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3.1 Introduction

Esophageal cancer (EC) occurs at the food pipe called esophagus. Symptoms often

include difficulty in swallowing, enlarged glands around the collarbone and weight

loss, a dry cough and possibly coughing up or vomiting blood. Esophageal cancers

are extremely aggressive, ranking the eighth most common malignancy and the

sixth most frequent cause of cancer death worldwide [164]. Esophageal cancer

can be of various types based on the type of cells that are involved such as - (i)

Esophageal Squamous Cell Carcinoma (ESCC), (ii) Esophageal Adeno Carcinoma

(EAC) and (iii) other rare types e.g. Small cell carcinoma, Sarcoma, Lymphoma,

Melanoma and Choriocarcinoma. ESCC is the most widely occurred deadly dis-

ease among all other Esophageal cancer types all over the world. The human

tissue consists of four types of tissues such as epithelial, connective, muscular and

nervous. Epithelial tissue can further be classified based on the shape of the cells,

whether squamous, cuboidal, columnar or transitional. Esophageal Carcinoma is

developed in the squamous cells which form the surface of the esophagus. These

squamous cells are flat and thin epithelial tissue. ESCC occurs most often in the

upper and middle portion of the esophagus. Since ESCC is a fatal cancer disease,

it is highly essential to identify the genes which cause this cancer. Biomarkers can

indicate some biological states or conditions. It might be a single or group of genes

which causes cancer. Identification of cancer biomarker is a challenging task. In

this work, potential biomarkers are identified for ESCC disease using appropriate

biclustering approach followed by network topology analysis, pathway analysis,
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and regulatory network analysis. The interestingness of the identified biomarkers

has been established through a rigorous process.

3.2 Related Works

From the related survey of methods detecting potential biomarkers for ESCC

datasets GSE20347 and GSE23400, it has been observed that no one has car-

ried out an extensive experiment and analysis on ESCC datasets for potential

biomarker identification using biclustering approach. Patowary et al. [165] identi-

fied ESCC biomarkers using differential and co-expression analysis; no prior knowl-

edge has been integrated. Tung et al.[166] identified biomarkers for ESCC using

feature selection and decision tree methods. Combination of differential analysis

and graph clustering methods are used to identify prognostic markers of ESCC

[167]. BicBioEC [168] identified ESCC biomarkers by using a parallel biclustering

method, whereas our method uses a sequential biclustering approach. BicBioEC

divides the genes based on their expression values into three categories: upward,

downward, and mixed trend while extracting the initial set of biclusters. However,

our approach is dependent on multiple existing biclustering algorithms. Unlike

BicBioEC, our method uses regulatory network analysis to identify the potential

biomarkers. We are motivated to work on this live problem because (i) ESCC is

one of the most commonly occurred cancer types in the North East of India, (ii)

almost 480,000 new patients are identified every year in India, (iii) early and ac-

curate identification of the potential biomarkers for ESCC could help to decrease

the mortality, and (iv) appropriate analysis of gene expression data could help

uncover interesting biomarkers for ESCC.

The three major contributions of this work are (a) Highly correlated

and enriched bicluster extraction from ESCC microarray data (GSE20347 and

GSE23400) using appropriate biclustering techniques, (b) Biological networks (co-

expression) construction to enable topological analysis, and (c) Identification of

four interesting biomarkers such as IFNGR1, CLIC1, CDK4, and COPS5 which

have been established to have high relevance to ESCC.
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3.3 Proposed Method

3.3.1 Microarray Data Collection

Gene expression profiles from the GSE20347 (34 samples) and GSE23400 (106 sam-

ples) datasets between ESCC samples and matched normal controls are collected

from the GEO (http://www.ncbi.nlm.nih.gov/geo/) database. The specification

of the dataset is available at Table 3.1.

Table 3.1: A brief description of datasets used for evaluation of proposed frame-
work for ESCC disease

GEO ID Organism States Size Sample Summary

GSE20347 Homo
sapiens

Normal,
Tumor

22278,
34

17
(M),
17
(NM)

Gene expression was exam-
ined in tumor and matched
normal adjacent tissues from
17 ESCC patients from a
high-risk region of China.
Affymetrix HG-U133A 2.0
gene expression arrays were
performed. Experiment type:
Expression profiling by the
array.

GSE23400 Homo
sapiens

Normal,
Tumor

22349,
106

53
(M),
53
(NM)

Gene expression was exam-
ined in 53 ESCC samples
and 53 matched normal sam-
ples. Affymetrix U133A/B
chip were performed. Experi-
ment type: Expression profil-
ing by array.

3.3.2 PD BiBIM framework

The following definitions are useful in describing our method.

Definition 1: Primary gene: For a given disease, a gene is referred to as a

primary or elite gene if it is significant w.r.t. the existing benchmark resources.

Some of the prominent genes for ESCC are shown in Table 3.2 and descrip-

tions are given in Table 3.3.

Definition 2: Secondary gene: A gene is referred to as a secondary gene for

a given disease w.r.t. a given set of primary genes, if and only if it shows sufficient
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evidence to be considered as a causal gene based on a) topological analysis, b)

co-expression analysis, c) pathway analysis, and d) established wet-lab results.

Definition 3: Gene Bicluster: A gene bicluster is a subgroup of genes that

exhibits similar expression patterns across a subset of experimental conditions or

samples.

Definition 4: Enriched Bicluster: An enriched gene bicluster refers to a

subgroup of genes that show a statistically significant enrichment with similar

expression patterns within a given biological context or experimental condition.

Definition 5: Gene Co-expression Network: A gene co-expression network

is a graphical representation of the relationships and connections between genes

based on their expression patterns across different samples or experimental con-

ditions. In a gene co-expression network, nodes represent individual genes, and

edges represent the strength or degree of correlation between pairs of genes.

Definition 6: Hub Gene: In a GCN, a gene or a set of genes with maximum

degree is known as a hub gene(s).

