowdhury et al.[71]. Aoki et al.[69]

and Horvath et al.[74] provide discussions discussion of co-expression networks

with network architecture, terminologies and associated diagrams. Additionally,

Van Dam et al.[73] and Chowdhury et al.[71] present tools and methods related

to such networks. Another systematic literature survey on GCN is reported in

[71]. Co-expressed genes are members of the same pathway or protein complex,

are controlled by the same transcriptional regulatory mechanism, or are function-

ally related [70]. However, unlike a GRN, a GCN does not define the causation

links between genes [75]. An interesting geometric interpretation for GCN was

introduced by Horvath et al. [74]. Identifying disease-related modules leads to

the development of improved diagnostic strategies and new drugs[76]. The gene

expression network topology provides the basis for molecular characterization of

the cellular environment [77]. The most extensively used tool for generating GCN,

recognizing modules performing preservation analysis, identifying hub genes, and

selecting potential genes as biomarkers is WGCNA [78]. WGCNA calculates a

weighted adjacency matrix using a signed co-expression measure and soft thresh-

olding. The adjacency matrix is turned into a Topological Overlap Matrix (TOM)

to reduce the impact of noise and spurious associations. Then, the corresponding
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dissimilarity matrix is calculated on which Hierarchical clustering is performed to

get modules of highly co-expressed genes. To quantify co-expression similarities

of entire modules, their eigengenes are calculated and clustered based on corre-

lation. Hierarchical tree visualizing functions as well as functions for presenting

the correlation matrix in heatmap form are available in the WGCNA package.

It does not provide a function to produce a graphical view of the co-expression

network but does allow exporting networks into Cytoscape, to visualize the net-

works [78]. Jianqiang Li et al. [79] modifed the original WGCNA working pipeline

to study high-throughput genomic data. A combination of Signed and Unsigned

WGCNA (csuWGCNA) is a modified WGCNA approach [80]. A signed WGCNA

outperforms an unsigned WGCNA in terms of expression pattern detection in a

module [81]. THD-Module Extractor is a method for detecting and extracting

GCN modules from microarray datasets [82].

2.1.6.3 Correlation

In order to measure the strength of a linear relationship between two gene ex-

pression profiles, the correlation coefficients are used. The value of a correlation

coefficient value which is greater than zero implies a positive relationship while

a correlation coefficient less than zero indicates a negative relationship. Further,

when the value of correlation coefficient is zero, it signifies there is no relationship

between the two gene expression profiles being measured. Correlation score helps

detecting two gene expression profiles whether they co-expressed or not.

A correlation pattern is obtained by adding (or subtracting) the same

amount (the rate of change) each time to get from one state to the next. Correla-

tion patterns can be positive or negative which may be absolute, shifting, scaling,

shifting-and-scaling and scaling-and-shifting. An example is shown in Figure 2-10.

From a random variable a=(3,7,5,2) other variables ’b’, ’c’, ’d’, and ’e’ variables

are calculated to demonstrate inhibition shifting, scaling, and shifting-and-scaling

correlations individually. Here, ’b’ and ’c’ are two different shifted patterns with

the same amount of change. The types of correlation patterns discussed above

are shown in Figure 2-10 which shows the mechanism for inducing changes during

pattern transformation.

For GCN construction, various correlation measures have been suggested till

date. We discuss some widely used measures used to construct a GCN. For easy

comparison, we present Table 5.2 that shows the formulas and characteristics of

different co-expression measures.
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Figure 2-10: Different types of patterns with change. Here, ’a’ is a random
variable, ’b’ and ’c’ exhibit shifted pattern, d exhibits a scaling pattern, and e
inhibits a shifting-and-scaling pattern.

Euclidean distance: The geometric distance between two gene profiles can

be measured using Euclidean distance [83], which takes into account both the mag-

nitude and direction of the gene profiles. The euclidean metric is not appropriate

when the absolute amounts of functionally related genes differ significantly.

Pearson’s correlation coefficient (PCC): PCC [84] is the most popular co-

expression metric and is recommended by many authors in constructing GCNs. It

measures the tendency of two gene profiles to rise or drop simultaneously in the

range -1 to 1. PCC is calculated as the cosine of the angle between the mean-

centered profiles. Mean centering maintains the shape of the profile[85]. PCC

is robust to order sensitivity. The PCC measure has limitations in that it can

only detect linear relationships and is susceptible to outliers. PCC does not work

with identical vectors. For PCC, zero correlation indicates independence or no

linear relationship between a pair of genes. However, in this case, there may be

the possibility of nonlinear dependence and a curvilinear relationship. PCC is

computationally intensive, particularly in the case of large matrices[86]. After

standardization, Pearson correlation and Euclidean distance can be proven to be

equivalent [87].

