
Chapter 5

SNMRS : An Effective Measure

for Co-expression Network

Analysis

5.1 Introduction

The challenge of identifying modules in a gene interaction network is important for

a better understanding of the overall network architecture. In this work, a novel

similarity measure called Scaling-and-Shifting Normalized Mean Residue Similar-

ity (SNMRS) is developed based on the existing NMRS technique [7]. SNMRS

yields correlation values in the range of 0 to +1 corresponding to negative and

positive dependency. To study the performance of my measure, internal validation

of extracted clusters resulting from different methods is carried out. Based on the

performance, hierarchical clustering method is choosen and apply the same using

the corresponding dissimilarity (distance) values of SNMRS scores, and utilize a

dynamic tree cut method for extracting dense modules. The modules are validated

using a literature search, KEGG pathway analysis, and Gene-Ontology (GO) anal-

yses on the genes that make up the modules. Moreover, this measure can handle

absolute, shifting, scaling, and shifting-and-scaling correlations and provides bet-

ter performance than several other measures in terms of cluster-validity indices.

Also, SNMRS based module detection method results in interesting biologically

relevant patterns from gene microarray and RNA-seq dataset.

The Gene Co-expression Network (GCN) is a gene-interaction network that

is frequently used to describe the complex functional organisation of biological
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systems at the genome level. GCN is a square matrix the elements of which are

derived from a preprocessed dataset. Each element of the square matrix is a co-

expression score of a pair of genes greater than a user-defined threshold value.

Analysis of GCN is carried out by extracting modules or clusters from a parent

square matrix. A module or cluster is a group of co-expressed genes which are

tightly connected. A co-expressed or correlated gene pair is similar in terms of its

charcteristics or behaviour in most of the experimental conditions or time series.

Correlation defines the interdependency between or among gene pairs. It is also

reported that co-expressed genes can exhibit any type of correlation patterns such

as, absolute, shifting, scaling, and shifting-and-scaling [265] [266].

In the literature, several measures have been proposed for GCN construction.

The methods use a gene expression dataset as a primary input and then generate

the corresponding co-expression networks using a correlation-based proximity mea-

sure. Frequently used correlation measures with linear relationship to construct

GCN are: Pearson correlation coefficient (PCC) [84], Spearman rank correlation

coefficient [88], Kendall rank correlations [267], Mutual information [88] [268] [89],

Normalized mean residue similarity (NMRS) [7], and Negative Correlation aided

Normalized Mean Residue Similarity (NCNMRS) [269]. Mahanta et. al [7] deve-

lope NMRS as an effective gene similarity measure. Both positive and negative

correlation are handled by the NCNMRS correlation measure [269]. Spearman

and Kendall can be used as alternatives to PCC but sometimes their performance

are found weaker. Mallik et. al developed WeCoMXP which is a weighted connec-

tivity measure to detect gene-modules for multi-omics dataset [270]. It integrates

co-methylation, co-expression and protein- protein interactions.

A similarity measure for co-expression analysis should have the ability to

detect all types of correlations to find the co-expressed modules/clusters. An

effective measure is able to detect all types of correlations without scaling down

all the genes to the same range of expression values. In a co-expression network,

the absolute values of a co-expression measure are usually used to determine the

associations between genes. The absolute values belong to the range 0 to 1 while

the PCC range is -1 to +1 and an unsigned weighted network is obtained by

transferring the negative values to positive ones. The PCC can detect all types

of correlations but it can not address the issues of signed and unsigned network

range. The range of NMRS values lie between 0 to +1 but it can detect only

shifting patterns [7]. Further, the NCNMRS range can detect the co-expression

values from 0.5 to +1 and can detect gene pairs with shifting patterns. It has been

observed in [7] and [269] that the developed GCNs are unweighted. But, it is found
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that the weighted networks are more robust and biologically more significant [78]

than the unweighted GCNs. Following are the contributions from this work.

• An advanced correlation measure called SNMRS.

• Establishment of SNMRS as a metric.

• An approach to construct a weighted signed co-expression network and ex-

traction of biologically significant modules using SNMRS.

5.2 Background

Module detection from co-expression network is a crucial task in computational

biology. For module detection, an appropriate connectivity measure is needed.

There are several such measures, and the oldest one is Pearsons correlation coef-

ficient (PCC). PCC score between two genes g1: g1i = (g11, g12, ..., g1m) and g2:

g2i = (g21, g22, ..., g2m) is defined as follows.