Table 3.2: Primary Genes associated with ESCC

Official Name Dataset Gene Id Gene name

RUNX3 204197 s at Runt related transcription factor 3;
HGNC:10473

CDH1 201131 s at Cadherin 1; HGNC:1748

VIM 201426 s at Vimentin; HGNC:12692

WWOX 215526 at WW Domain Containing Oxidoreductase;
HGNC:12799

CTTN 214073 at Cortactin; HGNC:3338

CCND1 208711 s at Cyclin D1; HGNC:1582

This piece of work provides a multi-objective and comprehensive analysis of

microarray gene expression data to identify biomarkers for ESCC. To extract the

genes associated with the development of ESCC, a topological based analysis has

been carried out. The conceptual framework of the method PD BiBIM has been

shown in Figure 3-1. This framework consists of five modules i.e. M1, M2, M3,

M4, and M5.

In M1, the preprocessed datasets were used for extraction of different bi-

clusters using different biclustering methods that correspond to tumor and normal

samples of ESCC. These biclusters are validated using the p-value. In this method,

I have considered six referred genes, considered here as the ’primary genes’ related
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Table 3.3: Descriptions of Primary Genes associated with ESCC based on existing
literature

Gene name Descriptions

RUNX3 Overexpression of the RUNX3 gene has been observed in esophageal
squamous cell carcinoma (ESCC) cells, indicating its significant role in
the progression of tumorigenesis in ESCC. [169].

CDH1 The methylation status of the CDH1 gene has been found to be a
valuable marker for predicting invasion, metastasis, and prognosis in
esophageal squamous cell carcinoma (ESCC). This is attributed to its
association with tumor development and the migration of tumor cells.
Restoring CDH1 expression could potentially offer a novel approach in
the development of cancer therapeutics. [170].

VIM Patients with esophageal squamous cell carcinoma (ESCC) often exhibit
abnormal and inverse changes in the expression levels of the VIM gene.
Additionally, the enrichment of VIM in cancer cells has been linked to
the invasion and metastasis of ESCC, ultimately affecting the prognosis
of ESCC patients [171].

WWOX The expression of the WWOX gene is significantly reduced in esophageal
squamous cell carcinoma (ESCC) tumor tissues. This reduction has been
associated with loss of heterozygosity (LOH) and hypermethylation of
the gene. These findings indicate that inactivation of the WWOX gene
may play a crucial role in the development of ESCC. [172]).

CTTN The possibility of CTTN as a valuable marker of ESCC. It is found
over-expressed and has a significant association with poor prognosis in
patients of ESCC [173]).

CCND1 The experimental study evidences the important role of CCDN1 in
ESCC [173]). After evaluating CCND1 expression in the tumor tis-
sues from ESCC patients, it is observed that the expression of CCND1
is significantly up-regulated in ESCC tissues compared to the adjacent
non-tumorous sample [174].

to Esophagus Squamous Cell Carcinoma as evidenced from multiple benchmark

tools, databases, and literary sources and selected a few biclusters based on the

presence of primary genes [175] [176] [177] [178] [179] [174] [169].

In M2, a gene co-expression network has been constructed to support topo-

logical and other gene-gene associative analysis for each module where such pri-

mary genes are present.

Based on the results obtained, in M3, genes with the highest connectivity

with primary genes are identified as the ’secondary genes’. Such genes have also

been found to follow common genetic pathways with the primary genes in the

context of ESCC.

And in M4, gene regulatory network analysis, gene enrichment analysis,

pathway, and literature evidence are carried out rigorously on the identified sec-
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Figure 3-1: PD BiBIM framework: This framework consists of five modules -
M1, M2, M3, M4, and M5.

ondary genes for their establishment as potential biomarkers. Gene Regulatory

Network has been constructed for further analysis to investigate the behaviour of

those secondary genes (transcription factors) in the normal and tumor samples.

Gene ontology (GO) enrichment analysis is performed to investigate the functions

of secondary genes and literature mining reveals the supportive evidence for ESCC

biomarkers.

Finally, in M5, genes with higher rank are considered as the potential

biomarkers based on the highly enriched biclustering results.

Proposition 1: A gene identified using PD BiBIM framework as potential

biomarker is topologically significant.

Proposition 2: A gene identified using PD BiBIM framework as potential

biomarker is biologically significant.

The main step in the PD BiBIM method is bicluster extraction. The com-

plexity of this step depends on the number of genes and samples in the dataset,

as well as the chosen biclustering algorithm. Overall, the computational com-
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plexity of the method is likely to be dominated by the most extensive bicluster-

ing method used. Finding biclusters can be computationally expensive for large

datasets. However, there are a number of ways to reduce the complexity of this

step, such as using a more efficient biclustering algorithm or pre-filtering the data.

3.4 Experimental Results

The experiments are carried out on a machine with 32 GB main memory, Intel(R)

Xeon(R) CPU E5-1650 v3 processor and 64-bit Windows 10 operating system.

Several tools are used such as Matlab15 for mapping gene id, BicAT-plus[180] for

finding biclusters, David 6.7/6.8 [181] for finding p-values and gene id conversion,

Expander [182] for extracting biclusters from method Samba, GeneAnalytics (S

Ben-Ari Fuchs et al. 2016) for finding pathways and related disease name, Cy-

toscape GeneMANIA [183] for building co-expression network and for topological

analysis, R studio [184] for extracting biclusters and Microsoft Excel tools for

generating the graph.

Microarray gene expression dataset is represented in terms of a matrix where

rows represent genes and columns represent samples or conditions. To identify the

correlation patterns of the gene expression matrix in an unsupervised framework

with high accuracy, a good number of clustering techniques have been introduced.

To eliminate biases of individual algorithm, several biclustering algorithms are

applied in two separate ESCC datasets, as shown in Table 3.1. Biclusters or

groups of genes are extracted with seven biclustering techniques such as - OPSM

[185] xMotif [186], Qubic [187], Bimax [188], IBBIG [189], SAMBA [190], and

Plaid [191].