Spearman’s rank correlation coefficient: Spearman’s rank correlation [88]

does not take into account the actual magnitude of the expression ratio between

two genes but takes into account the ’rank’ of the expression ratio between two

genes. When the variables are measured on a scale that is ordinal, it is useful

because it makes no assumptions about the distribution of the data. Also, it is

resistant to data outliers. However, datasets with a small number of samples, it is

less sensitive to expression values and may detect a large number of false positives.
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Mutual Information: Mutual information (MI) [89] is a metric that identifies

non-linear statistical dependence between two genes, similar to the correlation

coefficient. Song et al. [90] discovered that MI did not outperform correlation in

many circumstances.

Bicor: Biweight mid-correlation (commonly known as bicor) is a statistical

measure of similarity between a pair of genes. Because bicor is median-based rather

than mean-based, it is less vulnerable to outliers than other similarity measures

like Pearson correlation or mutual information, according to [90]. It is used for

weighted correlation network analysis to evaluate similarity in gene expression

networks.

Topological overlap matrix (TOM): This measure is based on shared network

neighbours [91]. It was designed to make networks less vulnerable to erroneous

connections or connections that were lost due to random noise. The topological

overlap between two nodes indicates how similar they are in terms of the nodes

they link to. The higher the overlap between two substrates within a metabolic

network, the more likely they belong to the same functional class, researchers have

discovered.

2.1.7 Degree centrality

Nieminen [92] first introduced the concept of degree centrality for an undirected

graph. As described by Freeman in 1979 [93], degree centrality is a count of the

number of edges incident on a given node of a network. The more connected a

node is in the network, the more essential it is according to this metric. The node

or vertex is nothing but a gene in GCN. The number of genes adjacent to a gene

determines its importance in a co-expression network. Only a small number of

genes have high degrees in many real-life networks. The nodes with large degrees

are also known as hub genes [94]. The limitation of degree centrality is that its

value depends on network size. To overcome this issue, one can compare the

relative centralities of points from different graphs [93]. In comparison to non-

disease genes, disease genes are said to have a higher degree of adaptation [95].

2.1.7.1 Differential Co-expression Analysis (DCEA)

DCEA involves the identification of gene modules whose co-expression patterns

exhibit significant variations across different conditions [71]. It involves compar-
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ing gene expression data from two or more different conditions or experiments

and then looking for statistically significant differences between them. DCEA is

based on the assumption that the expression of genes is correlated within the same

sample or experiment. Therefore, if two different conditions or experiments show

different gene expression patterns, then it is likely that the genes involved in those

differences are playing a role in the differences between the samples or experiments.

Detecting the genes which change their expressions in different conditions (such

as normal versus cancer) is an essential task and can help understand the causes

of diseases [96]. This type of analysis can be useful for studying gene expression

changes in response to treatments, or for identifying genes that are involved in

disease processes. It can also be used to identify novel gene regulatory pathways

and to study gene-gene interactions. It can also help to identify novel biomark-

ers and therapeutic targets. By understanding the changes in gene expression

between different conditions or experiments, researchers can gain a better under-

standing of the underlying biological processes. In addition to the above three

approaches, preservation analysis is commonly used to study the effectiveness of

gene subsets or modules extracted from the network constructed using any of the

above approaches.

The most commonly utilized tools for DCEA, such as WGCNA [78] and

DiffCoEx [97], share a similar approach. They initially identify co-expressed mod-

ules across the entire set of study samples. These modules can then be correlated

with predefined sample subpopulations, representing factors like disease status or

tissue type. In the case of WGCNA, it evaluates the activity and significance of

each module in each subpopulation. It calculates an eigen gene for each module,

which represents the expression pattern of all genes within that module across the

analyzed samples. It then prioritizes genes that behave similarly to the eigen gene

or are intra-modular hub genes, as these are likely to be associated with the pheno-

type linked to the module. DiffCoEx, on the other hand, focuses on modules that

exhibit differential co-expression with the same sets of genes. This can include

sets of genes that ”hop” from one correlated gene set to another in a coordinated

manner. DiffCoEx clusters these ”hopping” genes accordingly. DINGO [98], a

more recent tool, resembles DiffCoEx by grouping genes based on their differen-

tial behavior in a specific subset of samples compared to the baseline co-expression

observed across all samples. These genes are more likely to explain phenotypic

differences attributed to the two different
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2.1.7.2 Preservation Analysis

A preservation study of a module extracted from a GCN can reveal a lot of hidden

information. Such analyses help quantify structural changes across conditions as

well as the amount of preservation across states, using statistics such as Zsum-

mary[99] and MedianRank[99]. These are the two commonly used preservation

quantification techniques. Preservation analysis is a useful method for comparing

co-expression networks and identifying modules that have been preserved by nat-

ural selection or have been disrupted by certain pathways or biological processes.

