
Chapter 4

Identifying Crucial Genes for

ESCC using Differential

Expression Analysis

4.1 Introduction

During Esophageal Cancer (EC), healthy cells start growing uncontrollably along

the surface of the esophagus. Esophageal Squamous Cell Carcinoma (ESCC) and

Adenoarcinoma (EAC) are the two main types of EC. ESCC develops from regular

squamous cells, running along the surface of the esophagus. ESCC is aggressive

and the most prevalent type of EC. It is ranked as the sixth leading cause of cancer

death and found all over the world and especially in China and India [214]. It is

reported that the survival rate of ESCC patient is declining from 20% to 4% in the

advanced cases[215]. For all stages combined, survival is lowest for cancers of the

esophagus (19%)[216]. Unfortunately, it has one of the lowest survival rates, since

esophageal cancer is rarely diagnosed early. It occurs due to cigarette smoking and

alcohol drinking [217] and this disease also has a very high mortality rate. For this

cause, doctors and researchers are constantly seeking better methods of detection

and diagnosis, as well as more effective treatments. Late diagnosis and few thera-

peutic options increase the mortality rate. Therefore, the identification of crucial

genes which might be biomarkers for ESCC is very important. It also helps in the

early detection of ESCC and development of new drugs target. The information

carried out by a gene in terms of gene expression is used in the synthesis of a

functional gene product. To investigate the progression of the disease through

gene expression profile in ESCC disease, analysis of sequence and microarray data
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is the most important application of bioinformatics. Due to the low cost, sequenc-

ing technology has been rapidly growing, thus count data is also generating at

a high speed. Differential Gene Expression Analysis (DEA) helps quantify the

statistically significant change of gene expressions between two experimental con-

ditions and Differentially Expressed Genes (DEGs) have biological significances.

The RNA-Seq technology is found very useful for differential expression analysis.

Analysing of sequencing data is difficult comparative to microarray data

due to its huge dimension. There are various techniques available which the help

in analysing the count data. Searching of Differentially Expressed Genes (DEGs)

from those large number of genes is a challenging task and again it also challenging

to find the most significant genes which participate in causing particular deadly

disease. Though a good number of useful Differential Expression Analysis (DEA)

tools have been developed to identify DEGs, however, none of these tools can be

considered effective for all cases. Hence, an ensemble approach has been chosen to

help to improve the performance of significant DEGs identification. In addition, it

was possible to obtain a large number of data sets related to such deadly diseases

due to the growing advancement of sequencing technology. Every type of dataset,

however, has its own specificity and limitations. Therefore, it may not be justified

to experiment with a single type of dataset towards conclusive identification of a

number of responsible genes for a given disease. In order to identify an unbiased

set of biomarkers for a given disease, it is essential to conduct an integrative

study using data sets generated by different technologies supported by an effective

consensus function. Critical genes for ESCC using RNA-seq data have not been

explored much till date.

In this chapter, a systematic analysis is performed based on publicly avail-

able ESCC microarray and RNA-seq data to identify interesting genes in ESCC.

Significant differential behaviour of genes between ESCC and normal samples are

analyzed with DEA tools and DEGs are identified. Topological behaviour is stud-

ied across the conditions followed by biological validation and existing literature

evidences.

4.2 Background

DEA with DESeq2 [39] package involves several steps. DESeq2 [39] is based on

the DESeq algorithm, which is a powerful tool for identifying DEGss. The DeSeq

algorithm uses a statistical model to identify genes that are differentially expressed
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between two or more conditions. DESeq2 [39] models the raw count using nor-

malization factors (size factors) to account for library depth variations. Further,

it estimates the gene-wise dispersions which help to shrink these estimates result-

ing in more accurate estimates of dispersion to model the counts. Finally, the

testing of hypothesis using the Wald test or Likelihood ratio test is performed

by DESeq2 with the help of the negative binomial model. GCNs are constructed

by using the correlation matrix where genes represent nodes and edges represent

computed pairwise correlation between pairs of co-expressed genes. It is a sys-

tems biology method for describing the correlation patterns among genes across

microarray or RNAseq samples. Most of the tools use pearson correlation to de-

tect co-expression between samples. It identifies group of tightly correlated genes

associated with biological processes. GRNs define how the genes are connected

to interpret the biological insights among them[218]. For this network, transcrip-

tion factors and target genes are needed. Transcription factors act as regulators

and target genes are the remaining genes from the lists. The transcription fac-

tor has the different characteristics and it is identified based on the ability to

bind to DNA and to recruit RNA polymerase/alter transcription of a gene[218].A

network of protein-protein interactions (PPIs) is a platform which systematically

recognises disease-related genes from the associations between proteins with sim-

ilar functions. In analysis of gene enrichment, biological importance of a set of

genes are examined and assigned functions and roles in biological processes from

the previously studied records.

4.3 Proposed Methods

This section presents two approaches for crucial gene identification for ESCC and

their validations.

4.3.1 Method I: A Generic DEA Approach:

RNA-seq data (SRA: SRP008496, GEO: GSE32424) used in this paper is down-

loaded from Recount2 https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=

SRP008496. It contains 12 clinical samples from ESCC from homosapiens and

58,037 genes. Among 12 clinical samples, seven samples are tumors (SRR349741,

SRR349742, SRR349743, SRR349744, SRR349745, SRR349746, and SRR349747)

and other five samples are non-tumors (SRR349748, SRR349749, SRR349750,
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SRR349751, and SRR349752). DEGs helps to find out which genes are crucial in

the progression of ESCC. R [219] software platform is used for the downstream

analysis of the dataset. DESeq2 [39] is a popular and widely used differential

expression analysis tool available in R [219] which is used to identify the DEGs.

The conceptual framework for the identification of crucial genes of ESCC in

progression RNA-seq data is shown in Figure 4-1. The raw count data (GSE32424)

is pre-processed and analyzed by R language software. The differentially expressed

genes are extracted using DESeq2 [39] from the processed data to obtain the up

and down regulated genes. Up-regulated genes have the log fold change value

greater than 0 and down-regulated genes have the log fold change value lower

than 0. The top 10 Up-regulated and top 10 down-regulated DEGs are identified

based on their log fold change value, say this is the list1, presented in Table 4.1-

4.2. Fold change is a parameter for measuring change in the expression level of

a gene during analysis of gene expression data. The DEGs with highest log fold

change might not have the lowest adjusted P-value. The adjusted P-value can

be defined as the smallest familywise significance at which a specific comparison

is considered statistically significant as part of multiple comparative tests. A set

of significant DEGs are identified with reference to an adjusted P-value cut-off

lower than 0.05. Top 100 DEGs are selected from this set of genes, say list2

shown in Table 4.3 and examined how many genes are mapped from list1 with

higher significance level. My aim is to consider the most significant genes based

on adjusted P-value (list2 ) as well as log fold change value. Hence, the common

genes from list1 and list2 are found out. Among the 20 genes from list1, 8 genes

are considered because they are more significant from my research point of view

i.e. these 8 genes are found common to both the lists. The rest of the genes are

neglected because remaining genes from list1 are randomly scattered in list2 and

there is a difference of significance level of selected 8 DEGs from the remaining

genes. These eight genes are considered as the initial set of crucial genes and used

for the downstream analysis. Co-expression, gene regulatory, and PPI networks

are constructed with these initial set of genes and finally, gene enrichment and

pathway analysis are performed to validate the set of suspected genes. The final

set of genes are further studied in the existing literature to establish the roles of

these genes in the progression of ESCC.

81



Chapter 4. Identifying Crucial Genes for ESCC using Differential
Expression Analysis

Figure 4-1: Conceptual Framework for identification of crucial genes for ESCC
RNA-seq data

4.3.1.1 Experimental Results

Pre-filtering of GSE32424: The low counts are removed by considering the

genes with at most 1 zeroes. Version numbers from raw GTEx (GENCODE) Gene

IDs (Ensembl) are removed using ”cleanid” function available in R. Ensembl IDs

are again mapped with Symbol IDs. Occurrences of ”NA” from the dataset are

deleted and finally, a total of 12,903 transcripts are extracted. Dataset is not

normalized since DESeq2 takes input in terms of raw value (data type integer).

DEseq2[39] performs normalization during the execution process.

A. Identification of DEGs

DESeq2[39] is applied in the processed dataset with 12,903 transcripts

and 12 samples to identify the differentially expressed genes between normal and

ESCC samples. In this analysis, 3,474 (27%) up-regulated (log2FoldChange>0)

and 3,906 (30%) down-regulated genes (log2FoldChange<0) are identified. Most

recent studies consider cut off criteria for identifying DEGs at padj<.05 [220].

Also, 3,087 number of up-regulated and 3,439 down-regulated DEGs are extracted

with reference to this threshold. Adjusted p-values are used to control the FDR,

ensuring that the proportion of falsely identified significant genes is limited. A

threshold of 0.05 is a conventional choice to strike a balance between sensitivity

and specificity. The threshold of 0.05 is a widely accepted standard in scientific

research. It provides a common ground for comparing results across different

studies and allows for easier interpretation and communication of findings. It
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helps researchers identify genes that are statistically significantly differentially

expressed while minimizing the likelihood of including too many false positives.

Over time, the use of a 0.05 threshold has become a convention in statistical hy-

pothesis testing. Consistency in the choice of thresholds facilitates reproducibility

and comparisons across studies.