Several human disease databases and tools are used such as Gene MalaCards

[178], DISEASES [179]) databases, and literary sources to identify a set of refer-

ence genes, closely associated with Esophageal Squamous Cell Carcinoma. These

genes are referred to here as ’primary genes’ and they are - RUNX3, CDH1, VIM,

WWOX, CTTN, and CCND1. Before consideration of these genes, for the subse-

quent study, an initial experimental study is carried out to observe the variations

in expression levels of these primary genes for normal and tumor samples. It is

shown in Figure 3-2a– 3-2f . Brief descriptions of these primary genes and their

importance in the context of ESCC have been reported in Table 3.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 3-2: The different patterns of gene expression profiles of primary genes
across all the normal samples vs tumor samples for dataset GSE20347 (a) RUNX3,
(b) CDH1, (c) VIM, (d) WWOX, (e) CTTN, and (f) CCND1.

3.4.1 Pre-processing of dataset

The gene expression dataset - GSE20347 and GSE23400 are pre-processed us-

ing the following steps: normalization, non-annoted probe removal, and averaging

duplicated gene. GSE20347 and GSE23400 datasets are normalized across all sam-

ples by the Robust Multiarray Average (RMA) algorithm. In this work, the sam-

ples of GSE20347 and GSE23400 have been subdivided into two separate datasets

respectively, one for normal condition and the other one for tumor condition.
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3.4.2 Performance evaluation of PD BiBIM using

GSE20347 and GSE23400 datasets

The results obtained by our method for both datasets are reported and analyzed

in the subsequent subsections.

3.4.2.1 Bicluster Extraction and their Enrichment Analysis

The pre-processed datasets are used as input for further analysis. We consider ten

popular biclustering techniques viz. Bimax [188], IBBIG [189], Qubic [187], Plaid

[191], xMotif [186], OPSM [185], SAMBA [190]), CC [192], Spectral [193], and ISA

[194] for extraction of a set of unbiased biclusters of high biological significance.

It is observed that Bimax, IBBIG, Qubic, Plaid, xMotif, OPSM, and SAMBA are

more effective than others, however, the number of biclusters extracted by these

algorithms for ESCC dataset is different for each condition. Here, for different

datasets GSE20347 or GSE23400, biclustering results are varying in terms of the

number of the biclusters and the size of biclusters. Although we experimented

with more than seven biclustering techniques, those techniques have been elimi-

nated for subsequent processing which did not generate an adequate number and

useful biclusters. Cheng and Church algorithm (CC) finds a single bicluster for

GSE20347 and GSE23400 datasets with all genes and conditions rendering the

bicluster useless since all genes are present. Similarly, spectral finds one bicluster

for both datasets. For enrichment analysis of the bicluster results, we use the p-

value of each bicluster. In statistics, p-value [195] is a well-established validation

technique and lower p-value for a cluster signifies higher coherency. It means that

more genes present in the bicluster with lower p-value are related to the GO term.

The p-values for each bicluster given by each algorithm for both the conditions

are calculated using DAVID [181] and the lowest p-values are considered to see

the performance of different methods. BIMAX can generate biclusters with the

lowest p-value among all other methods in this analysis. Though Plaid and Qubic

are not performing well for our datasets comparatively with other methods, the p-

values of each bicluster with primary genes are investigated for these two methods

and reported in Table 3.4 and 3.5 . For normal sample of GSE20347, BIMAX

extracts 100 biclusters whereas IBBIG gives 10 biclusters. Similarly, Qubic, Plaid

and xMotif extract 100, 1 and 100 biclusters respectively. Similarly, OPSM is also

able to extract 100 biclusters, whereas SAMBA generates 13 biclusters. For tumor

sample of GSE20347, BIMAX gives 40 biclusters, whereas IBBIG, Qubic, Plaid

and xMotif generate 10, 100, 4 and 100 biclusters, respectively. OPSM extracts
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Table 3.4: P-values of identified biclusters with primary genes in normal and tumor
samples for dataset GSE20347. Note: SN: Serial Number, G: Gene, S: Sample

Biclusters for normal sample of GSE20347

SN Method P-value GO Term
Identified

Primary Gene
Size of BC

G S

1 BIMAX 7.90E-250 Acetylation CDH1 2841 2

2 BIMAX 2.50E-243 Acetylation CDH1, CCND1 2844 2

3 BIMAX 2.00E-220 Acetylation VIM 2514 4

4 IBBIG 1.30E-263 Acetylation CDH1, VIM 2973 17

5 rQubic 2.00E-08 Alternative splicing CTTN 343 1

6 rQubic 1.30E-06 Phosphoprotein CTTN 492 1

7 xMotif 7.50E-227 Phosphoprotein WWOX 13541 6

8 xMotif 3.10E-18 Phosphoprotein CDH1 494 6

9 OPSM 1.80E-33 Glycoprotein VIM 2362 4

10 OPSM 1.90E-63 Phosphoprotein WWOX 6269 3

11 SAMBA 8.50E-133 Extracellular exosome CDH1 1134 16

12 SAMBA 1.80E-134 Extracellular exosome CDH1 1151 16

13 SAMBA 1.10E-109 Extracellular exosome CDH1 714 5

14 SAMBA 1.40E-133 Extracellular exosome CDH1 1144 16

15 SAMBA 3.20E-138 Extracellular exosome CDH1 1162 16

16 SAMBA 3.20E-138 Extracellular exosome CDH1 1155 16

Biclusters for tumor sample of GSE20347

1 Bimax 2.20E-274 Acetylation CTTN 2452 2

2 Bimax 6.20E-264 Acetylation CDH1, VIM 2472 2

3 IBBIG 5.80E-277 Acetylation CDH1 2846 17

4 IBBIG 9.20E-43 Acetylation CCND1 744 3

5 IBBIG 2.30E-26 Phosphoprotein CTTN 550 3

6 Qubic 1.10E-09 Isopeptide bond VIM 495 1

7 Plaid 2.30E-110 Phosphoprotein RUNX3, VIM 3383 2

8 xMotif 2.00E-90 Phosphoprotein WWOX 2349 6

9 xMotif 1.60E-04 Phosphoprotein CDH1 59 6

10 OPSM 4.70E-115 Phosphoprotein
RUNX3, WWOX,
CCND1, CTTN

13438 2

11 OPSM 1.90E-79 Glycoprotein RUNX3, WWOX 7446 3

12 OPSM 2.90E-71 Glycoprotein RUNX3 3500 4

13 SAMBA 1.10E-135 Acetylation CDH1 1075 12

14 SAMBA 1.30E-128 Acetylation CDH1 1087 14

15 SAMBA 7.90E-145 Acetylation CDH1 973 15

16 SAMBA 4.90E-131 Acetylation CDH1 978 10

17 SAMBA 3.30E-150 Acetylation CDH1 1009 15

18 SAMBA 4.10E-134 Acetylation CDH1 1009 10

12 biclusters and SAMBA generates 13 biclusters. Total number of biclusters ex-

tracted by each algorithm for GSE20347 and GSE23400 are presented in Table 3.6.