2.2 Biomarker Identification

Biomarkers are crucial genes that are used to identify and track changes in the

body. Biomarkers can be used to diagnose, monitor, and predict disease progres-

sion as well as to evaluate the effectiveness of treatment [100]. They are also used

to assess environmental exposures and to measure drug response [101]. Biomarkers

are often identified using genetic sequencing technologies such as next-generation

sequencing and targeted sequencing. These technologies enable researchers to

identify and map gene sequences within a genome, and then use this information

to identify the biomarkers that are associated with a particular disease or con-

dition. Biomarker identification involves a combination of genetic and molecular

techniques, including gene expression profiling, gene sequencing, and proteomics.

These techniques are used to identify the biomarkers that are associated with a

particular disease or condition [101]. Once identified, these biomarkers can be used

in clinical trials to test the efficacy of treatments. The identification of biomarkers

can be an important tool in the diagnosis and treatment of diseases [78]. By iden-

tifying biomarkers, doctors can determine if an individual is at risk of developing

a certain disease, or if they have an existing condition. Additionally, biomarkers

can help doctors determine the best course of treatment for an individual, and can

also be used to monitor the progress of a disease. Many authors have identified

critical genes or biomarkers associated with cancers using GCN analysis methods.

These cancer types include alzheimer [102], gastric cancer [103], adenocortical

[104], COVID-19 [105], and ovarian [106].
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2.2.1 Cluster Analysis

Clustering is used in gene expression analysis to investigate the occurences of

interesting patterns across the states or conditions. Clustering is the common way

technique to analyze the gene expression data [107]. Clustering allows researchers

to identify co-expressed gene expression patterns and to uncover relationships

among genes, gene expression levels, and biological processes. Clustering methods

identify co-regulated genes, identify pathways and networks, and to understand

the dynamics of gene expressions.

Figure 2-11: Clusters

Clustering algorithms are typically used to group genes with similar expres-

sion levels. This is done by grouping genes following similar trends or patterns

into clusters. Clustering algorithms can also be used to identify genes whose

expressions are significantly different from the rest of the group. This is useful

for identifying novel genes that may be involved in a particular biological pro-

cess. Clustering can also be used to identify pathways and networks by grouping

genes that have similar expression profiles. This can help to elucidate the rela-

tionship between genes and biological processes, as well as their potential role in

disease development. Additionally, clustering can help to identify gene expression

signatures that are associated with different diseases. Clustering has been used

in gene expression analysis for decades, and its utility continues to increase as

new technologies and data sources become available. Clustering can be used to

identify novel genes, uncover relationships between gene expression and biological

processes, and to understand the dynamics of gene expression. Additionally, clus-

tering can be used to identify gene expression signatures associated with different

diseases. Some clustering techniques are - K-Means Clustering [108], hierarchical

custering [109], DBSCAN [110], Self-Organizing Map [111], CLICK [112], etc. K-

means is a widely used clustering algorithm that aims to partition data points into

K distinct clusters. It works by iteratively assigning data points to the cluster cen-
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troid that is closest to them and updating the centroids based on the newly formed

clusters. K-means is known for its simplicity and efficiency, but its performance

can be sensitive to the initial choice of centroids. Hierarchical clustering builds a

hierarchical structure of clusters by iteratively merging or splitting them. It does

not require specifying the number of clusters beforehand and can be visualized as

a dendrogram. The two main types of hierarchical clustering are agglomerative

(bottom-up) and divisive (top-down). Agglomerative clustering starts with each

data point as its own cluster and recursively merges the most similar clusters until

a stopping condition is met.

2.2.2 Biclustering or Two-way Clustering Approaches

Nowadays biclustering is a well-known technique for the study of gene expression

data, to discover functionally related set of genes under different subsets of ex-

perimental samples or conditions [113]. This subset similarity method has been

named as biclustering [113], co-clustering or block clustering [114]. Biclustering is

used to identify patterns of gene expression across multiple samples. It is used to

identify both the genes and samples that are associated with a particular pattern

of gene expression. Several unsupervised machine learning techniques have been

developed to analysis the gene expression data obtained from DNA microarray

experiments. These algorithms have helped us to understand conceptually and to

visualize the basics of clustering and Biclustering approaches. Biclustering is a

two-step process. First, it searches for genes and samples that are associated with

a pattern of gene expression. It does this by examining the correlation between

gene expression values across multiple samples and genes. Then, it uses the iden-

tified genes and samples to form clusters. These clusters can then be analyzed to

identify patterns of gene expression that are associated with different biological

processes. These patterns may indicate the presence of a disease, or they may

provide insight into how a particular gene is involved in a biological process. To

identify the existence of various types of correlations among the expressions of a

group of biologically significant genes using biclustering technique is a challeng-

ing task for the researchers. Some examples of bilcutering techniques are Cheng

and Church, OPSM [115], xMotif [116], Qubic [117], Bimax [118], IBBIG [119],

SAMBA [120], Plaid [121], Spectral [122], ISA [123], CPB [124], FABIA [125],

BBC [126], BIBIT [127], and COALESCE [128].