Table 4.1: Top 10 Up-regulated DEGs, ranked by log2FoldChange value

Serial No. Gene Name

1 MAL

2 KRT4

3 KRT78

4 CLCA4

5 FAM25A

6 CAPN14

7 FMO2

8 PRSS27

9 CNFN

10 SPRR3

Table 4.2: Top 10 Down-regulated DEGs, ranked by log2FoldChange value

Serial No. Gene Name

1 FN1

2 COL1A1

3 SPP1

4 TNC

5 COL12A1

6 POSTN

7 VCAN

8 LOC101927136

9 TRIM74

10 SPATA13

Here, top 10 DEGs (up-regulated and down-regulated) are extracted based

on higher logfoldchange value (positive and negative) shown in Table 4.1- 4.2.

Again, top 100 genes shown in Table 4.3 are also selected from DEGs list with

a cutoff padj value lower than 0.05. The top 10 up and down-regulated genes

(Table 4.1- 4.2) are matched with the DEGs of top 100 (Table 4.3) and common

genes are marked in bold. Total eight common genes are identified such as FMO2,

PRSS27, FN1, COL1A1, TNC, COL12A1, POSTN, and VCAN.
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Table 4.3: Top 100 Up and Down-regulated DEGs, ranked by padj value, Bold
gene: common gene

Gene baseMean log2FoldChange lfcSE stat pvalue padj

THY1 4829.780025 -6.346169979 0.345707208 -18.35706585 2.90E-75 1.98E-71

COL1A1 79691.08739 -8.413805944 0.458422037 -18.35384267 3.08E-75 1.98E-71

LAMC2 37275.82834 -5.542758525 0.308612186 -17.96027112 3.99E-72 1.71E-68

ADAMTS2 4920.146397 -6.061987268 0.341390392 -17.75676005 1.53E-70 4.92E-67

FN1 181649.5053 -8.222104419 0.474595349 -17.32445215 3.08E-67 7.93E-64

PIM1 42755.71584 3.854282258 0.22276014 17.30238745 4.51E-67 9.69E-64

COL12A1 47856.70431 -6.672382153 0.400244028 -16.67078506 2.14E-62 3.94E-59

COL5A2 18280.45918 -6.429870927 0.390642863 -16.4597169 7.14E-61 1.15E-57

ST3GAL4 8995.995796 3.954588218 0.241013217 16.40817989 1.67E-60 2.39E-57

CXCR2 4920.643462 6.072532962 0.376603248 16.12448376 1.72E-58 2.21E-55

RMND5B 13440.99001 3.456259672 0.219586365 15.7398647 8.06E-56 9.45E-53

POSTN 40952.11114 -7.747065835 0.497745713 -15.56430449 1.27E-54 1.37E-51

ADAM12 4826.287217 -6.15294879 0.397145909 -15.49291746 3.87E-54 3.84E-51

TRIP10 16056.88274 3.986371988 0.261954274 15.21781616 2.69E-52 2.48E-49

LUM 45988.43525 -4.951477482 0.329347359 -15.0342104 4.38E-51 3.77E-48

LAMA3 15311.98511 -3.625304579 0.242251039 -14.96507338 1.24E-50 1.00E-47

FMO2 29124.0302 7.062021632 0.47636551 14.82479627 1.01E-49 7.68E-47

LEXM 3256.659762 6.18141436 0.419963727 14.71892443 4.87E-49 3.49E-46

TMEM40 31612.7687 5.152150988 0.353738479 14.56485875 4.70E-48 3.19E-45

C6orf132 22551.56257 3.890906817 0.267420679 14.54976045 5.86E-48 3.78E-45

SPARC 118600.3026 -4.841257552 0.336428876 -14.3901368 5.97E-47 3.66E-44

RNF222 3565.500282 5.633596299 0.393950789 14.3002539 2.18E-46 1.28E-43

SERPINB1 123343.2718 4.770905492 0.334812385 14.24948926 4.52E-46 2.53E-43

COL4A1 14627.27515 -4.557388882 0.320552572 -14.21729003 7.16E-46 3.84E-43

RHCG 709479.5522 6.434233656 0.455121165 14.13740813 2.23E-45 1.11E-42

CSTB 1372242.639 5.511962738 0.389883505 14.13746073 2.23E-45 1.11E-42

TNC 64376.6442 -6.463542179 0.458039345 -14.11132525 3.23E-45 1.54E-42

TCP11L2 25709.84086 4.013446948 0.284902751 14.08707684 4.56E-45 2.10E-42

PRSS27 37234.17027 6.718938671 0.478985004 14.02745099 1.06E-44 4.55E-42

UBL3 36513.15223 4.229885666 0.301528583 14.02814164 1.05E-44 4.55E-42

COL4A2 20274.78159 -4.316236534 0.309005665 -13.96814694 2.44E-44 1.01E-41

CD276 3158.72067 -3.565675805 0.256654281 -13.89291384 6.99E-44 2.82E-41

COL5A1 11586.49807 -5.912263015 0.428061337 -13.81171927 2.17E-43 8.46E-41

ALDH9A1 19624.9843 2.965937691 0.215162691 13.78462816 3.15E-43 1.20E-40

VCAN 34011.33394 -6.485585193 0.473516046 -13.69665347 1.06E-42 3.92E-40

AIF1L 21917.32824 5.36849827 0.39481115 13.59763589 4.14E-42 1.48E-39

GRHL1 32056.55097 3.198778742 0.235710599 13.57078871 5.97E-42 2.08E-39

TMEM2 7160.360127 -2.507931141 0.184932304 -13.56134696 6.79E-42 2.30E-39

MXD1 69316.50753 3.966933834 0.295599565 13.41995828 4.62E-41 1.53E-38

KRT13 3444280.396 6.265108333 0.467551522 13.39982447 6.06E-41 1.95E-38

KAT2B 17491.4411 4.055043137 0.303202256 13.3740533 8.57E-41 2.70E-38

DPYSL3 17228.92587 -4.344984457 0.328673845 -13.21974511 6.75E-40 2.07E-37

GMDS 10089.58508 4.122008091 0.312083659 13.20802284 7.89E-40 2.36E-37

LAMC1 10221.65459 -3.775912692 0.286258235 -13.19058189 9.94E-40 2.91E-37

BICDL2 7343.039247 4.441014816 0.336907252 13.18171332 1.12E-39 3.20E-37

PTK6 30586.50244 4.762290492 0.361906168 13.15890945 1.51E-39 4.24E-37

PITX1 91905.99949 4.271973924 0.32961395 12.96053739 2.05E-38 5.62E-36

EHD3 22683.50204 3.836940993 0.297148233 12.91254859 3.82E-38 1.03E-35

CALU 11381.19778 -3.135307865 0.243172743 -12.89333592 4.91E-38 1.29E-35

CALD1 25305.63373 -3.577924467 0.277775088 -12.88065281 5.78E-38 1.49E-35

RANBP9 19274.4568 2.990187779 0.232873675 12.84038556 9.74E-38 2.46E-35

TMPRSS11E 118884.2098 5.929667306 0.461934614 12.83659445 1.02E-37 2.54E-35

Continued on next page
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Table 4.3 – Continued from previous page