The performance evaluation for both the datasets is carried out separately.

To detect the cancer biomarkers, first, those biclusters are considered for an
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Table 3.5: P-values of identified biclusters with primary genes for normal and
tumor samples for dataset GSE23400. Note: SN: Serial Number, G: Gene, S:
Sample

Biclusters for normal sample of GSE23400

SN Method P-value GO Term
Identified

Primary Gene
Size of BC
G S

1 BIMAX 2.43E-137 Acetylation
CDH1, VIM,
CTTN

1558 8

2 BIMAX 4.15E-151 Extracellular
CDH1, VIM,

CTTN, WWOX
1558 8

3 BIMAX 4.97E-141 Acetylation
CDH1, VIM,

CTTN
1623 8

4 Plaid 7.80E-36 Extracellular exosome VIM 1290 6

5 IBBI G 2.40E-188 Acetylation CCND1 2112 53

6 rQubic 6.30E-21 Extracellular matrix VIM 163 10

7 rQubic 3.60E-19 Extracellular matrix VIM 478 3

8 xMotif 5.60E-32 Phosphoprotein CTTN 2486 6

9 xMotif 5.90E-07 Phosphoprotein CCND1 826 6

10 OPSM 1.00E-50
integral component of
plasma membrane

RUNX3 4894 4

11 OPSM 4.20E-37 Glycoprotein WWOX 2609 5

12 SAMBA 3.77E-106 extracellular exosome CDH1 1255 40

Biclusters for tumor sample of GSE23400

1 BIMAX 7.39E-155 Acetylation
VIM, CTTN,
CDH1, WWOX

1636 8

2 BIMAX 1.81E-156 Acetylation
WWOX, CDH1,
VIM

1629 8

3 IBBIG 4.60E-18 Phosphoprotein CCND1 399 7

4 IBBIG 2.45E-188 Acetylation
VIM, CDH1,
WWOX, CTTN

2624 53

5 Plaid 1.50E-03 Cell adhesion VIM 34 11

6 xMotif 3.50E-10 Phosphoprotein CTTN 589 6

7 xMotif 1.00E-05 DNA helicase activity VIM 373 6

8 xMotif 2.50E-05 Extracellular exosome CCND1 476 6

9 xMotif 1.90E-04 Membrane RUNX3 295 6

10 xMotif 2.00E-03 Endoplasmic reticulum CDH1 116 6

11 OPSM 6.20E-29 Glycoprotein RUNX3 1827 5

12 OPSM 8.60E-53 Glycoprotein WWOX 4224 4

13 SAMBA 2.40E-121 Acetylation CDH1 1058 17

algorithm which includes at least one primary gene. Such biclusters are identified

and calculated p-values for them in DAVID. If a common primary gene, (say, P1)

is present in the different biclusters of same biclustering method, say b1 and b2

then that bicluster is selected based on the lower p-value. P-values of all biclusters

with the primary gene for normal and tumor samples for both datasets are listed

in Table 3.4- 3.5, respectively. In Table 3.4, it is observed that BC serial no. 1,

2, 4 for normal samples and BC serial no. 1, 2, 6, 7, 10 for tumor sample have
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Table 3.6: Number of Biclusters extracted by different reported biclustering meth-
ods for GSE20347 and GSE23400 datasets. Note: T: Tumor sample, N: Adjacent
normal sample.

Biclustering method
Total number of Biclusters
GSE20347 GSE23400
N T N T

BIMAX 100 40 100 100

IBBIG 10 10 10 10

OPSM 100 12 13 13

Plaid 1 4 3 3

Qubic 100 100 10 10

xMotif 100 100 91 100

SAMBA 13 13 15 15

sample size less than 3. In this case, the biclusters with sample size at least 3

and comparatively lower p-value are considered. Therefore, these biclusters are

not included for further analysis of GSE20347 dataset. From N sample, BC serial

number 3, 4, 7, 8, 9, 10, and 15 are considered and from T samples BC number

3, 4, 5, 8, 11, 12, 17 are considered for network construction (Table 3.4). From

Table 3.5, BC no. 2, 4, 5, 6, 8, 10, 11, 12 for N sample and BC no. 1, 2, 4,

12, 13 are considered for further investigation to identify potential biomarkers for

GSE23400.

3.4.2.2 Co-expression Network Construction and Topological analysis

By considering the selected biclusters as modules, different co-expression networks

are constructed using Cytoscape plugin GeneMANIA. Here, genes are considered

as nodes and each edge represents the co-expression between the genes. From

the co-expression network, the degree and weight of each node are calculated and

compared. Highly connected nodes (hubs) in biological networks are topologically

significant to the structure of the network [196]. Highly connected nodes are sta-

tistically important and functionality more relevant than other nodes in a network

[197]. This analysis aims to identify topological insights of the biclusters obtained

from the normal and tumor samples of GSE20347 and GSE23400 datasets. The

statistics based on normal/tumor sample topological analysis is discussed below

and reported in Table 3.7-3.8.