ChengCheng and Church (CC) [113] algorithm is the first biclustering algo-

rithm developed to overcome the drawbacks of clustering algorithms in gene ex-
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pression data analysis. This algorithm follows a greedy strategy and node-deletion

approach. In CC algorithm the concept of a new measure named as Mean Squared

Residue. Order Preserving Submatrix (OPSM) [115] is a deterministic greedy al-

gorithm that seeks biclusters with ordered rows. Though OPSM can construct

complete biclusters by extracting constant columns, shifting, scaling and shifting-

scaling biclusters, but, this algorithm is based on the order of values and hence

the algorithm is quite restrictive and it takes a long time for large dataset. Liu

and Wang proposed Maximum Similarity Bicluster (MSB) [129] based on the sim-

ilarity score. This method extracts additive biclusters using a greedy approach.

It is a polynomial-time algorithm to find an optimal set of biclusters with the

maximum similarity. Iterative Signature Algorithm (ISA) by Ihmels et al [115]

is a non-deterministic greedy algorithm that seeks biclusters with two symmet-

ric requirements and each column in the bicluster must have an average value

above some threshold. Multiple biclusters can be discovered by running the ISA

algorithm on several initial gene sets. Its drawback is that there is no evaluation

of the statistical significance. xMOTIFs is a non-deterministic greedy algorithm

that seeks biclusters with conserved rows in discretized dataset [130]. In Biclus-

ters Inclusion Maximal (Bimax), the raw data is first converted into binary and

applied a fast divide-and-conquer technique that partitions the discretized matrix

into different sub-matrices, one of which contains only 0-cells and other contains

1-cell [118]. The algorithm is then recursively applied and the recursion ends if all

the biclusters are extracted which contain only ones. The deterministic algorithm

QUBIC [117] works in discrete data and looks for biclusters with nonzero constant

columns.

Figure 2-12: Biclusters
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2.3 Gene Expression Data Repositories

Gene expression data repositories are specialized databases that store and manage

large amounts of gene expression data generated from various experiments and

studies. They are used to store, organize, analyze, and share data generated from a

variety of high-throughput experiments such as microarray, RNA sequencing, and

proteomics. These repositories provide access to data from a variety of species,

tissues, and experimental conditions and are a valuable resource for scientists

working in the fields of systems biology and personalized medicine. The data

stored in these repositories can be used to investigate gene expression patterns,

identify novel gene regulatory networks, and to understand the interplay between

genes and the environment. Additionally, gene expression data repositories can be

used to identify potential drug targets, compare gene expression profiles between

different species, and to develop diagnostic and prognostic tests. Furthermore,

the data is freely available and easily accessible, making it an ideal resource for

researchers.

2.3.1 GEO

The Gene Expression Omnibus (GEO) [131] repository is a public repository for

microarray and sequencing data. It is hosted by the National Center for Biotech-

nology Information (NCBI) and is funded by the National Institutes of Health

(NIH). The GEO repository contains data from over 10,000 studies, including over

1.5 million gene expression measurements. It is searchable by gene name, probe

set, or tissue type. The GEO repository is free to use and is open to submissions

from any researcher.

2.3.2 Recount2

Recount2 [132] is an online resource consisting of RNA-seq gene and exon counts

as well as coverage of bigWig files for 2041 different studies. For ease of statistical

analysis, each study count data are created at the gene and exon levels and also

extracted phenotype data, which are in raw formats as well as in RangedSum-

marizedExperiment R objects. The count tables, RangedSummarizeExperiment

objects, phenotype tables, and mean bigWigs are ready to use and freely available

here. By taking care of several preprocessing steps and combining many datasets

into one easily-accessible website, it makes finding and analyzing RNA-seq data
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considerably more straightforward.

2.3.3 NCBI SRA

The NCBI is a public database of genetic and genomic information. The NCBI

SRA (Sequence Read Archive) (www.ncbi.nlm.nih.gov/sra) is a repository of

HTS data. The SRA contains raw sequencing data as well as processed data from

a variety of sequencing platforms.