Gene Name baseMean log2FoldChange lfcSE stat pvalue padj

CDH11 6210.810544 -5.927628626 0.461864286 -12.83413506 1.06E-37 2.57E-35

ACTA2.AS1 6173.680836 -4.850089176 0.381201425 -12.72316644 4.40E-37 1.05E-34

SPINT1 29984.9069 3.555776328 0.279529745 12.72056511 4.55E-37 1.07E-34

GALE 8795.210953 3.443019304 0.270770858 12.7156199 4.84E-37 1.11E-34

AGFG2 14294.89654 4.333237683 0.342744779 12.6427533 1.23E-36 2.77E-34

FAM129B 95382.00311 3.37513708 0.267166487 12.63308552 1.39E-36 3.08E-34

BGN 7441.279285 -4.533584372 0.359019456 -12.62768436 1.49E-36 3.25E-34

AQP3 232059.326 6.040920179 0.480490879 12.57239304 3.00E-36 6.43E-34

MFSD5 9545.879161 2.265874497 0.18045964 12.55612888 3.68E-36 7.77E-34

ESPL1 5890.654444 3.345698311 0.267073883 12.52723883 5.30E-36 1.10E-33

HOPX 176753.4791 5.933176055 0.473852517 12.52114496 5.72E-36 1.17E-33

SPAG17 4679.285588 4.428817534 0.353773302 12.5188009 5.89E-36 1.19E-33

IL1RN 283189.9994 5.623433999 0.449487646 12.51076432 6.52E-36 1.29E-33

THBS1 33937.76103 -4.687751038 0.375422515 -12.4866007 8.83E-36 1.72E-33

ACPP 13258.13474 3.563615188 0.285412904 12.48582363 8.92E-36 1.72E-33

TGFBI 34296.5564 -4.134967061 0.332247269 -12.44545086 1.48E-35 2.81E-33

KRT7 166890.2056 8.313731856 0.671314957 12.3842494 3.18E-35 5.94E-33

GRPEL2.AS1 1660.483921 4.748874436 0.384009207 12.36656399 3.96E-35 7.30E-33

WDR26 28894.85354 2.48702274 0.202212381 12.29906266 9.16E-35 1.66E-32

CARHSP1 16441.46779 3.020013399 0.246829055 12.23524274 2.02E-34 3.61E-32

PDLIM3 2436.469936 -4.887648845 0.402268773 -12.15020695 5.72E-34 1.01E-31

LOC440434 3491.220659 2.52137897 0.207738486 12.13727421 6.70E-34 1.17E-31

N4BP3 3251.494204 4.048901462 0.334171113 12.11625216 8.66E-34 1.49E-31

ACADM 12716.78695 2.848985866 0.235192358 12.11342873 8.97E-34 1.52E-31

NCCRP1 68372.79468 6.268609098 0.51855541 12.08860033 1.21E-33 2.03E-31

COL6A3 37965.73171 -5.059818655 0.418759069 -12.08288735 1.30E-33 2.15E-31

EPHA2 22450.99902 3.342511137 0.276909142 12.07078651 1.51E-33 2.46E-31

ABLIM3 11188.47785 4.942711439 0.410193382 12.04971035 1.95E-33 3.14E-31

TAGLN 16206.02829 -4.786646146 0.397711983 -12.03545869 2.31E-33 3.68E-31

TMPRSS2 10933.52417 5.820889372 0.485062485 12.0002877 3.54E-33 5.57E-31

STN1 7850.852744 3.591563246 0.299431636 11.99460182 3.79E-33 5.89E-31

SEMA3C 3735.783579 -5.541321276 0.462375765 -11.98445442 4.29E-33 6.58E-31

SESN2 8749.522319 3.918387959 0.327071806 11.98020704 4.51E-33 6.84E-31

MMP2 14805.05584 -5.089611929 0.425399971 -11.96429777 5.47E-33 8.19E-31

SDCBP2 4725.015159 3.70781534 0.310018836 11.95996794 5.76E-33 8.53E-31

LYPD3 63034.79089 3.599396791 0.301606025 11.93410109 7.86E-33 1.15E-30

PMM1 9737.844398 3.5076909 0.295355445 11.87616803 1.57E-32 2.28E-30

FBN1 14840.78056 -4.957674005 0.41792637 -11.86255369 1.85E-32 2.65E-30

WDR66 2551.195043 -4.142504875 0.350739228 -11.8107829 3.43E-32 4.86E-30

SLC35C1 5801.432072 3.263112906 0.277059328 11.77766844 5.09E-32 7.13E-30

PDGFRB 7465.757153 -3.637579521 0.310365774 -11.72029852 1.00E-31 1.39E-29

GPR157 8360.437935 3.02043467 0.258529819 11.68311912 1.55E-31 2.13E-29

FKBP10 5449.581025 -5.418447488 0.46403527 -11.67680096 1.67E-31 2.27E-29

IL18 27793.41571 4.875775621 0.417985018 11.66495307 1.93E-31 2.58E-29

DDR2 4394.368264 -4.0064582 0.34450708 -11.62953808 2.92E-31 3.88E-29

DUSP5 39611.84658 5.126600523 0.441421291 11.61384969 3.50E-31 4.61E-29

ANKRD22 5112.400757 3.00641139 0.259231553 11.5973976 4.25E-31 5.53E-29

GIPC1 41835.05319 2.911257142 0.25107735 11.59506081 4.37E-31 5.63E-29
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Figure 4-2: Co-expression network of the suspected eight genes across the states
(i.e. Normal and disease). The total number of edge connectivity is 5.

B. Construction of Co-expression Network

In this study, two different co-expression networks are formed for normal

and disease conditions as shown in Figure 4-2- 4-3. For these networks, only eight

suspected DEGs are considered. In these networks, the genes are connected if the

Pearsons correlation coefficient is greater than 0.01. Here, considered Pearsons

correlation coefficient is greater than 0.01 because the size of our adjacency matrix

is very small i.e. 8x8 and all the values with Pearsons correlation coefficient

lower than and equal to 0.01 are 0. By comparing these two networks, it is

observed that the connectivity of genes with their immediate neighbours in

normal condition are lesser (edge connectivity is 5) than the connectivity of genes

with their immediate neighbours in disease condition (edge connectivity is 13).

When genes transmit from normal to disease conditions, their edge connectivity

with neighbours increases and topological behaviour (network connectivities) are

significantly different from each other across conditions.

C. Construction of Gene Regulatory Network (GRN)

Transcription factors among 52 genes are identified with TFcheckpoint1

tool. Among the 52 genes (Genes from Table 4.1- 4.3), only three genes such

as PITX1, GRHL1, and MXD1 are found as transcription factors. To analyze

the different behaviour of GRN in normal and disease conditions, only edge

connectivity among regulators (transcriptions factors) and target gene are shown

1http://www.tfcheckpoint.org/index.php/search
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Figure 4-3: Co-expression network of the suspected eight genes across the disease
condition. The total number of edge connectivity is 13.

in Table 4.4- 4.5. GENIE3[221] package available in R platform is used to

construct GRN.

Table 4.4: Topological statistics of GRN among 3 regulatory gene and 8 suspected
genes in normal state

RegulatoryGene TargetGene Weight

PITX1 TNC 0.718599097

GRHL1 COL12A1 0.530555566

GRHL1 POSTN 0.485545356

MXD1 FMO2 0.484461331

MXD1 FN1 0.469279134

MXD1 PRSS27 0.426127752

PITX1 POSTN 0.41000477

GRHL1 FMO2 0.409450798

MXD1 COL12A1 0.396999557

GRHL1 PRSS27 0.396835715

GRHL1 VCAN 0.395777311

GRHL1 COL1A1 0.380200849

MXD1 VCAN 0.353484894

GRHL1 FN1 0.339335059

MXD1 COL1A1 0.332040763

PITX1 COL1A1 0.287758388

PITX1 VCAN 0.250737794

PITX1 FN1 0.191385808

PITX1 PRSS27 0.177036534

GRHL1 TNC 0.145307643

MXD1 TNC 0.13609326

PITX1 FMO2 0.106087871

MXD1 POSTN 0.104449874

PITX1 COL12A1 0.072444878
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Table 4.5: Topological statistics of GRN among 3 regulatory gene and 8 suspected
genes in disease state

RegulatoryGene TargetGene Weight

PITX1 FN1 0.514260159

MXD1 TNC 0.511935998

PITX1 COL1A1 0.458977461

PITX1 FMO2 0.396016814

GRHL1 COL12A1 0.381068216

GRHL1 PRSS27 0.378760255

PITX1 COL12A1 0.37851948

GRHL1 POSTN 0.378347311

PITX1 VCAN 0.371907687

MXD1 POSTN 0.343706288

MXD1 PRSS27 0.320786888

GRHL1 VCAN 0.316487829

MXD1 FMO2 0.314507509

MXD1 VCAN 0.311604484

PITX1 PRSS27 0.300452857

MXD1 COL1A1 0.29652297

GRHL1 FMO2 0.289475676

GRHL1 TNC 0.285323713

PITX1 POSTN 0.277946401

GRHL1 FN1 0.250241668

GRHL1 COL1A1 0.244499569

MXD1 COL12A1 0.240412304

MXD1 FN1 0.235498173

PITX1 TNC 0.202740288

D. Construction of PPI Network

The STRING tool builds an interaction network of the DEGs FMO2,

PRSS27, FN1, COL1A1, TNC, COL12A1, POSTN, and VCAN. This network

is formed based on the evidences of known interactions among genes from

curated databases, text mining, experiments, co-expression, neighbourhood, gene

fusion, and co-occurrence with a confidence score of 0.5. Figure 4-4 describes

the interaction among the eight DEGs. There are several hub proteins (FN1,

POSTN, VCAN, COL1A1) in the network, which are proteins that interact with

many other proteins. These hub proteins may play an important role in the

development of ESCC. By adjusting the confidence score from 0.9 to 0.1, it has

been observed that there is no association between the differentially expressed

genes (DEGs) FMO2 and PRSS27 in the PPI network. The use of a threshold of

0.5 is a common practice in PPI network analysis. The threshold of 0.5 is used to

filter out weak interactions from the network. This is because weak interactions

are more likely to be noise or false positives.
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Figure 4-4: PPI network of the suspected eight genes

E. Gene Enrichment Analysis of Suspected Genes

The eight DEGs are imported into DAVID2 to reveal the enrichment

analysis of GO terms and KEGG pathway. Total 8 genes such as FMO2, PRSS27,

FN1, COL1A1, TNC, COL12A1, POSTN, and VCAN are enriched in biological

process, the cellular process and molecular functions. The enriched GO terms

of these 8 DEGs are GO:0043062 extracellular structure organization (TNC,

COL12A1, POSTN, and COL1A1), GO:0030198 extracellular matrix organization

(COL12A1, POSTN, and COL1A1), GO:0007155 cell adhesion (TNC, COL12A1,

POSTN, and FN1 ), GO:0022610 biological adhesion (TNC, COL12A1, POSTN,

and FN1), GO:0001501 skeletal system development (COL12A1, POSTN,

and COL1A1 ), and GO:0030199 collagen fibril organization (COL12A1 and

COL1A1).

After the KEGG pathway analysis of the 8 DEGs, two pathways are found

enriched such as hsa04512: ECM-receptor interaction (Shared by TNC, COL1A1,

and FN1) and hsa04510: Focal adhesion (Shared by TNC, COL1A1, and FN1).

The cutoff for adjusted p-value was set as less than 0.01 for the significantly

enriched biological processes and the KEGG pathway analysis, adjusted p-value

cut off is set as less than 0.05.