(A) Topological analysis on GSE20347: For co-expression network analy-

sis, selected biclusters of considered biclustering algorithms are given as input to

GeneMANIA to build the gene co-expression networks. The gene with the highest

connectivity in a selected bicluster and is directly or indirectly connected to at
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Table 3.7: Degree analysis of primary genes and their respective hub genes (sec-
ondary genes) for the dataset GSE20347 along with association type (Direct (D)
or Indirect (I)) between the primary gene and hub genes are also mentioned. Note:
P: Primary Gene, N: Normal sample, T: Tumor sample, NF: Not found, AT(H,T):
Association Type between H and T

Method P
Degree(P) Hub gene (H) Degree(H) AT(H,T)
N T N T N T N T

Bimax VIM 315 181 COPS5 CDK4 608 558 I I

IBBIG CDH1 325 264 CLIC1 CDK4 629 699 I I

IBBIG CTTN 36 Nf DRG1 Nf 99 - I -

xMotif CDH1 50 3 IFNGR1 DCK 93 21 D I

xMotif WWOX 391 91 NTSR2 KRT2 1818 307 I I

OPSM VIM 247 Nil KRTAP5-8 Nf 686 - I -

OPSM WWOX 190 244 KRTAP5-8 KRTAP5-8 1216 1620 I I

OPSM RUNX3 203 Nf NTSR2 Nf 905 - I -

Samba CDH1 145 84 SLC25A3 SLC25A3 316 320 I I

Table 3.8: Degree analysis of primary genes and their respective hub genes (sec-
ondary genes) for the dataset GSE23400 along with association type (Direct (D)
or Indirect (I)) between the primary gene and hub genes are also mentioned. Note:
P: Primary Gene, N: Normal sample, T: Tumor sample, NF: Not found, AT(H,T):
Association Type between H and T

Method P
Degree(P) Hub Gene (H) Degree(H) AT(H,T)

N T N T N T N T
Bimax WWOX 45 40 CLIC1 SLC25A3 337 358 I I
Bimax VIM 203 207 CLIC1 SLC25A3 337 358 I I
Bimax CTTN 110 100 CLIC1 SLC25A3 337 358 I I
IBBIG WWOX 61 70 CLIC1 CDK4 421 531 I I
IBBIG VIM 252 298 CLIC1 CDK4 421 531 D I
IBBIG CTTN 139 158 CLIC1 CDK4 421 531 D I
Plaid VIM 115 Not found RAB25 Not found 349 - I -
xMotif CTTN 208 20 DDX21 PSMD14 279 66 I I
OPSM RUNX3 232 179 NTSR2 NTSR2 1346 1176 I I
OPSM WWOX 107 157 CRYBB3 NTSR2 753 1202 I I
Samba CDH1 134 145 CLIC1 CDK4 433 510 I I

least one primary gene (P) will be the hub gene or secondary gene (S) for our study.

It is found that WWOX is directly connected to IFNGR1 in dataset GSE20347

and in other case no genes are found to be directly connected with their respec-

tive primary genes. In Table 3.7, the present primary gene as its corresponding

hub-gene (S: secondary genes) of each biclustering methods are shown for both the

samples of GSE20347. In this analysis, some primary genes have been found which

are not present in the particular biclusters in both the samples and therefore, its

corresponding gene DRG1 from Table 3.7 is not considered for subsequent anal-

ysis. From this topological analysis, we are considering COPS5, CLIC1, CDK4,

IFNGR1, NTSR2, KRTAP5-8, and SLC25A3 hub genes for further investigation.
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(B) Topological analysis of GSE23400: CDK4 has been found to have a

direct association with two primary genes - VIM and CTTN in the co-expression

network of N sample. However, except this gene, others are indirectly connected

with reported primary genes. Though Plaid was not performing well, it is consid-

ered because of one enriched bicluster with primary gene VIM in N sample, but it

results in absence of the primary gene in T sample of GSE23400 dataset. There-

fore, we are excluding RAB25 gene reported in Table 3.8. From this analysis,

CLIC1, SLC25A3, CDK4, DDX21, PSMD14, NTSR2, and CRYBB3 hub genes

are considered for subsequent study.

(a)

(b)

Figure 3-3: Variation of connectivities for each secondary gene found in matched
Normal (N) vs Tumor (T) samples for the dataset (a) GSE20347, (b) GSE23400.
In most cases, secondary gene’s connectivities are higher in T sample than that of
N sample.

After successfully finding a list of highly connected genes (nodes) for normal
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and tumor samples for both the datasets, we consider them as the initial secondary

genes according to their topological behaviour. From both datasets, 4 hub genes

are found common viz. CDK4, CLIC1, NTSR2, and SLC25A3. The initial sec-

ondary genes selected from the topological analysis are CDK4, CLIC1, NTSR2,

SLC25A3, COPS5, IFNGR1, DCK, KRT2, KRTAP5-8, DDX21, PSMD14, and

CRYBB3. Thus, I have found a total of 12 initial secondary genes from dataset

GSE20347 and GSE23400 considering both the samples. Further, I have searched

for any secondary gene for the biclusters generated by each biclustering algorithm

in an alternative tissue and if found then the degree of that secondary gene are com-

pared for both the tissues (normal and tumor). Taking all the identified secondary

genes for corresponding biclusters, a comparison in terms of degrees for both nor-

mal and tumor samples for both datasets are presented in Figure 3-3. Here, it

is observed that the connectivity of the majority of secondary genes is increased

in tumor tissue. Gene KRTAP5-8 shows the highest connectivity in GSE20347

dataset but in GSE23400 dataset, gene NTSR2 has the highest connectivity. From

Figure 3-3, it is observed that CDK4, CLIC1, NTSR2, KRTAP5-8, and SLC25A3

are found as hub genes in both tissues of many biclusters from several biclustering

methods. Hence, CDK4, CLIC1, NTSR2, KRTAP5-8, and SLC25A3 might play

an important role in causing ESCC. Since, a noticeable variation of degrees are

observed for remaining secondary genes presented in Figure 3-3a– 3-3b, so these

genes might also play a role.

Figure 3-4: Biological interactions between primary and secondary genes
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3.4.3 Biological network analysis for Primary and Sec-

ondary genes

Considering 12 secondary genes and 6 primary genes as nodes, a biological net-

work is constructed using GeneMANIA as shown in Figure 3-4. Here, secondary

genes CDK4, SLC25A3, CLIC1, IFNGR1, NTSR2, and KRT2 are directly con-

nected with primary genes, on the other hand, DCK, COPS5, DDX21, KRTAP5-8,

CRYBB3, and PSMD14 are indirectly connected to primary genes. From this sce-

nario, we observe that CDK4, SLC25A3, CLIC1, IFNGR1, NTSR2, and KRT2 can

be assumed to have might play a significant role in ESCC disease in progression.