2.3.4 cancerSEA

The SEA (Single-cell Expression Analysis) database is an online resource for single-

cell expression data available at http://biocc.hrbmu.edu.cn/CancerSEA/. It is

a comprehensive database of single-cell expression data from a variety of cancer

types, including breast, lung, and colorectal cancer. The database contains over

1,000 single-cell expression profiles from over 200 cancer samples. The data is

organized into three categories: gene expression, gene copy number, and gene

fusion.

2.4 Datasets Used

This section reports seven benchmark datasets of ESCC and other sources.

2.4.1 ESCC disease dataset: GSE20347

The ESCC dataset GSE20347 is a microarray gene expression dataset generated

by the Affymetrix HG-U133A 2.0 gene expression arrays. RNA was extracted

from 17 micro-dissected tumor and matched normal tissue pairs of 17 Esophageal

Squamous Cell Carcinoma (ESCC) patients from a high-risk region of China. The

dataset contains expression levels from 22278 genes in each sample. The goal of the

study was to identify the gene expression patterns associated with ESCC, so that

potential therapeutic targets could be identified. The dataset is freely available

and can be accessed online and can be downloaded in various formats, including

Excel and tab-delimited text. Additionally, the data can be accessed through the

Gene Expression Omnibus (GEO) database.
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2.4.2 ESCC disease dataset: GSE23400

The GEO GSE23400 ESCC microarray dataset is a publicly available dataset that

was developed to study the gene expression profiles of ESCC. The dataset consists

of gene expression data from 53 paired tumor and 53 normal tissue samples. The

dataset contains a total of 22287 genes, with expression values for each gene in each

sample. The dataset was generated using the Affymetrix U133A/B chip platform

and is available through the Gene Expression Omnibus (GEO).

2.4.3 ESCC disease dataset: GSE32424

GSE32424 (GEO) or SRP008496 (SRA) RNA-seq dataset is generated by Illu-

mina high-throughput sequencing. A total of 12 clinical samples from human

ESCC (7 tumors and 5 non-tumors) are reported in the dataset and it con-

tains a total of 58,037 gene profiles. The dataset is available at GEO https:

//www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE32424 and at Recount2

https://jhubiostatistics.shinyapps.io/recount/.

2.4.4 ESCC disease dataset: SRP064894

These samples consisted of 15 ESCC tissue samples and their 14 respective paired

non-tumor tissues with 58000 genes. This count data for this dataset is available

in recount2 with accession number SRP064894.

2.4.5 Yeast Sporulation dataset

The yeast sporulation microarray dataset quantifies expression levels of 6118 genes

across 7-time points during meiosis and spore formation in Saccharomyces cere-

visiae. A pre-processing was carried out by Sanghamitra et al.to exclude genes

whose expression values did not change significantly using a threshold level of

1.6 for the root mean squares of the log2-transformed ratios. This resulted in a

dataset of 474 genes over seven time points. The original dataset is available at

http://cmgm.stanford.edu/pbrown/sporulation/ and the preprocessed dataset is

available at http://anirbanmukhopadhyay.50webs.com/data.html.
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2.4.6 Iris dataset

The iris dataset includes samples from three different Iris species (Iris versicolor,

iris virginica, and iris setosa). The length and width of the sepals and petals,

both in centimetres, are measured for each sample. The dataset is composed

of four features, each with 50 instances, each referring to a different iris plant

kind. This dataset can be downloaded from the UCI machine learning repository

https://archive.ics.uci.edu/ml/datasets/iris

2.4.7 ESCC disease dataset: GSE81812

The dataset scRNAseq GSE81812 is a collection of single cell transcriptomes for

radio-resistance analysis of the esophageal squamous cell carcinoma (ESCC) cell

line KYSE-180. It was generated by Next Generation Sequencing (NGS) and con-

tains gene expression data from individual cells of the KYSE-180 cell line. The

data includes information on the gene expression of each cell, as well as metadata

such as cell type, radio-resistance, and treatment. Cultured KYSE-180 cells were

subjected to accumulative irradiation doses of 0 Gy, 12 Gy or 30 Gy, respectively.

Single-cell libraries were then generated using the Smart-seq 2 kit, and sequenced

on an Illumina HiSeq 2500. The sequence reads that passed quality filters were an-

alyzed for transcript expression levels with TopHat, followed by DESeq2/Monocle.

The dataset is intended to be used for research into ESCC radio-resistance, pro-

viding insight into the molecular mechanisms underlying radio-resistance in this

cancer type.