F. Discussion

Here, FN1, COL1A1, and TNC among 8 DEGs are identified as sus-

pected genes for ESCC, because these genes are significantly differentially

2https://david-d.ncifcrf.gov/
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expressed based on adjusted P-value, and log fold change values between normal

and disease conditions. Further, these genes are found highly enriched in terms of

GO terms and KEGG pathway analysis. From the observation (Figure 4-2- 4-3),

it is seen that COL1A1 is only associated with TNC in normal condition but in

disease condition, the degree of COL1A1 is 4. The degree of FN1 and TNC in

normal condition are 2 and 1 and in disease condition, their degrees are 3 and 1

respectively. Again, from Table 4.4- 4.5, it is observed that PITX1 regulates TNC

with the highest weight rank in normal condition but in tumor they are connected

with the lowest weight rank. In tumor, the top 3 genes which are regulated

by the transcription factors with the highest weight rank are FN1, TNC, and

COL1A1. The PPI network also depicts the experimentally known interaction

from several evidences among these genes, TNC, FN1, and COL1A1 or directly

and indirectly connected with each other. Even when the confidence score is at

its maximum in PPI network, i.e., 0.9, there is still a direct connection between

COL1A1 and FN1, and between COL1A1 and POSTN. The strength of the

interactions between the genes varies, with some genes having more interactions

than others. This suggests that some genes may be more important than others

in the development of ESCC. FN1, the metastasis marker of ESCC, was observed

in the marginal cells of ESCC and was strongly expressed in the cytoplasm of the

tumor cells[222]. FN1 was found overexpressed in ESCC and it activates ERK

pathway which was experimented by Western blot test and RT-PCR analysis[222].

By up-regulation of FN1 and PDGFRB, SATB1 performs an oncogenic role in

ESCC[223]. COL1A1 is reported as a crucial gene for ESCC[224]. TNC, an

extracellular matrix protein, is associated with a poor prognosis of ESCC[225].

Given that the outcomes of this research align with prior studies highlighting the

role of these genes in cancer progression and metastasis, our approach has proven

successful in identifying crucial genes for esophageal squamous cell carcinoma

(ESCC). It suggests that these genes could be potential biomarkers for early

detection and development of new drugs for ESCC. Further research on these

genes could provide insights into the underlying mechanisms of ESCC and lead

to the development of new treatments for ESCC and the improvement of patient

outcomes.

4.3.2 Method II: An Ensemble Approach

In this work, initially an independent differential expression analysis is conducted

on both microarray and RNA-seq gene expression data to identify a set of sig-

nificant DE genes for each type of data. A gene is considered as Differentially
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Expressed (DE) if the observed difference or change in read counts or expression

levels between two experimental conditions is statistically significant [48]. The sig-

nificant changes of expression values for the corresponding gene(s) in normal and

disease states signifies the hidden truth behind the selection of some interesting

genes for subsequent downstream analysis. Recently, a good number of tools have

been introduced for DE gene identification using microarray or RNA-seq data.

However, my observations are: (i) tools developed for microarray data often do

not work for RNA-seq data and (ii) a significant variation in terms of a number of

genes exists between any pair of such tools. So, to identify DE genes, multiple DEA

tools are used for each dataset type such as DESeq2 [39], edgeR [37], limma-voom

[44], limma [46], SAM [226], EBAM [227] and use an appropriate consensus func-

tion towards generation of unbiased set of differentially expressed genes. Based

on the selected DE genes, a co-expression network is constructed using WGCNA

(a freely available R tool) [78] followed by a preservation analysis has been car-

ried out to identify a set of low preserved modules across the states. The module

preservation statistics quantify the preservation of within-module between a refer-

ence network and a test network [99]. A WGCNA R package, Zsummary statistics

score is calculated to determine the module which is highly/lowly/moderately pre-

served in a normal state but not in disease state. Zsummary statistics score for

the highly preserved modules is greater than 10 and also their Medianrank score

is relatively low [103]; for the moderately preserved modules Zsummary score

is between 2 and 10, and for lowly preserved Zsummary score is below 2. The

’hub’ is the node with the highest degree, plays an important role in molecu-

lar mechanisms which may be highly significant in determining the outcome or

phenotype of a disease of interest. Intra-modular connectivity of low preserved

modules is used to find out the hub genes. Additionally, in STRING3 tool, PPI

networks are built for each low preserved module and hub genes are identified

for the same. The genes belonging to the low preserved modules have been care-

fully investigated and assessed using based on both hub gene-centric and pathway

enrichment analysis tools such as GeneAnalytics (https://ga.genecards.org)

and David (https://david.ncifcrf.gov/). This experimental analysis reveals

that SOX11, COL27A1, TOP3A, BAG6, CDC6, EZH2, COL7A1, G6PD, and

AKR1C2 are a few prominent hub genes found responsible for ESCC.

This section presents the descriptions of both the microarray and RNA-seq

data, their pre-processing and analysis, and validation using both topological and

biological approaches.

3https://string-db.org/
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4.3.2.1 Dataset description and pre-processing

For this experiment, we consider three ESCC dataset - SRP064894, GSE20347,

and GSE23400 reported in Table 4.6. It is essential to remove genes with very

Table 4.6: Dataset Used. Note: T: Tumor, N:Normal

Dataset Type Link Size Sample(T) Sample(N)

SRP064894 RNA-seq Recount24 58000x29 14 15

GSE20347 Microarray GEO5 22278x34 17 17

GSE23400 Microarray GEO6 22287x106 53 53

low read counts in all samples before using DEA tools. The low read count in-

stances are discrded using a user-defined threshold (here, it is 5). DESeq2, edgeR,

limma-voom calculate individual library size factor by which expression values are

normalized. For network construction, Trimmed Mean of M-value (TMM) nor-

malization method available in edgeR and CPM function are used to obtain the

normalized expression values of the RNA-seq dataset. TMM method is used for

normalizing the read count before DEA. GSE20347 dataset was already normal-

ized across all samples by the Robust Multiarray Average (RMA) algorithm im-

plemented in Bioconductor in R (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE20347). The TMM normalization function is used to normalize

the dataset GSE23400. For all the three datasets, goodSamplesGenes() function is

used which is available in WGCNA to investigate missing entries and zero-variance

genes.

4.3.2.2 Proposed framework

In this study, microarray and RNA-seq datasets are used individually for the ex-

traction of significant DEGs. More than one DEA tools are used individually

for each dataset for the identification of unbiased DEGs by an appropriate con-

sensus function and extracted final set of DEGs are considered as the input for

the condition-specific co-expression analysis using WGCNA [78] in R. Module

preservation analysis is conducted with the modules obtained from WGCNA co-

expression analysis and some low preserved modules are detected for each datasets.

After module preservation, hub genes are identified for each low preserved modules

using intra-modular connectivity method in WGCNA. Additionally, PPI-network

is constructed in STRING tool for the low preserved modules and hub genes are

detected based on the highest connectivity. Identified low preserved modules and

hub genes are further investigated topologically and biologically. Existing liter-
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ature evidence is also considered while investigating the hub genes. These hub

genes are termed as critical genes since they are detected from the experimental

analysis and identified to be associated with ESCC disease by sufficient evidences.

The conceptual framework of my method is shown in Figure 4-5.

Figure 4-5: Conceptual framework to find critical genes from ESCC datasets.

In this work, an ensemble approach is used supported by an effective con-

sensus function to find an unbiased set of DEGs by multiple DEG finding tools.

These DEGs are considered as input for GCN construction and for subsequent

downstream analysis. GCN analysis is carried out to extract modules from the

co-expression network to perform module preservation analysis. The low preserved

modules which are identified by module preservation analysis are further investi-

gated using topological, pathway, GO enrichment analysis and in light of relevant

literature evidence to identify an interesting set of biomarkers for the microar-

ray data and RNA-seq data. Finally, interesting biomarkers are identified. This

method is comprised of eight major steps which are stated below.
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Algorithm 1: Ensemble based DEA to identify potential biomarkers.

Input: D1: Microarray data, D2: RNA-seq data; α, β, γ, k : user defined
Thresholds

Output: A set of DEGs, Potential biomarkers
1: Pre-process D1 and D2 to obtain D

′
1, D

′
2.

2: Execute the following steps to obtain lists of DEGs for both D
′
1, D

′
2.

1. For D
′
1, use tools limma, SAM, and EBAM to generate DGLMi

α i.e. a
set of DEGs considered w.r.t. a user defined threshold α, where
i={1,2,3}.

2. For D
′
2, use tools DESeq2, edgeR and limma-voom to generate DGLRi

β

i.e. a set of DEGs considered w.r.t. a user defined threshold β,, where
i={1,2,3}.

3: Obtain a common list of DEGs i.e. S1
common through consensus building.

Mathematically,

1. Generate the common set of DEGs based on DGLMi
α.

S1
common ← DGLM1

α ∩DGLM2
α ∩DGLM3

α

2. Identify top-k other significant (with lower P-value) genes from DGLMi

w.r.t. a user defined threshold (γ) for filtering. Mathematically,

DGLMi
′ ← DGLMi

γ − S1
common; i = 1, 2, 3

3. Obtain the final set of DEGs for all the tools by taking common of
S1
common and DGLMi

′
. Mathematically,

DEGM ← S1
common ∪DGLM1

′ ∪DGLM2
′ ∪DGLM3

′

4. Repeat the steps (a) through (c) for RNA-seq data to obtain DEGR.

4: Perform the following steps for topological and presentation analysis on
DEGM and DEGR.

1. Construct Co-Expression Networks (CENs) for both DEGM and DEGR.

2. Extract sets of modules i.e. MDEGM and MDEGR for the CENs.

5: Perform preservation analysis to find set of low preserved modules say
LPMj

DEGM and LPMj
DEGR (for j=1,2..) based on Zsummary score.