Considering secondary and primary genes as proteins, a PPI network has

been constructed in STRING [198]) and shown in Figure 3-5. The edges of this

PPI indicate both functional and physical protein associations based on active

interaction sources text mining, experiments, databases, coexpression, neighbor-

hood, and Gene Fusion. The line thickness indicates the strength of data support

and minimum required interaction score is 0.15. From this network, it is evidenced

that CDK4, DCK, IFNGR1, DDX21, COPS5, CLIC1, CRYBB3 and PSMD14 are

directly linked with primary genes - CCND1, RUNX3, and it is found that two

genes CDK4 and PSMD14 are directly connected with primary genes.

3.4.4 Pathway analysis

Pathway analysis is carried out for the selected 12 secondary genes viz. CDK4,

CLIC1, NTSR2, SLC25A3, COPS5, IFNGR1, DCK, KRT2, KRTAP5-8, DDX21,

PSMD14, and CRYBB3 using GeneAnalytics tool as well as DAVID and for the

six primary genes together. In this pathway analysis, six secondary genes out

of 12 are found, which follow the same cancer pathway as the primary genes,

shown in Table 3.9. They are- CDK4, DCK, COPS5, IFNGR1, SLC25A3, and

KRT2. Again, using GeneAnalytics tool, it is also investigated which primary,

as well as secondary genes, are associated with cancer disease. The list of cancer

diseases caused by primary and secondary genes are presented in Table 3.10. It is

found that the secondary gene CDK4 is directly connected to Esophageal cancer.

KRT2 and DCK are related to squamous cell carcinoma and pancreatic cancer,

respectively. KRTAP5-8 is responsible for renal oncocytoma. The Tissues and

Cells in GeneAnalytics results gave a total of four genes which are matched to

the esophagus entity type with gene matched score 0.46. These are- IFNGR1,

SLC25A3, COPS5, and KRT2.
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Figure 3-5: PPI network among primary and secondary genes

3.4.5 GO enrichment analysis

GO enrichment analysis is performed using DAVID on the primary and secondary

genes together. Altogether 17 terms showed enriched GO term except for gene

NTSR2 as reported in Table 3.11. Obtained percentage of enrichment in Biolog-

ical Process (BP), Cellular Component (CP) and Molecular Function (MF) are

94.4, 94.4, and 100, respectively. As reported in Table 3.11, most genes in GO

analysis are related with the biological process of regulation of protein binding,

cell adhesion, positive regulation of cell cycle arrest, extracellular exosome etc.
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Table 3.9: Common Pathway shared by Primary and Secondary genes

Category Term P-Value Genes

KEGG hsa05219:Bladder can-
cer

9.49E-04 CCND1, CDH1, CDK4

KEGG hsa05218:Melanoma 0.002825 CCND1, CDH1, CDK4

KEGG hsa05162:Measles 0.009625 CCND1, CDH1, CDK4

KEGG hsa05216:Thyroid can-
cer

0.033249 CCND1, CDH1

KEGG hsa05130:Pathogenic
Escherichia coli infec-
tion

0.057823 CTTN, CDH1

KEGG hsa05213:Endometrial
cancer

0.058927 CCND1, CDH1

KEGG hsa05223:Non-small cell
lung cancer

0.063331 CCND1, CDH1

KEGG hsa05200:Pathways in
cancer

0.072512 CCND1, CDH1, CDK4

KEGG hsa05214:Glioma 0.073175 CCND1, CDK4

KEGG hsa05212:Pancreatic
cancer

0.073175 CCND1, CDK4

KEGG hsa04115:p53 signalling
pathway

0.07535 CCND1, CDK4

KEGG hsa05220:Chronic
myeloid leukemia

0.080769 CCND1, CDK4

KEGG hsa05100:Bacterial
invasion of epithelial
cells

0.087234 CTTN, CDK4

KEGG hsa05222:Small cell
lung cancer

0.094727 CCND1, CDK4

KEGG hsa04530:Tight junc-
tion

0.096857 CTTN, CDK4

Biosystem Colorectal cancer tumor - CCND1, CDH1, IFNGR1

Qiagen Retinoblastoma(RB) in
cancer

- CDK4, DCK, CCND1

Biosystem Allograft rejection - CCND1, VIM, IFNGR1

Biosystem Cell cycle regulation - CCND1, COPS5, CDK4

Biosystem C-MYB transcription
factor network

- CCND1, SLC25A3

Biosystem Cytoskeleton remod-
elling neurofilaments

- VIM, KRT2

Biosystem Gastric cancer - CDH1, CCND1, IFNGR1, CDK4

3.4.6 Gene Regulatory Network (GRN) analysis

Only one secondary gene viz. COPS5 and another two primary genes viz. RUNX3

and WWOX are found as transcription factors. These three primary genes are

considered as regulators and combine all primary and secondary genes as target
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Table 3.10: List of Primary and Secondary genes associated with Cancer Disease

Cancer Disease Name
Matched Genes

Primary Gene Secondary Gene

Esophageal cancer WWOX,CDH1,CCND1 CDK4

Ovarian cancer CDH1,CCND1,CTTN CDK4

Breast cancer CDH1,CCND1,CTTN,WWOX CDK4

Myeloma, multiple CCND1 CDK4

Cell Type cancer CDH1,CCND1,WWOX CDK4

Endometrial cancer CDH1,CCND1 CDK4

Colorectal cancer CCND1,CDH1, RUNX3 CDK4

Hepatocellular Carcinoma CCND1,CTTN,CDH1 CDK4

Squamous cell carcinoma ,
head and neck

CCND1,CDH1,CTTN CDK4

Cervical squamous cell carci-
noma

CDH1,CCND1 KRT2

Astrocytoma CCND1,VIM CDK4

Mantle cell lymphoma CCND1 CDK4

Spindle cell lipoma VIM CDK4

Lung cancer CCND1,CDH1, CDK4, DCK

Pancreatic cancer CCND1,CDH1 CDK4, DCK

Renal Oncoytoma CCND1 KRTAP5-8

genes. This experiment is carried out to study their associations using GENIE3

[199]. GENIE3 constructs a regulatory network by determining the tree-based

ensemble methods. Various regulatory associations and their respective weights

for both the samples are reported in Table 3.12- 3.13. Considering weight greater

than 0.5 as a strong regulatory association between a regulator and a target gene

for tumor sample. It can be observed that among the secondary genes viz. CTTN,

DCK, CCND1 and RUNX3, as shown in Table 3.12, three are primary genes and

DCK is a secondary gene which has been found to have a strong association with

ESCC. Further, for all these four target genes, the weights are found to increase

while in progression from normal tissue to tumor sample, as shown in Table 3.13.