PCC =

∑m
i=1(g1i − g1)× (g2i − g2)√

(
∑m

i=1(g1i − g1)2 ×
∑m

i=1(g2i − g2)2

(5.1)

Mahanta et. al [7] calculate the similarity between genes using NMRS and

form a coexpression network using signum function and NMRS threshold. They

construct GCN from a microarray gene expression data and extract network mod-

ules with the help of Topological Overlap Matrix and using a spanning tree-based

method. The constructed coexpression network is unweighted. NMRS score be-

tween two genes g1 and g2 is defined as follows.

NMRS = 1−
∑m

i=1

∣∣g1i − g1− g2i + g2
∣∣

2×max(
∑m

i=1

∣∣g1i − g1
∣∣ ,∑m

i=1

∣∣g2i − g2
∣∣) (5.2)

where, ḡ1 = (g11,g12,...,g1m)
m

, ḡ2 = (g21,g22,...,g2m)
m

Ahmed et. al [269] construct an unweighted co-expression network using

NCNMRS correlation among genes with a correlation threshold. In practice, there

is very little difference between NMRS and NCNMRS [269] both of which can

identify correlation values both positive and negative between two gene expression
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profiles. NCNMRS score between two genes g1 and g2 is defined as follows.

NCNMRS(g1, g2) =

{
NMRS(g1, g2); NMRS(g1, g2) ≥ 0.5

1−NMRS(g1, g2); NMRS(g1, g2) < 0.5
(5.3)

Spearman rank correlation coefficient score between two genes g1 and g2 is

defined as follows.

Spearman =

∑n
i=1(rank(g1i)− rank(g1))× (rank(g2i)− rank(g2))

(
∑n

i=1(rank(g1i)− rank(g1))2 ×
∑n

i=1(rank(g2i)− rank(g2))2

(5.4)

Kendall rank correlation coefficient score between two genes g1 and g2 is

defined as follows.

tau =
nc − nd

0.5 ∗ n(n− 1)
(5.5)

Where, nc: total number of concordant pairs, nd: total number of discordant pairs

and n: size of g1 and g2.

Steuer et al. [89] reports about Mutual Information which can be used as

a similarity measure to form a GCN. MI score between two genes G1 and G2 is

defined as follows.

MI(G1;G2) =
∑

i,j p(g1i, g2j)log
p(g1i,g2j)

p(g1i)p(g2j)
(5.6)

p(g1i), p(g2j)= marginal probabilities of G1 = g1i and G2 = g2j for genes G1 and

G2, respectively, p(g1i, g2j) = joint probability of expression levels related to G1

and G2.

5.2.1 Materials and Method

This section presents an effective similarity measure called Scaling-and-Shifting

Normalized Mean Residue Similarity (SNMRS). The SNMRS of a gene g1 =
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(g11, g12, ..., g1m) with respect to gene g2 = (g21, g22, ..., g2m) is defined by

SNMRS(g1, g2) = 1−
∑m

i=1|g1i−ḡ1−g2i+ḡ2|−|
∑m

i=1|g1i−ḡ1|−
∑m

i=1|g2i−ḡ2||
2∗min(

∑m
i=1|g1i−ḡ1|,

∑m
i=1|g2i−ḡ2|)

(5.7)

where, ḡ1 = (g11,g12,...,g1m)
m

, ḡ2 = (g21,g22,...,g2m)
m

5.2.2 Properties of SNMRS

SNMRS satisfies all the properties of a metric. It is established that proposed

measure has non-negativity, symmetricity, and triangular inequality properties.

The proofs of these properties are reported next.

(a) Non-negativity: To satisfy the non-negativity property, SNMRS of two

genes must not be negative or it should be greater than or equal to zero i.e.,

SNMRS(g1, g2) ≥ 0, where g1 and g2 are two gene profiles.

(b) Symmetricity: To satisfy the symmetricity property, for

any two genes g1 and g2, SNMRS(g1,g2) should be equal to

SNMRS(g2, g1), i.e., SNMRS(g1, g2) = SNMRS(g2, g1).

(c) Subadditivity or Triangle Inequality: SNMRS satisfies triangular inequal-

ity property, for any three genes g1, g2 and g3. Mathematically, SNMRS(g1, g2)+

SNMRS(g2, g3) > SNMRS(g1, g3).