6: Calculate intra-modular connectivity for each low preserved modules of
LPMj

DEGM and LPMj
DEGR to identify a sets of hub genes GDEGM and

GDEGR.
7: Validate each member gene of GDEGM and GDEGR to obtain the useful

biomarker genes for both D1 and D2.
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4.3.2.3 Complexity Analysis

The complexity involves various steps, including data processing, DEG identifi-

cation, consensus building, and network analysis. The efficiency of the algorithm

depends on factors such as the size of the datasets, the number of tools used, and

the values chosen for the user-defined thresholds. In the integration of outputs

from three differential expression analysis methods DESeq2, edgeR, and limma

voom, computational complexity is notably influenced by the method with the

highest computational demands. Among the three, the most computationally ex-

tensive method tends to dominate the overall complexity. The consensus building

step includes both intersection and union operation. The computational complex-

ity of an intersection operation is also typically O(min(m, n)), where m and n are

the sizes of the two sets being intersected. The computational complexity of a

union operation is generally O(m + n), where m and n are the sizes of the two

sets being unioned. In general, network construction method ranges from O(n2)

to O(n3) for most steps. However, the pre-processing and network visualization

steps have lower complexity. Module identification and preservation steps involves

(O(n3 log n)) complexities.

4.3.2.4 Experimental Results

A. Differentially Expressed Gene (DEG) Identification

By considering the results obtained from the various DEA tools for both

the datasets, a consensus is built and applied for each dataset to obtain two lists

of DEGs and this consensus function are applied separately for both datasets.

A.1 Consensus findings for Microarray data: For microarray data,

limma, SAM and EBAM are considered for DEG identification, and total 2916,

3594 and 7386 DEGs are identified respectively for a threshold limit adjPvalue <

0.01 for limma and the false discovery rate FDR < 0.01 for EBAM and SAM.

From these genes 1471 DEGs are detected as common among three tools, denoted

as S1
common. For the second sets of DEGs, highly significant DEGs are considered.

By considering adjPvalue < 0.001 for limma and found 2125 DEGs. EBAM

and SAM give 2288 and 4186 DEGs which are most significant by considering

FDR < 0.001. After excluding S1
common from each second set of DEGs, total 977,

3024 and 1129 DEGs are filtered out for limma, SAM and EBAM respectively. In

this case, total of 3108 DEGs are reported as common. Finally, the final list of
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DEGs is prepared by considering all these 3108 and S1
common, total 4579 DEGs

are identified for downstream analysis. limma results total 4282 up and 4099 down

regulated genes. The DEA statistics are reported in Table 4.7. Venn diagram of

DEGs found by three different methods for both microarray datasets at P-value

cut off .01 are shown in Figure 4-6[a]-[b]. For the microarray dataset GSE23400,

a total of 9362 DEGs are identified across 106 conditions and the DEA statistics

are reported in Table 4.8.

Table 4.7: DEA statistics for GSE20347

P-value< limma SAM EBAM Common DEGs

0.01 2916 3594 7386 1471
0.001 2125 2288 4186 1084
DEG0.001−1471(Excluding duplicate gene) 977 3024 1129 3108 (Union)

Table 4.8: DEA statistics for GSE23400

P-value< limma SAM EBAM Common DEGs

0.01 6655 7613 9927 4607
0.001 5044 8916 6754 3950
DEG0.001−2272(Excluding duplicate genes) 591 4309 2955 4755 (Union)

A.2 Consensus findings for RNA-seq data: Similarly, for RNA-seq

data, DESeq2, edgeR and limma-voom tools are applied and total 7722, 5337 and

2308 number of DEGs are obtained respectively for a threshold limit Pvalue <

0.01. Total up and down regulated genes (up, down) detected by DESeq2, edgeR

and limma-voom are (6087, 4113), (3592, 2383), and (3710, 3945). For the first set

of common genes i.e. S1
common, total of 2272 DEGs are found. The DEGs present

in DESeq2 but not in S1
common and by choosing Pvalue < 0.001 is 2807. Similarly,

for edgeR and limma-voom, 2198 and 223 DEGs are found respectively. Among

2807, 2198 and 223 DEGs, total of 3137 genes are identified as common. After

that, the union between 3137 DEGs and S1
common are computed and finally, 5409

genes are detected as DEGs. After removing of missing entries and filtering of low

read counts for co-expression network construction, 5165 genes are considered as

the significant DEGs. Total 1807 DEGs are found identical for both the datasets.

The DEA statistics for SRP064894 are reported in Table 4.9. Total up and down-

regulated genes (up, down) identified by DESeq2, edgeR and limma-voom are

(6087, 4113), (3592, 2383), and (3710, 3945) respectively. Venn diagram of DEGs

identified by the three different methods for RNA-seq data is shown in Figure 4-7.

Venn diagram of common genes resulting from the different DEA tools for the

three datasets at P-value cut off .001 are shown in Figure 4-8a- 4-9.
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Table 4.9: DEA statistics for SRP064894

P-value< DESeq2 edgeR limma-voom Common DEGs

0.01 8254 5975 7655 2272
0.001 4448 3591 1440 1025
DEG0.001−2272(Excluding dupli-
cate genes)

2807 2198 223 3137 (Union)

(a) (b)

Figure 4-6: Venn diagrams to demonstrate the overlapping relationships among
the sets of DEGs identified by three methods at P-value cutoff .01 for (a) GSE20347
(b) GSE23400

Table 4.10: Percentage of common gene detected by DEA methods

Dataset DEA Method %Common gene contributed

RNA-seq data
DESeq2 58.5
edgeR 54.04

limma-voom 18.38

GSE20347
limma 40.93
SAM 69.1

EBAM 28.11

GSE23400
limma 40.82
SAM 75.58

EBAM 54.27

B. Weighted Co-expression Network Construction

For the downstream analysis, preprocessed datasets of DEGs are parti-

tioned into normal and disease samples and scale-free GCN is built using

WGCNA package available in R [219] for the two partitions individually for each

dataset. An adjacency matrix between finally identified DEGs is computed with

a soft threshold. Hierarchical clustering method is applied to find modules for

each dataset, resulting in 27 different modules. A unique color is assigned to
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Figure 4-7: Venn diagrams to demonstrate the overlapping relationships among
the sets of DEGs identified by three methods for RNA-seq data SRP064894 P-
value cutoff .01

(a) (b)

Figure 4-8: Venn diagrams to demonstrate the overlapping relationships among
the sets of DEGs at P-value cutoff .001 identified by three methods for microarray
data (a) GSE20347 (b) GSE23400

each module, and the modules are further analyzed by identifying eigengenes for

each module. Eignmodules are clustered using dissimilarity of module eigengenes

and most related modules are combined (MEDissThres=0.25) (Figure 4-10[a]-[f]

and Figure 4-11[a]-[f]). Eventually, 22 and 25 modules were derived from normal

and disease datasets respectively for the GSE20347 dataset. For the another

microarray dataset GSE23400, 9 modules are found for normal state and 17

modules are extracted for tumor state.

Similarly, for RNA-seq data, WGCNA is applied separately to normal and

disease samples with 5165 genes, and the results of WGCNA are shown in Figure 4-
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Figure 4-9: Venn diagrams to demonstrate the overlapping relationships among
the sets of DEGs at P-value cutoff .001 identified by three methods for RNA-seq
data SRP064894

12[a] and Figure 4-12[d]. Finally, 14 control network modules and 21 disease

network modules (Figure 4-12[a]-[f]) are extracted.

C. Module Preservation Analysis

In this study, module preservation is carried out for two cases, i.e. (a)

normal to tumor, where, we consider test data as the normal state and reference

data as tumor state. This analysis aims to check which module of normal state

is lowly preserved in tumor state and (b) tumor to normal, where, test data is

considered as the tumor state and reference data as normal state. It aims to check

which module of tumor state is lowly preserved in normal state. My observations

for both the cases are as follows.

(a) Normal to tumor: For GSE20347 microarray data as shown in Figure 4-

13[a] [228], white module is detected as the low-preserved module with Zsummary

score 1.1 and MedianRank 18. This module comprises a total of 41 genes. On the

other hand, Zsummary for the steelblue module is 1.7 for the RNA-seq results,

which is the lowest and MedianRank is 13 as shown in Figure 4-13[b] [228]. This

module includes 55 genes in total and is recommended for further study. For

GSE23400, purple module has been identified as the least preserved module with

Zsummary score 7.9 and MedianRank 5 as shown in Figure 4-13[c]. Total of 102

genes are found in this module.

(b) Tumor to normal: Greenyellow module is detected as the least pre-

served module with Zsummary score 3.4 and MedianRank score 16 for the dataset
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GSE23400 and is shown in Figure 4-13[d]. For the microarray data, darkgreen,

lightcyan, grey60, orange, royalblue, and yellow modules (Figure 4-13[e]) have

been detected as lowly preserved modules with 57, 75, 73, 44, 60, and 404 genes

in each module. Their Zsummary scores are 0.32, 1.0, 1.3, 0.82, 1.9, and 1.6 and

MedianRank scores are 26, 20, 24, 18, 12, and 22, respectively. In this analy-

sis, only darkgreen module is considered as it is found that MedianRank score

comparatively higher but Zsummary score is lower. For the RNA-seq data, only

darkred module is found as the lowly preserved module with Zsummary score 1.9

and MedianRank score 22 and is shown in Figure 4-13[f].

D. Hub Gene Finding

Hub genes play an important role in the study of biological networks.

the low preserved modules are considered and studied their topological behaviour

in terms of intra-modular connectivity for identification of the hub gene(s) and

six genes are found prominant to be considerd as hub genes, such as - BAG6,

COL27A1, SOX11, TOP3A, MROH7, and AKR1C2. The degrees are reported

in terms of correlation weight since the network is signed. The weights of the

hub genes identified by intra-modular connectivity using WGCNA are shown in

Table 4.11. From each module with the highest intra-modular connectivity, these

hub genes are found, looking at all genes in the expression data in R. Again, using

STRING tool, PPI networks (shown in Figure 4-14-4-16)are constructed for each

low preserved module and hub genes are identified based on degree and confidence

score (Table 4.12). Among them CDC6, EZH2, COL7A1, ALB, PTH1R, and

G6PD are considered as the hub genes. The interesting DE genes ”SOX11”,

”TOP3A”, ”COL27A1”, ”CDC6”, ”EZH2”, ”COL7A1”, ”ALB”, ”MROH7”,

and ”G6PD” are found as up-regulated genes and ”BAG6”, ”PTH1R”, and

”AKR1C2” are identified as down-regulated genes in the ESCC datasets. From

the website of cBioPortal7, hub genes BAG6, COL27A1, SOX11, TOP3A, ALB

and EZH2 are found to match Esophageal cancer mutated genes.