2.5 Software Tools Used

Different tools are employed in the various stages of this work. These tools are used

for either the implementation of proposed techniques or for the implementation

of existing techniques of a similar type. Additionally, some tools are employed

to use an established validation framework to assess the results of the proposed

techniques. The major tools used in this research are discussed next.
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2.5.1 R

R [133] is a programming language and software environment for statistical com-

puting and graphics. It is one of the most commonly used programming languages

in data science and is a popular choice for statistical software with an integrated

scripting language interface. R is an open-source language, meaning it is free

to use and free to modify. It is known for its wide range of libraries and pack-

ages, which enable users to perform complex tasks quickly and easily. It also

has a large community of users who are constantly developing and sharing new

packages. R packages are collections of functions, data, and compiled code in a

well-defined format. They extend the capabilities of R by providing additional

functions, datasets, and tools that are often used by data scientists. R packages

are typically created by developers and distributed through the Comprehensive R

Archive Network (CRAN), a public repository of R packages. There are currently

over 13,000 packages available on CRAN, providing a wide range of data analysis

and statistical tools. R has a wide range of data types, including vectors, matrices,

and data frames, and is able to manipulate them quickly and easily. It also has a

wide range of graphical tools for creating plots, charts, and other visualizations.

R is used for a variety of tasks, including data analysis, machine learning, and

data visualization. It is also used for web development and can be used to create

interactive web applications. R is an extremely powerful language and is used by

researchers, data scientists, and software developers around the world. Its wide

range of libraries and packages make it an ideal choice for those looking to quickly

and easily manipulate and visualize data.

2.5.2 FuncAssociate

FuncAssociate (http://llama.mshri.on.ca/funcassociate/) is a web-based

gene enrichment analysis tool designed for users to submit lists of genes or proteins.

Using FuncAssociate, users can quickly search and analyze gene-disease associa-

tions to identify relationships between genes and diseases. It uses Fisher exact

test and annotations from Gene Ontology to identify GO terms that significantly

overlap with the provided list, providing the user with corresponding p values.

This tool is designed to help researchers quickly identify potential gene-disease

associations and explore existing relationships between genes and diseases. Fun-

cAssociate uses a comprehensive set of data sources, including public gene-disease

databases and literature-based information. It also integrates information from

multiple sources, such as the Gene Ontology and the Human Phenotype Ontology,
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to identify potential gene-disease associations. The tool also provides visualiza-

tions and insights into the relationships between genes and diseases, allowing users

to quickly and easily explore the data and draw meaningful conclusions.

2.5.3 DAVID

DAVID (Database for Annotation, Visualization, and Integrated Discovery) [134]

is an online bioinformatics resource available at https://david.ncifcrf.gov

that provides a comprehensive set of functional annotation tools for investigators

to understand biological meaning behind large list of genes. It helps to identify

and categorize the biological themes and pathways that are associated with the

input genes. It uses a powerful statistical algorithm to identify and assign gene

functional categories from over 2000 available gene ontology categories. It also

provides an interactive visualization interface to explore and interpret gene lists

for biologists. It is used for many applications such as gene expression studies,

gene set enrichment analysis, functional annotation clustering, and pathway anal-

ysis. DAVID is a free online resource and is widely used by researchers in the field

of bioinformatics.

2.5.4 STRING

The STRING tool [135] (https://string-db.org/) is a powerful bioinformat-

ics resource for exploring the functional relationships between proteins. It is a

database of known and predicted protein-protein interactions that is based on sci-

entific literature, as well as high-throughput experiments. The tool allows users

to easily identify and visualize the interactions between proteins, and to explore

the functional relationships among them. The tool also offers a variety of other

features, such as the ability to create protein-protein interaction networks, to pre-

dict functional relationships between proteins, to assess the functional significance

of specific pairs of proteins, and to identify potential drug targets. The STRING

tool is an invaluable resource for those looking to better understand the complex

relationships between proteins, and the overall dynamics of biological systems.
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2.5.5 Cytoscape

Cytoscape [136] is an open-source bioinformatics software platform for visualizing

molecular interaction networks and biological pathways. It is used for understand-

ing the structure and dynamics of cellular processes and is widely used in systems

biology research. Cytoscape offers a variety of features, including interactive vi-

sualization, automated layout and analysis. Cytoscape is an important tool for

researchers studying the structure and dynamics of large-scale systems, such as

protein-protein interaction networks, metabolic pathways, and disease pathways.

It can be used to build and visualize networks from high-throughput experiments,

such as gene expression data or protein-protein interactions. It can also be used

to analyze the topology of the networks and detect patterns, trends, and sub-

networks. In addition to visualizing and analyzing networks, Cytoscape can be

used for a variety of other tasks, such as gene ontology enrichment analysis, gene

set enrichment analysis, and pathway analysis. It also provides a rich set of plugins

to extend its functionality.