3.4.7 Literature evidence

Here, all the secondary genes are briefly described and mentioned if their associ-

ations are found with ESCC by other authors.

CDK4: Cyclin-Dependent Kinase 4 is a Protein-Coding gene which is re-

sponsible for the phosphorylation of the retinoblastoma gene product. Diseases

associated with CDK4 include Melanoma, Cutaneous Malignant 3 and Dedifferen-
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Table 3.11: GO enrichment analysis of primary and secondary genes. Note: GC:
GOterm Category

GC Term Genes
BP GO:0045109intermediate filament organization KRT2, VIM
BP GO:0010971positive regulation of G2/M transition of miotic cell

cycle
CCND1, CDK4

BP GO:0071157negative regulation of cell cycle arrest CCND1, CDK4
BP GO:0045787positive regulation cycle CCND1, CDK4
BP GO:0042493response to drug signalling pathway CCND1, CDK4, CDH1
BP GO:0030178negative regulation WWOX, CCND1
BP GO:0006468protein phosphorylation CCND1, CDK4, RUNX3
BP GO:0009636response to toxic substance CDH1, CDK4
BP GO:0006366transcription from RNA polymerase II promoter COPS5, DDX21, RUNX3
BP GO:0000082G1/S transition CCND1, CDK4
BP GO:0001649osteoblast differentiation WWOX, DDX21
BP GO:0045471response to ethanol CCND1, PSMD14
BP GO:0009615response to virus IFNGR1, DDX21
MF GO:0016538cyclin-dependent protein kinase regulator activity CCND1, CDK4
MF GO:0032403protein serine/threonine SLC25A3, CCND1, CDK4
MF GO:0005212structural constituent of eye lens CRYBB3, VIM
MF GO:0098641cadherin binding involved in cell- cell adhesion CTTN, CDH1, CLIC1
MF GO:0005515protein binding WWOX, PSMD14, IFNGR1,

KRT2, CRYBB3, DDX21,
RUNX3, COPS5, CTTN, CCND1,
CDH1, CDK4, VIM, CLIC1

MF GO:0003725double-stranded RNA binding DDX21, VIM
MF GO:0001948glycoprotein binding CDH1, VIM
MF GO:0008237metallopeptidase activity COPS5, PSMD14
CC GO:0005634nucleus WWOX, SLC25A3, COPS5,

CCND1, PSMD14, CDK4, KRT2,
DDX21, RUNX3, DCK, CLIC1

CC GO:0016020membrane SLC25A3, CCND1, IFNGR1,
CDH1, KRT2, DDX21, CLIC1

CC GO:0000307cyclin-dependent protein kinase holoenzyme complex CCND1, CDK4
CC GO:0048471perinuclear region of cytoplasm COPS5, CDH1, CDK4, CLIC1
CC GO:0070062extracellular exosome CTTN, PSMD14, CDH1, KRT2,

VIM, CLIC1
CC GO:0005913cell-cell adherens CTTN, CDH1, CLIC1
CC GO:0045111intermediate filament KRT2, VIM
CC GO:0005925focal adhesion CTTN, CDH1, VIM
CC GO:0005737cytoplasm WWOX, COPS5, CTTN, CCND1,

CDH1, KRT2, VIM, RUNX3,
CLIC1

CC GO:0045095keratin filament KRT2, KRTAP5-8
CC GO:0005923bicellular tight CCND1, CDK4
CC GO:0005882intermediate filament KRT2, VIM

Table 3.12: GRN network statistics for normal sample

Regulatory Gene Target Gene Weight

COPS5

CTTN 0.689236165
DCK 0.624834828
CCND1 0.580179903
RUNX3 0.561231

tiated Liposarcoma [200]. CDK4 is involved in cancer and HGF/MET pathways

and are closely associated with a variety of tumors [201]. CDK4 is overexpressed

in ESCC tissues compared with their paired adjacent non-neoplastic tissues. In

this experiment, it is also found that miR-1 directly regulates CDK4. miR-1

suppresses the growth of ESCC through the downregulation of CDK4 expression

[201]. CDK4 is a signaling molecule which acts as a master regulator [200]. CDK4
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Table 3.13: GRN network statistics for tumor sample

Regulatory Gene Target Gene Weight

COPS5

RUNX3 0.471067992
DCK 0.349884608
CCND1 0.258790647
CTTN 0.102428644

has a significant role in the EGFR inhibition process in esophageal squamous cell

carcinoma [202].

COPS5: COP9 Signalosome Subunit 5 is a Protein-Coding gene. Dis-

eases associated with COPS5 include Xeroderma Pigmentosum, Complementation

Group E [200]. COPS5 has the direct interaction with CDK4 [203]. COPS5 has

been discovered to be a predictive biomarker for multiple types of cancers [204].

Research has found that the expression of COPS5 is notably increased in both

SOC cells and tissues when compared to control tissues.[204].

KRT2: Keratin 2 is a Protein-Coding gene. Diseases associated with KRT2

include Ichthyosis Bullosa Of Siemens and Exfoliative Ichthyosis [200]. Hepato-

carcinoma is the most common primary liver tumor. In accordance with mRNA

level, KRT2 is found to be differentially expressed which might be a critical candi-

date associated with LNM of hepatocarcinoma [205]). KRT2 was found as one of

the up-regulated genes among selected 41 up-regulated genes associated with the

process of esophageal carcinogenesis which is experimented on mouse cell [206].

IFNGR1: IFN-g and IFNGR1 were found correlated with the progression

of ESCC. The downregulation of IFNGR1 was tightly associated with clinicopatho-

logic features of ESCCs, which suggested that the loss of IFNGR1 was involved

in the development and progression of ESCCs [207].