E. Finding Biological Significance of Low preserved modules and Hub

Genes

From biological GO analysis and pathway analysis done in DAVID8, GeneAn-

7https:/www.cbioportal.org/
8https://david.ncifcrf.gov
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(a) (b)

(c) (d)

(e) (f)

Figure 4-13: Preservation analyses: Test-Normal, Reference-Tumor([a], [b], [c]);
Test-Tumor, Reference-Normal([d], [e], [f]). [a] GSE20347: Here, the white mod-
ule is the least preserved module. [b] RNA-seq data: Here, the steelblue module
is the least preserved module. [c] GSE23400: Here, the purple module is the least
preserved module. [d] GSE23400: Here, the greenyellow module is the least pre-
served module. [e] GSE20347: Here, the darkgreen module is the least preserved
module. [f] RNA-seq data: Here, the dark red module is the least preserved
module.

104



4.3. Proposed Methods

Table 4.11: Top hub genes identified by WGCNA in each non-preserved module

Normal to Tumor

Steelblue White Purple
Gene Name Weight Gene Name Weight Gene Name Weight

COL27A1 13.5255198 BAG6 8.34646898 MROH7 24.8255450
MDC1 13.4520206 UBA1 8.22319123 REM1 24.5396723
ADAR 12.6529693 ADRM1 7.98908503 HOXA3 23.3803377
TENM4 11.640437 BOP1 7.97059197 EDA 23.3501984
PLCG2 11.4433501 FLAD1 7.94529456 GABRA5 23.2320597

Tumor to Normal

Darkgreen Darkred Greenyellow
Gene Name Weight Gene Name Weight Gene Name Weight

SOX11 15.4369594 TOP3A 10.7344736 AKR1C2 26.3176096
ACAD8 13.5834851 RAG2 10.7104490 CYP4F11 24.5396723
TCF4 13.4515386 SCO1 8.53560949 TXNRD1 24.562100
CCNE2 12.7797402 LINC0181 8.44543105 GPX2 23.2497139
FST 12.6711707 XKR9 8.30333824 ADAM23 23.2166119

Table 4.12: Top hub genes identified from PPI network by STRING tool in each
non-preserved module. Note: CG: Central Gene, CS: Confidence score

GSE20347

White Darkgreen

Central gene Degree CS CG Degree CS

CDC6 3 2.115 EZH2 7 4.21
LIG1 2 1.552 CCNE2 5 2.802

ADRM1 2 1.024 SMARCA2 5 2.602

SRP064894

Steelblue Darkred

CG Degree CS CG Degree CS

COL7A1 3 2.502 ALB 5 2.633
COL5A3 2 1.852 RBBP4 4 3.307
COL27A1 2 1.847 CD44 4 2.793

GSE23400

Purple Greenyellow

CG Degree CS CG Degree CS

PTH1R 4 3.136 G6PD 10 6.578
GPR20 4 3.121 TXNRD1 9 5.567
ADRB1 3 2.712 GCLC 8 5.348

alytics9 and STRING10 database, we can decipher the biological interpretation

behind the low preserved modules and identified interesting genes. Percentage of

enrichment in Biologiocal Process, Cellular Component and Molecular Function

for each module are reported in Table 4.13. GO enrichment analysis performed in

DAVID for selected four low preserved modules are presented in Table 4.14- 4.19

9https://ga.genecards.org
10https://string-db.org/
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(a) White module

(b) Darkgreen module

Figure 4-14: PPI network of low preserved modules constructed in STRING

and pathway analysis of each modules performed in GeneAnalytics are shown in

Table 4.20- 4.25.
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(a) Steelblue module

(b) Darkred module

Figure 4-15: PPI network of low preserved modules constructed in STRING
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(a) Purple module

(b) Greenyellow module

Figure 4-16: PPI network of low preserved modules constructed in STRING
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Table 4.13: Enrichment analysis result (ordered) of low-preserved modules for
microarray and RNAseq data. Abbreviations: MF-Molecular Function, BP-
Biologiocal Process, CC-Cellular Component

Module BP(%) CC(%) MF(%)

White 89.7 97.4 97.4
Darkgreen 84.8 84.8 84.8
Steelblue 65.2 63 73.9
Darkred 63.3 68.4 68.4
Purple 92.7 96.9 92.7
Greenyellow 92.4 96.8 93.7

Table 4.14: GO enrichment analysis for White module

Term Count PValue Benjamini FDR

GO:0051301∼cell division 4 0.033358876 0.947156712 35.81981197

GO:0030574∼collagen
catabolic process

3 0.007416366 0.855639431 9.271735471

GO:0006464∼cellular protein
modification process

3 0.019075346 0.918222373 22.25565118

GO:0006974∼cellular re-
sponse to DNA damage
stimulus

3 0.066139623 0.971512041 59.1160656

GO:0007067∼mitotic nuclear
division

3 0.089556965 0.982849095 70.66477686

GO:0007130∼synaptonemal
complex assembly

2 0.041694585 0.937229404 42.6892135

Table 4.15: GO enrichment analysis for Darkgreen module

Term Count PValue Benjamini FDR

GO:0045944∼positive regula-
tion of transcription from
RNA polymerase II promoter

9 0.001903736 0.313635295 2.618123812

GO:0006351∼transcription,
DNA-templated

9 0.086710366 0.86336057 71.71401757

GO:0000122∼negative regula-
tion of transcription from
RNA polymerase II promoter

8 0.00140119 0.425271886 1.933246712

GO:0045893∼positive regula-
tion of transcription, DNA-
templated

5 0.033465441 0.775504547 37.74292552

GO:0007399∼nervous system
development

4 0.030660075 0.827469574 35.17937986

GO:0008284∼positive regula-
tion of cell proliferation

4 0.098819086 0.885035181 76.51077147

F. Literature evidence

Total twelve critical genes are identified which are mostly responsible for
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Table 4.16: GO enrichment analysis for Steelblue module

Term Count PValue Benjamini FDR

GO:0045944∼positive regula-
tion of transcription from
RNA polymerase II promoter

6 0.088913564 0.917644755 73.07277067

GO:0030154∼cell differentia-
tion

5 0.025679591 0.844339402 30.68813707

GO:0030198∼extracellular
matrix organization

4 0.012055085 0.92583985 15.70849685

GO:0045087∼innate immune
response

4 0.087073841 0.938675315 72.29644071

GO:0030334∼regulation of
cell migration

3 0.014060187 0.78099409 18.0872015

GO:0016477∼cell migration 3 0.065953567 0.961313134 61.76248877

Table 4.17: GO enrichment analysis for Darkred module

Term Count PValue Benjamini FDR

GO:0006260∼DNA replica-
tion

4 0.024035991 0.85369122 28.73244597

GO:0051453∼regulation of in-
tracellular pH

3 0.00905313 0.972464292 11.89284408

GO:0042157∼lipoprotein
metabolic process

3 0.010050573 0.863990507 13.11956119

GO:0015701∼bicarbonate
transport

3 0.013318834 0.733950293 17.02889228

GO:0051726∼regulation of
cell cycle

3 0.087740883 0.973412997 72.15515345

GO:0002331∼pre-B cell allelic
exclusion

2 0.011922996 0.79387963 15.37967875

Table 4.18: GO enrichment analysis for purple module

Term Count PValue Benjamini FDR

GO:0007165∼signal transduc-
tion

14 0.007265947 0.578813197 10.63857129

GO:0043547∼positive regula-
tion of GTPase activity

10 0.002794556 0.538947204 4.224599616

GO:0008285∼negative regula-
tion of cell proliferation

9 0.001106675 0.601101595 1.69340761

GO:0000165∼MAPK cascade 6 0.0122013 0.639021456 17.25061942

GO:0007155∼cell adhesion 6 0.093222288 0.868736987 77.89545793

GO:0007050∼cell cycle arrest 5 0.006443268 0.591066444 9.489493088

ESCC. Out of these, the prominent nine genes such as COL27A1, SOX11, BAG6,

TOP3A, CDC6, EZH2, COL7A1, G6PD, and AKR1C2 are highlighted below.