2.5.6 GeneMania

GeneMania [137] is a bioinformatics tool designed to help researchers explore the

relationships between genes and diseases. It is a web-based tool that allows users

to search through gene, protein, and disease data from multiple databases. It is

used to visualize, analyze, and interpret gene-disease relationships, and to quickly

identify potential disease-causing genes. GeneMania is an interactive tool that

allows users to explore the relationships between genes, proteins and diseases. It

enables users to quickly search multiple databases and visualize the relationships

between genes and diseases. The tool also provides information about known dis-

eases, genes, and proteins, and allows the user to identify potential disease-causing

genes. GeneMania is a useful tool for researchers in the field of bioinformatics. It

provides users with an easy way to access and analyze large amounts of genetic

and disease data. It is an invaluable tool for gene-disease research, and can help

to quickly identify potential disease-causing genes.

2.5.7 GeneMalacard

GeneMalacard under GeneAnalytics https://ga.genecards.org website is a on-

line tool for exploring gene-disease associations. It is a product of the GeneCards

47

https://ga.genecards.org


Chapter 2. Background

Suite, a suite of software tools for exploring and analyzing human genes and gene-

disease interactions. The GeneMalacard tool provides free access to a curated

database of gene-disease associations from over 400 sources, including PubMed,

OMIM, and ClinVar. It enables users to quickly and easily search for informa-

tion on gene-disease associations, and provides interactive visualizations to help

explore the data. The GeneMalacard tool allows users to search for gene-disease

associations by gene symbol or disease name, or to browse associations by disease

type. It also provides a powerful search engine, allowing users to filter results by

type of association, type of evidence, and other criteria. The tool also provides

interactive visualizations, allowing users to explore the data in a graphical format.

In addition to providing access to curated gene-disease associations, GeneMalacard

also allows users to explore related information, such as genetic variants associated

with a disease, gene expression profiles, and more. It also allows users to export

data in a variety of formats, making it easy to incorporate GeneMalacard data

into other applications.

2.5.8 WGCNA

WGCNA (Weighted Gene Co-expression Network Analysis) [78] is a bioinformatics

tool that can be used to identify relationships among genes and other molecular

features. It helps to explore and analyze gene networks, allowing researchers to

gain further insight into the biology of the system they are studying. The WGCNA

package contains a number of modules, including network construction, network

visualization, network-based gene selection, and module identification. WGCNA

can be used in a variety of contexts, such as to identify networks of genes associated

with a particular phenotype, to identify gene modules associated with a particular

biological process, and to identify gene modules that are associated with a drug’s

response. WGCNA can also be used to identify candidate genes for further study,

or to identify potential drug targets.

2.5.9 Python

Python [138] is an interpreted, high-level, general-purpose programming language.

It was created by Guido van Rossum and first released in 1991. It is used for a wide

variety of applications, from web development to software development. Python

is known for its easy-to-read syntax and its ability to quickly solve complex prob-

lems. It also has a large standard library, which provides a wide range of useful
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modules and functions. Python is a great choice for those just getting started with

programming, as it is relatively easy to learn and understand. It also provides the

flexibility to build applications with a variety of features and functions. Python

is widely used for web development, scripting, game development, artificial intel-

ligence, and scientific computing. Pythons syntax is designed to be intuitive and

straightforward, allowing developers to write code quickly and efficiently. It also

supports object-oriented programming, which allows developers to organize their

code into logical blocks. This makes it easier to maintain and debug code.

2.6 Statistical and Biological Evaluation

2.6.1 Gene Enrichment Analysis

Gene Ontology (GO) is a standard convention for defining vocabulary terms as-

sociated with mainly genes [139]. The term annotation is used to describe asso-

ciations between genes and available biological terms for various organisms. Bio-

logical terms in GO may correspond to cellular components, biological processes,

or molecular functions. Thus, annotation terms are the main contents of the GO

repository. Members of the GO Consortium are responsible for improving this

knowledge base by submitting their findings for integration into the existing GO

data. Associated P-values indicate how well a set of genes fits into various GO

categories. The P-value is computed using the hypergeometric test or Fisher’s

Exact Test [140]. The Q-value for a particular gene is defined as the proportion of

false-positive among all genes that are as or more differentially expressed [141]. It

is nothing but a minimum False Discovery Rate (FDR) at which this gene appears

biologically significant. The GO categories and Q-values from an FDR corrected

hypergeometric test for enrichment can obtain using a tool called GeneMANIA

[142] which has a web interface. P-values and Q-values are estimated using the

Benjamini Hochberg procedure. In Table 2.2, a list of GO enrichment analysis

tools is reported.