Besides these triangular properties, SNMRS also satisfies the following prop-

erties.

i. The score between a pair of gene expression profiles using SNMRS with

shifting correlation is 1.

ii. The score between a pair of gene expression profiles using SNMRS with

scaling correlation is 1.

iii. The score between a pair of gene expression profiles using SNMRS with

shifting-and-scaling correlation is 1.

iv. All the diagonal elements of the correlation matrix are 1.
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5.2.2.1 Proof-1: Non-negativity

To satisfy the non-negativity property, SNMRS of two genes should be always

greater than or equal to zero, i.e., SNMRS(g1, g2) ≥ 0, where g1 and g2 are two

gene profiles.

Proof: SNMRS = 1− (
∑m

i=1|g1i−ḡ1−g2i+ḡ2|−|
∑m

i=1|g1i−ḡ1|−
∑m

i=1|g2i−ḡ2||)
2∗min(

∑m
i=1|g1i−ḡ1|,

∑m
i=1|g2i−ḡ2|)

where, g1i = (g11, g12, g13, ..., g1m), g2i = (g21, g22, g23, ..., g2m); (1,2,...,m)

are the indices of samples/conditions.

Let,

sum =
∑m

i=1 |g1i − ḡ1− g2i + ḡ2| =
∑m

i=1 |(g1i − ḡ1)− (g2i − ḡ2)|,

diff = |
∑m

i=1 |g1i − ḡ1| −
∑m

i=1 |g2i − ḡ2||

min = min (
∑m

i=1 |g1i − ḡ1| ,
∑m

i=1 |g2i − ḡ2|)

According to the reverse triangle inequality, |g1− g2| ≥ ||g1| − |g2||

⇒
m∑
i=1

|(g1i − ḡ1)− (g2i − ḡ2)| ≥

∣∣∣∣∣
m∑
i=1

|g1i − ḡ1| −
m∑
i=1

|g2i − ḡ2|

∣∣∣∣∣ (5.8)

Therefore,(
m∑
i=1

|g1i − ḡ1− g2i + ḡ2| −

∣∣∣∣∣
m∑
i=1

|g1i − ḡ1| −
m∑
i=1

|g2i − ḡ2|

∣∣∣∣∣
)
≥ 0 (5.9)

Hence,

(
∑m

i=1 |g1i − ḡ1− g2i + ḡ2| − |
∑m

i=1 |g1i − ḡ1| −
∑m

i=1 |g2i − ḡ2||)
2 ∗min (

∑m
i=1 |g1i − ḡ1| ,

∑m
i=1 |g2i − ḡ2|)

≥ 0 (5.10)

Again suppose,
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(
∑m

i=1|g1i−ḡ1−g2i+ḡ2|−|
∑m

i=1|g1i−ḡ1|−
∑m

i=1|g2i−ḡ2||)
2∗min(

∑m
i=1|g1i−ḡ1|,

∑m
i=1|g2i−ḡ2|)

> 1

m∑
i=1

|g1i − ḡ1− g2i + ḡ2|−

∣∣∣∣∣
m∑
i=1

|g1i − ḡ1| −
m∑
i=1

|g2i − ḡ2|

∣∣∣∣∣ > 2∗min

(
m∑
i=1

|g1i − ḡ1| ,
m∑
i=1

|g2i − ḡ2|

)
(5.11)

From equation 5.8, we got two cases: case 1: When sum=diff, then (sum-

diff)/(2*min) will be 0.

case 2: When sum>diff and diff=0, then minimum and maximum of∑m
i=1 |g1i − ḡ1| and

∑m
i=1 |g2i − ḡ2| are same i.e.,

If |
∑m

i=1 |g1i − ḡ1| −
∑m

i=1 |g2i − ḡ2|| = 0

then ∑m
i=1 |g1i − ḡ1− g2i + ḡ2|

2 ∗min (
∑m

i=1 |g1i − ḡ1| ,
∑m

i=1 |g2i − ḡ2|)
< 1, (5.12)

Since difference between two positive absolute quantities can not be greater than

the two times of maximum (both are equal so minimum is maximum one) absolute

value of either, this contradicts the supposition. Hence, the supposition is false.

So, the equation 5.12.