(a) SOX11: SRY-Box 11 gene is a transcriptional factor that is believed to

be involved in the regulation of some important biological functions such as devel-
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Table 4.19: GO enrichment analysis for greenyellow module

Term Count PValue Benjamini FDR

GO:0045944∼positive regula-
tion of transcription from
RNA polymerase II promoter

17 0.010650312 0.673019887 15.64218127

GO:0055114∼oxidation-
reduction process

16 1.88E-04 0.177973582 0.297780156

GO:0000122∼negative regula-
tion of transcription from
RNA polymerase II promoter

12 0.047608456 0.837773451 53.92612093

GO:0006810∼transport 10 0.003271628 0.574842193 5.072775376

GO:0006357∼regulation of
transcription from RNA
polymerase II promoter

10 0.014434356 0.717743868 20.62456118

GO:0045892∼negative regula-
tion of transcription, DNA-
templated

10 0.029261442 0.755688131 37.61193737

opment, differentiation and cell-fate decision. Therefore, any dysregulation in the

expression of SOX11 gene would lead to the development of cancer [229]. The ex-

pression SOX11 gene is found to be down-regulated in several cancers viz. gliomas,

ovarian cancer, hematologic cancer and nasopharyngeal cancer [230]. SOX11 is

found to be associated with ESCC cell growth [231] and it acts as a tumor sup-

pressors in esophageal squamous cell carcinoma, hematopoietic malignancies, and

gastric and liver cancers, respectively [232][233]. Interestingly, recent evidence

provided that the gene expression of SOX11 is up-regulated in ESCC [234]. But

exactly, how this gene is related to ESCC is still unclear. In this study, using intra-

modular connectivity, SOX11 is identified as a hub gene, which is up-regulated in

the ESCC dataset. However, no pathway was found to be associated with SOX11

gene in KEGG as well as in the reactome pathway database. Therefore, from

GeneCards, it has been found that that major pathway involved with SOX11 gene

is ERK/MAPK signaling pathway. The ERK signaling pathway plays a crucial

role in various cellular processes that include cell development, cell proliferation,

differentiation and survival. This regulatory signaling pathway is often found to

be up-regulated in many types of human cancers [235]. Recent evidences have

provided that ERK signaling is highly up-regulated in ESCC and its expression is

negatively correlated with STAT1 transcription factor [236]. However, the molec-

ular link between SOX11 and ERK pathway is yet to be known. Since SOX11

has a major role in proliferation , survival and development, there is a high prob-

ability that SOX11 is correlated to ERK signaling pathway. From the STRING

database, another KEGG pathway is found - transcriptional misregulation in can-

cer (hsa05202) associated with SOX11.
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Table 4.20: Pathway analysis for White module. (R: Reactome; N: NCBI Biosys-
tem; K: KEGG; C: Cell signalling technology )

Name Matched Genes Sources

Wnt Signaling Pathway Netpath TCF3, DVL3 N

Wnt / Hedgehog / Notch BAG6, CELSR2, DVL3 C

CDK-mediated phosphorylation and re-
moval of Cdc6

ADRM1, LIG1, RPN1,
CDC6, UBA1, DVL3

K, R, B

Metabolism of proteins ACADVL,ADRM1,POGNT1,
RPN1, PRKCSH, DDX11,
RABGGTA, UBA1

R

Unfolded Protein Response (UPR) ACADVL, DDX11 R

Riboflavin metabolism FLAD1 K

Degradation of the extracellular matrix MMP10, COL10A1,
COL11A1

R

WNT mediated activation of DVL DVL3 R

Advanced glycosylation endproduct re-
ceptor signaling

PRKCSH R

Mitotic Prometaphase SKA1, DVL3 R

Signaling pathways regulating pluripo-
tency of stem cells

TCF3, DVL3 K

Cell Cycle, Mitotic LIG1, CDC6, SKA1,
ACTR1A

R

Ectoderm Differentiation CELSR2, TCF3 N

p38 signaling mediated by MAPKAP ki-
nases

TCF3 N

Urea cycle and metabolism of amino
groups

PYCR3 N

Protein processing in endoplasmic reticu-
lum

RPN1, PRKCSH K

Notch signaling pathway (KEGG) EHMT2, DVL3 K, N

Mitochondrial Fatty Acid Beta-Oxidation ACADVL R

Signaling events mediated by PRL RABGGTA N

Mannose type O-glycan biosynthesis POMGNT1 K

(b) COL27A1: Collagen Type XXVII Alpha 1 Chain is a type of fibrillar

collagen and the components of extracellular matrix (ECM). However, its signifi-

cance in cellular processes is poorly understood [237]. In this dataset, COL27A1 is

identified as one of the up-regulated hub gene in ESCC. ECM plays an important

role by regulating cell proliferation, cell degradation and remodeling. Therefore,

aberrant changes in the gene expression of ECM components will lead to malignant

transformation [238]. The identified KEGG pathway associated with COL27A1

is protein digestion and absorption which justifies the role of COL27A1 in ESCC.

Further, COL27A1 has been found to be significantly upregulated in ESCC and

plays a major role in extra cellular matrix organization [239].

(c) TOP3A: Topoisomerases are predominantly present in both prokary-
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Table 4.21: Pathway analysis for Darkgreen module. (R: Reactome; N: NCBI
Biosystem; K: KEGG; G: GeneGo; Q: Qiagen )

Name Matched Genes Sources

E2F transcription factor network E2F3, RRM1, SMARCA2,
CCNE2

N

Retinoblastoma (RB) in Cancer E2F3, RRM1, SMARCA2,
CCNE2

B

Valine, leucine and isoleucine degradation ACAD8, ALDH7A1, PCCA K, N, R

GP1b-IX-V activation signalling GP1BB, YWHAZ R

Cell cycle E2F3, RAD21, YWHAZ,
CCNE2

K, N

DNA damage HIPK2, RAD21, RRM1,
CCNE2, YWHAZ

C

Regulation of Wnt/B-catenin Signaling by
Small Molecule Compounds

TCF4, SFRP4 N

Small cell lung cancer E2F3, PTK2, CCNE2 K

Glioblastoma Multiforme E2F3, TCF4, CCNE2 Q

Integrin alphaIIb beta3 signaling GP1BB, PTK2 R

Diseases of metabolism MTR, PCCA R

Defective MTR causes methylmalonic
aciduria and homocystinuria type cblG

MTR R

Cellular senescence HIPK2, E2F3, CCNE2 K

Transcription Ligand-dependent activa-
tion of the ESR1/SP pathway

SMARCA2, CCNE2 G

Cell cycle Cell cycle E2F3, CCNE2 R, G

Lysine degradation ALDH7A1, EZH2 K

Transcriptional misregulation in cancer HOXA9, HOXA10, PTK2 K

Human Embryonic Stem Cell Pluripo-
tency

E2F3, TCF4, CCNE2 Q

Regulation of TP53 Activity HIPK2, CCNE2, YWHAZ,
TAF2

R

Tryptophan metabolism ALDH7A1, UBR5 K, N

Preimplantation Embryo, ERK Signaling SOX11 GeneCard

otes and eukaryotes. It plays a major biological role in DNA topological and con-

formational changes. TOP3A belongs to family of type lA topoisomerase family,

which is mainly associated with regulation of cell cycle checkpoints, DNA-repair

mechanism and to maintain stability of genome [240]. Studies have reported the

involvement of TOP3A gene in bladder cancer [241], lungs cancer and nasopha-

ryngeal squamous cell carcinoma [241]. But the association of TOP3A with ESCC

has not been studied yet. It is the first time TOP3A is identified as an significant

gene in ESCC by module preservation analysis.

(d) BAG6: BCL2 Associated Athanogene 6 is associated with Discrete

Subaortic Stenosis and Acute Diarrhea disease. Wnt/Hedgehog/Notch pathway

is shared by BAG6 which plays key roles in embryogenesis and carcinogenesis.
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Table 4.22: Pathway analysis for Steelblue module. (R: Reactome; N: NCBI
Biosystem; K: KEGG; C: Cell signalling technology; RD: RandD Systems; PH:
PharmGKB; G: GeneGo; Q: Qiagen )

Name Matched Genes Sources

Phospholipase-C COL27A1, COL5A3, LAMA5,
GLGG1, COL7A1, PLCG2

Q

Peginterferon alpha-
2a/Peginterferon alpha-2b Pathway
(Hepatocyte), Pharmacodynamics

ADAR, TYK2 Ph

Interleukin-4 and 13 signaling LAMA5, GATA3, TYK2 R

Formation of editosomes by ADAR
proteins

ADAR R

Th2 Differentiation Pathway JAG2, GATA3 RD

Degradation of the extracellular ma-
trix

COL27A1, COL5A3, LAMA5,
COL7A1

R

Deubiquitination FOXK1, HCFC1, GATA3, USP22 R

Th17 cell differentiation JAG2, GATA3, TYK2 K, Q, G

Calcineurin-regulated NFAT-
dependent transcription in lympho-
cytes

GATA3, CABIN1 N

NF-kappaB Signaling GATA3, CABIN1, TYK2, PLCG2 C

AIF Pathway PARP1 Q

Cytokine Signaling in Immune sys-
tem

ADAR, TYK2, LAMA5, GATA3,
TRIM45, TXLNA

R

Collagen chain trimerization COL27A1, COL5A3, COL7A1 R, Q, K

Integrin Pathway COL27A1, COL5A3, LAMA5,
COL7A1, PLCG2

Q

Interferon gamma signaling ADAR, TYK2, TRIM45 R

Th1 Differentiation Pathway GATA3, TYK2 N, RD

IL12-mediated signaling events ETV5, TYK2 G, N

UVA-Induced MAPK Signaling COL27A1, PLCG2 Q

Immune response IFN alpha/beta
signaling pathway

ADAR, TYK2 R, G

mRNA surveillance pathway CPSF1, PABPC1L K

This pathway acts as activators for epidermal growth factor receptor in ESCC

[242]. BAG6 gene is found to be associated with lung cancer [243].