CLIC1: Chloride Intracellular Channel 1 acts as a switch among tumor

behaviours in human esophageal squamous cell carcinoma [208].

DCK: Deoxycytidine Kinase is a Protein-Coding gene required for the phos-

phorylation of several deoxyribonucleosides and their nucleoside analogs. Diseases

associated with DCK include Periampullary Adenocarcinoma and Purine Nucle-

oside Phosphorylase Deficiency [200]. Prognosis of the patients with a high DCK

expression suggests DCK expression is a prognostic factor of the ESCC patients

[209].

SLC25A3: Diseases associated with SLC25A3 include Mitochondrial Phos-
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phate Carrier Deficiency and Wheat Allergy [200].

KRTAP5-8: The related pathways of Keratin-Associated Protein 5-8 are

Keratinization and Developmental Biology [200]. The increased expression of

KRTAP5-8 is associated with progression of Esophageal Squamous Dysplasia [210].

NTSR2: Neurotensin Receptor 2 is a Protein-Coding gene [200]. NTSR2

is overexpressed in malignant human B lymphocytes [211].

DDX21: DDX21 interacts with the mitotic regulator PP1 and oncoprotein

DEK. Additionally, upregulated DDX21 has been found to promote tumorigenesis

in breast cancer by phosphory [212].

PSMD14: The epithelial-mesenchymal transition (EMT) transcription fac-

tor SNAIL is associated with distant metastasis and poor prognosis of ESCC pa-

tients. Deubiquitinating enzyme PSMD14 promotes tumor metastasis through

stabilizing SNAIL in human eESCC [213].

CRYBB3: Crystall in Beta B3 is a Protein Coding gene. Cataract 22,

Multiple Types and Cataract 24 are the diseases associated with this gene. Gene

Ontology (GO) annotations related to this gene include structural constituent of

eye [200].

3.5 Discussion

The provided experimental results offer a comprehensive analysis of gene expres-

sion data in the context of ESCC. Seven biclustering techniques are applied to

identify correlation patterns in gene expression datasets. The choice of these al-

gorithms was based on their effectiveness in extracting meaningful biclusters. It is

observed that there is a variations in the number and size of biclusters across dif-

ferent conditions and datasets. Six genes (RUNX3, CDH1, VIM, WWOX, CTTN,

and CCND1) are defined as ’primary genes’ based on their association with ESCC.

An initial experimental study is conducted to observe variations in the expression

levels of these primary genes for normal and tumor samples.

From the topological analysis of different modules based on biclusters given

by biclustering algorithms, a total of 12 genes are found as secondary genes. These

12 secondary genes are CDK4, CLIC1, NTSR2, SLC25A3, COPS5, IFNGR1,

DCK, KRT2, KRTAP5-8, DDX21, PSMD14, and CRYBB3. After investigating
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the network topology for both the samples (normal and tumor) w.r.t. these 12

genes, some genes are filtered out. In biological (co-expression) network analysis

among the primary and secondary genes, as shown in Figure 3-4, CDK4, SLC25A3,

IFNGR1, CLIC1, and NTSR2 secondary genes are directly connected to the pri-

mary genes. Considering the degrees of the nodes, those genes with higher degrees

are selected. For example, IFNGR1, CLIC1, and CDK4 will get more weightage

than that of remaining secondary genes due to their higher degrees. In PPI net-

work analysis as shown in Figure 3-5, importance is given to those secondary genes

which are directly interacted with any primary gene. Two secondary genes CDK4

and PSMD14 are found.

From pathway analysis, CDK4, DCK, COPS5, IFNGR1, SLC25A3, CLIC1

and KRT2 are considered as the most significant biomarkers for ESCC. In gene

enrichment analysis, NTSR2 gene is not found. Gene interaction of NTSR2 with

primary genes in biological network and PPI network are found satisfactory. From

the literature review,it is found that some genes including CDK4, DCK, KRT2,

and KRTAP5-8 are related to cancer. In GRN analysis, regulator COPS5 regu-

lates other primary genes. The weights indicated strong regulatory associations,

and an increase in weights from normal to tumor samples is observed. In Ta-

ble 3.14, the average scores of secondary genes (biomarkers) are reported to rank

those biomarkers. In this table, if a secondary gene is found directly associated,

it is indicated as 1 else 0. Based on the evidence reported in Table 3.14, the

higher-ranked biomarkers obtained (average score is greater than 0.5) from all the

experiments done in this analysis are IFNGR1, CLIC1, CDK4, and COPS5.

The proposed method integrates various computational approaches, rang-

ing from biclustering and network analysis to pathway and regulatory network

exploration. The combination of these methods provides a comprehensive under-

standing of gene expression patterns and their regulatory mechanisms in ESCC.

The identified primary and secondary genes, their associations, and their roles in

pathways and networks suggest their potential significance in the context of ESCC.

This information could guide further experimental validations and contribute to

understanding the molecular mechanisms underlying ESCC. From this analysis,

it is observed that biclustering may not be suitable for all types of dataset. It

is particularly effective when there are local patterns within subsets of the data.

For some datasets, traditional clustering may be more appropriate. Again, biclus-

tering needs to optimize both row and column clusters simultaneously, leading to

increased computational overhead.
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3.6 Conclusion

This piece of work presents an effective method to identify potential biomarker

genes for a deadly disease, i.e., ESCC. The method exploits initially some biclus-

tering techniques which have been found effective in terms of the enriched group

of genes identified to support subsequent biomarker identification process. Biolog-

ical networks have been constructed in the next step based on biclustering results.

The topological, pathway and regulatory network analysis have been carried out

finally on a filtered set of genes (based on the degree and the associativity) towards

the identification of a set of biomarkers for ESCC. Out of 12 potential secondary

genes, four genes viz. IFNGR1, CLIC1, CDK4, and COPS5 are found mostly

associated with ESCC.

Identification of potential biomarkers from gene expression data using dif-

ferential expression analysis is an another important and widely used approach. In

next chapter, the dissertation proposes an ensemble based differential expression

analysis method to identify potential biomakers associated with ESCC disease.
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