2.6.2 Pathway Analysis

Genes associated with a particular disease have a very high probability of being

functionally connected within the processes or pathways associated with the corre-

sponding disease. As a result, pathway analysis is required to validate the results.
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Table 2.2: List of available GO Enrichment Analysis Tools

Tool Type of software Availability

g:Profiler[143] web-based biit.cs.ut.ee/gprofiler/gost

GSEA[144] stand-alone software.broadinstitute.org/

gsea/index.jsp

Gonet[145] web-based tools.dice-database.org/

GOnet/

GeneCodis[146] web-based genecodis.cnb.csic.es/

analysis

KAAS[147] web-based www.genome.jp/tools/kaas/

KEGG[148] web-based www.genome.jp/kegg/

Enrichr[149] web-based amp.pharm.mssm.edu/Enrichr

FunRich[150] stand-alone funrich.org/download

Geneshot[151] web-based amp.pharm.mssm.edu/geneshot/

ShinyGO v0.61[152] web-based bioinformatics.sdstate.edu/

go/

DAVID[134] web-based david.ncifcrf.gov/

FuncAssociate[140] web-based llama.mshri.on.ca/

funcassociate/

GOrilla[153] web-based cbl-gorilla.cs.technion.ac.

il/

MalaCards[154] web-based www.malacards.org/

GOMA[155] stand-alone goma.sel.is.ocha.ac.jp/

WebGestalt[156] web-based www.webgestalt.org/

pathfindR[157] R package cran.r-project.org/web/

packages/pathfindR/index.html

WebGIVI[158] web-based raven.anr.udel.edu/webgivi/

ViSEAGO[159] R package bioconductor.org/packages/

release/bioc/html/ViSEAGO.

html

GO TOOLS web-based go.princeton.edu/

topGO[160] R package bioconductor.org/packages/

release/bioc/html/topGO.html

Pathway analysis is a type of data analysis that looks at the interactions between

different pathways in a system. It is used to study the relationships between dif-

ferent components of a system, such as the interactions between genes, proteins,

and other molecules. By looking at the interactions between these components,

researchers are able to gain insight into how a system works and the role that each

component plays in the overall functioning of the system. Pathway analysis can

provide valuable insights into the functioning of a biological system. It can help

researchers identify pathways that are involved in a particular disease or condition,

as well as pathways that can be targeted for therapeutic intervention. Addition-

ally, pathway analysis can be used to assess the effects of environmental or genetic

factors on the functioning of a system. This can be helpful in understanding how

a particular disease or condition is caused or prevented.
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2.6.3 Topological Analysis

Topological investigation of the discovered modules could lead to the finding of

causal genes that are not otherwise linked to the disease. In a well-connected

graph, two genes, say, G1 and G2, possess a strong association, and G1 might

already be known to be a causative gene. In such a case, there’s a good chance

that G2 is a causal gene. Topological analysis is a useful tool for understanding

gene expression data, as it can reveal patterns that may not be apparent from

the raw data. Furthermore, it can provide insights into the relationships between

genes, which can be used to develop new hypothesis and further our understanding

of gene expression and its role in disease.

2.6.4 Literature Mining/Evidence

In the process of validating experimental results, researchers often turn to external

sources or validated literature, a method known as literature mining [161]. This

approach is particularly useful for confirming findings obtained through down-

stream analysis. For instance, if a study experimentally establishes that a specific

gene is causally linked to a particular disease, literature mining can be employed

to explore published wet-lab results that support the notion that this gene indeed

has a high potential to be a causal factor for the disease. Investigating such types

of well-established facts related to the concerned biological question can further

strengthen the biological and topological validation approaches [162]. As an exam-

ple, literature mining may involve reviewing relevant scientific articles, databases,

or authoritative sources that corroborate the identified gene’s role in the context

of the disease. Such cross-referencing not only reinforces the validity of the exper-

imental findings but also contributes to a more comprehensive understanding of

the gene-disease association [163].

2.7 Discussions

In this chapter, a background of list of tools, repositories, and validation measures

have been reported which have been used in subsequent contributory chapters

towards identification of crucial genes for ESCC. It delves into the background of

gene expression data analysis, covering techniques such as Microarray, RNA-seq,

and scRNA-seq, along with discussions on ESCC disease, biomarker identification,
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and pre-processing techniques for different types of gene expression datasets. The

chapter emphasizes the use of data mining in these analyses, exploring various

biclustering techniques, co-expression network analysis, and similarity measures

for gene expression data. The research focuses on designing effective data mining

techniques to address challenges in analyzing gene expression data and explores

various tools and methods for the identification of crucial genes related to ESCC.

In the next chapter, I introduce a framework called PD BiBIM for biomarker

identification of ESCC disease, which is based on biclustering method. Further,

gene networks are constructed for topological, pathway and causal analysis. This

method is found successful to identify potential biomarkers for ESCC disease.
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