(e) CDC6: Cdc6’s deregulated expression can play a role in human can-

cer oncogenic transformation or disease progression, and Cdc6 provides a good

target for biotechnological strategies to inhibit cell proliferation [244]. Altered

Cdc6 expression has been observed in malignant prostate cancer cells, but semi-

quantitative PCR, microarray analysis, and Western blotting all revealed a de-

crease in CDC6 transcription and protein expression relative to normal prostate

tissue [245]. CDC6 is under YB-1 control in cancer cells and evidence says that

CDC6 expression plays an essential role in the YB-1-induced cell proliferation and
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Table 4.23: Pathway analysis for Darkred module (R: Reactome; N: NCBI Biosys-
tem; K: KEGG)

Name Matched Genes Sources

Resolution of D-loop Structures
through Synthesis-Dependent
Strand Annealing (SDSA)

POLD3, TOP3B, TOP3A K, N, R

Defective SLCO1B3 causes hyper-
bilirubinemia, Rotor type (HBLRR)

ALB R

Retinoblastoma (RB) in Cancer RBBP4, POLD3, CCNE2 N

Interleukin-7 signaling RAG1, RAG2 R

Primary immunodeficiency RAG1, RAG2 K

Cytokine Signaling in Immune sys-
tem

IL17RA, GRB2, RAG1, RAG2,
CD44, TYK2, TRIM45, TXLNA

R

Interleukin-11 Signaling Pathway GRB2, TYK2 N

FoxO signaling pathway GRB2, RAG1, RAG2 K

RNA Polymerase I Promoter Es-
cape

RBBP4, MTA1 R

Signaling events mediated by
PTP1B

GRB2, TYK2 N

Hepatitis C and Hepatocellular Car-
cinoma

GRB2, CD44 N

Cell cycle Cell cycle (generic
schema)

RBBP4, CCNE2 R

Transport of glucose and other sug-
ars, bile salts and organic acids,
metal ions and amine compounds

ABCA4, ALB, AQP5, SLC4A5,
SLC26A11, SLC26A7

R

Fanconi anemia pathway TOP3B, TOP3A K

IL6-mediated signaling events GRB2, TYK2 N

Phase I biotransformations, non
P450

PON2 N

DNA Damage Reversal ALKBH5 R

Homologous DNA Pairing and
Strand Exchange

POLD3, TOP3A R

E2F transcription factor network RBBP4, CCNE2 N

Validated targets of C-MYC tran-
scriptional activation

MTDH, MTH1 N

Table 4.24: Pathway analysis for Purple module

Name Matched Genes Sources

Neuroactive ligand-receptor
interaction

THRA, ADRB1, PTH1R, P2RX2,
GABRA5, GRIN2A, VIPR2

KEGG

Basal cell carcinoma BMP4, FZD2, APC KEGG
Signaling pathways regulating
pluripotency of stem cells

BMP4, FGFR1, FZD2, APC KEGG

Pathways in cancer BMP4, FGFR1, RXRG, FZD2, RARB,
APC

KEGG

115



Chapter 4. Identifying Crucial Genes for ESCC using Differential
Expression Analysis

Table 4.25: Pathway analysis for Greenyellow module

Name Matched Genes Sources

Glutathione metabolism GPX2, GCLC, G6PD, GGCT, PGD,
GCLM

KEGG

Carbon metabolism ME1, G6PD, SUCLG1, PGD, HK1 KEGG

Central carbon metabolism in
cancer

FGFR2, G6PD, ERBB2, HK1 KEGG

Pancreatic cancer ERBB2, IKBKG, RALB, IKBKB KEGG

Glycolysis / Gluconeogenesis HK1, ADH7, ALDH3A2, ALDH3A1 KEGG

Metabolic pathways ME1, GCLC, GNE, SLC33A1, PGAP1,
SUCLG1, PGD, HK1, ADH7, GCLM,
ALDH3A2, PLPP2, ALDH3A1, NNT,
G6PD, IDS, GAA, B4GALT4, PRODH

KEGG

Prostate cancer FGFR2, ERBB2, IKBKG, IKBKB KEGG

Biosynthesis of antibiotics G6PD, SUCLG1, PGD, HK1, ALDH3A2,
PRODH

KEGG

Amino sugar and nucleotide
sugar metabolism

GNE, NPL, HK1 KEGG

Pathways in cancer BID, FGFR2, FGF8, ERBB2, IKBKG,
RALB, GLI2, IKBKB

KEGG

cell cycle G1/S. CDC6 is found as a novel therapeutic target for cancer radio-

sensitization [246]. In ESCC disease, CDC6 is found to be upregulated [247]. It

is mainly associated with the regulation of cell cycle KEGG pathway [248].

(f) EZH2: Studies revealed that overexpression of EZH2 and H3k27me3

could act as a prospective marker for ESCC patients. By reducing EZH2 ex-

pression using siRNA or treatment of EZH2 inhibitor could result in cell growth

inhibition and reduced tumor formation in various cancers [249]. EZH2 was found

to be upregulated in ESCC patients in comparison to adjacent normal tissue.

Deregulated EZH2 expression is significantly associated with large size, depth of

invasion, presence of distant metastasis and shorter disease-free survival time [250].

Aberrant overexpression of EZH2 serves as a poor prognostic biomarker for ESCC

patients [249]. EZH2 has been identified as a repressor of gene transcription and

it is also reported to be associated with biological malignancy in several cancers

[251].

(g) COL7A1: COL7A1 gene, is the major component of anchoring fibre

in the basement membrane. From studies, it has been found that COL7A1 is up-

regulated in most of the ESCC patients [252]. Moreover, validation of differentially

expressed COL7A1 mRNA by qRT PCR revealed that COL7A1 is significantly

altered in the majority of the ESCC cases [253].

(h) G6PD: The expression of G6PD mRNA and protein has been found
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to be significantly upregulated in ESCC and it can be a novel predictor for the

prognosis of the patients with ESCC [254]. Recent studies have shown that G6PD

can act as an important regulator in ESCC development and progression by ma-

nipulating the STAT3 signaling pathway and can thus be an underlying molecular

target for ESCC [255] patient therapy.

(i)AKR1C2: The ARK1C2 gene is found to be altered in ESCC. It is indi-

cated to be at least indirectly involved in esophageal carcinogenesis and is consid-

ered one of the most important molecular targets in the treatment of ESCC. This

gene is also found to be altered in breast cancer and prostate cancer [256][257][258].

4.3.2.5 Discussion

Esophageal Squamous Cell Carcinoma (ESCC) is a highly aggressive form of

esophageal cancer, especially common in regions like North-East India. An in-

depth analysis is done to identify critical genes associated with ESCC using an

ensemble approach, integrating data from multiple sources including microarray

and RNA-seq datasets. The findings of this method shed light on several impor-

tant aspects of ESCC pathogenesis and potential targets for precision treatment

and prevention. In the analysis, nine genes (COL27A1, SOX11, BAG6, TOP3A,

CDC6, EZH2, COL7A1, G6PD, and AKR1C2) are identified as significant candi-

dates linked to ESCC. These genes play crucial roles in the progression of ESCC,

either directly or indirectly. A notable part of our analysis involves examining the

biological roles of these critical genes. They are found to be significantly involved

in various aspects like Biological Process, Cellular Component, and Molecular

Function, highlighting their importance in ESCC development. The supporting

literature also strengthens the case for these genes as potential targets for further

research and clinical use in ESCC and cancer in general. This analysis is not just

about understanding the basics; it has real-world impacts. It gives us hope for

developing new ways to diagnose and treat esophageal cancer (ESCC). Certain

genes, like SOX11, COL27A1, and EZH2, could be focused on for personalized

treatments in ESCC. This finding sets the stage for future research to uncover

the detailed inner workings of ESCC at a molecular level. This, in turn, brings

us closer to creating better ways to intervene and achieve better outcomes for

patients.

Comparison with other competing methods
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In terms of finding candidate genes and using DEA software, the perfor-

mance of proposed method is compared with eight other competing methods.

Table 4.26 shows the comparison. Unlike other methods, this method uses six

different DEA tools to identify and unbiased set of DE genes by eliminating the

biasness of the individual tools. Further, unlike most other tools, the proposed

method validates the critical genes identified by this approach from multiple

aspects such as topological, pathway-based and literature evidences.

4.4 Conclusion

In method I, RNA-seq data (GSE32424) for Esophageal Squamous Cell Carcinoma

is analysed. DEA is performed to identify differentially expressed genes. Then,

the topological behaviour of networks at normal and disease conditions are stud-

ied. Finally, gene enrichment analysis is done for validation of the identified genes.

From differential expression analysis, topological analysis, and functional enrich-

ment analysis from which set of genes are found to be associated with ESCC and

these genes are considered as crucial genes for ESCC. These genes need further

investigation to uncover their other activities while the disease is in progression.

In this work, differentially expressed genes are extracted using only one method,

but several popular methods are available to perform the same task and results

different set of DEGs. Further, next work is based on an ensemble approach of

DEA methods. Main goal is to develop an interesting framework to handle various

sources of data at a time (e.g., microarray and RNA-seq) towards the identification

of interesting biomarkers through consensus building for a given disease.

From the experimental study of Method II, four low preserved modules have

been identified. Based on the topological and biological analysis of these modules

it is found that several interesting genes found directly or indirectly associated with

ESCC. Out of these, nine genes have been reported as the most significant based

on their (i) topological weight to identify hub genes, (ii) biological enrichment

analysis in terms of BP, CC, and MF, and (iii) literature evidences. These nine

genes i.e. COL27A1, SOX11, BAG6, TOP3A, CDC6, EZH2, COL7A1, G6PD,

and AKR1C2 have been found to have significant enrichment either in ESCC or

carcinogenesis in general. Based on the study of differential co-expression and dif-

ferential expression analysis, these findings will make a significant contribution to

future research aimed at characterizing the role of specific genes in ESCC patho-

genesis and helping to improve diagnosis and treatment. These nine genes may

provide potential targets for precision treatment and prevention of this deadly
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disease.

A gene co-expression similarity measure SNMRS is proposed to measure

similarity between two genes and to handle different patterns of gene expression

data. SNMRS is applied in finding network modules from weighted signed co-

expression network towards identification of potential biomarkers.
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