From equation 5.8 and 5.12,

0 ≤ (
∑m

i=1 |g1i − ḡ1− g2i + ḡ2| − |
∑m

i=1 |g1i − ḡ1| −
∑m

i=1 |g2i − ḡ2||)
2 ∗min (

∑m
i=1 |g1i − ḡ1| ,

∑m
i=1 |g2i − ḡ2|)

< 1

(5.13)

Multiplying by -1,

0 > −(
∑m

i=1 |g1i − ḡ1− g2i + ḡ2| − |
∑m

i=1 |g1i − ḡ1| −
∑m

i=1 |g2i − ḡ2||)
2 ∗min (

∑m
i=1 |g1i − ḡ1| ,

∑m
i=1 |g2i − ḡ2|)

≥ −1

(5.14)

Adding 1 in both sides,

1 + 0 > 1− (
∑m

i=1|g1i−ḡ1−g2i+ḡ2|−|
∑m

i=1|g1i−ḡ1|−
∑m

i=1|g2i−ḡ2||)
2∗min(

∑m
i=1|g1i−ḡ1|,

∑m
i=1|g2i−ḡ2|)

≥ 1− 1

⇒ 1 > 1− (
∑m

i=1|g1i−ḡ1−g2i+ḡ2|−|
∑m

i=1|g1i−ḡ1|−
∑m

i=1|g2i−ḡ2||)
2∗min(

∑m
i=1|g1i−ḡ1|,

∑m
i=1|g2i−ḡ2|)

≥ 0
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⇒ 1 > SNMRS(g1, g2) ≥ 0

Hence, 1 > SNMRS(g1, g2) ≥ 0 (5.15)

Hence, we have proved that SNMRS satisfies the non-negativity property. More-

over, for any two genes, the value of SNMRS always lies between 0 and 1.

5.2.2.2 Proof-2: Symmetricity

To satisfy the symmetricity property, for any two genes g1 and g2, SNMRS(g1,g2)

should be equal to SNMRS(g2, g1), i.e., SNMRS(g1, g2) = SNMRS(g2, g1)

Proof:

SNMRS = 1− (
∑m

i=1 |g1i − ḡ1− g2i + ḡ2| − |
∑m

i=1 |g1i − ḡ1| −
∑m

i=1 |g2i − ḡ2||)
2 ∗min (

∑m
i=1 |g1i − ḡ1| ,

∑m
i=1 |g2i − ḡ2|)

(5.16)

SNMRS = 1− (
∑m

i=1 |g2i − ḡ2− g1i + ḡ1| − |
∑m

i=1 |g2i − ḡ2| −
∑m

i=1 |g1i − ḡ1||)
2 ∗min (

∑m
i=1 |g2i − ḡ2| ,

∑m
i=1 |g1i − ḡ1|)

(5.17)∑m
i=1 |g1i − ḡ1− g2i + ḡ2| − |

∑m
i=1 |g1i − ḡ1| −

∑m
i=1 |g2i − ḡ2||

⇒
∑m

i=1 |− (−g1i + ḡ1 + g2i − ḡ2)|−|− (
∑m

i=1 |g2i − ḡ2| −
∑m

i=1 |g1i − ḡ1|)|

According to modulo property,

|g1− g2| = |− (g2− g1)| = |g2− g1| therefore,

⇒
∑m

i=1 |(−g1i + ḡ1 + g2i − ḡ2)| − |(
∑m

i=1 |g2i − ḡ2| −
∑m

i=1 |g1i − ḡ1|)|

⇒
∑m

i=1 |−g1i + ḡ1 + g2i − ḡ2| − |
∑m

i=1 |g2i − ḡ2| −
∑m

i=1 |g1i − ḡ1||

⇒
∑m

i=1 |g2i − ḡ2− g1i + ḡ1| − |
∑m

i=1 |g2i − ḡ2| −
∑m

i=1 |g1i − ḡ1||

⇒ SNMRS(g2, g1)

Hence,SNMRS(g1, g2) = SNMRS(g2, g1)(Denominator of both equa-

tion 5.16 and 5.17, are same) Hence, we have proved that SNMRS satisfies the

symmetricity property.
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5.2.2.3 Proof-3: Subadditivity or Triangle Inequality

To satisfy triangular inequality property, for any three genes x, y and z,

the following condition should hold: SNMRS(g1, g2) + SNMRS(g2, g3) ≥
SNMRS(g1, g3).

Proof: From equation 5.15, we have

0 ≤ SNMRS(g1, g2) < 1 (5.18)

0 ≤ SNMRS(g2, g3) < 1 (5.19)

0 ≤ SNMRS(g1, g3) < 1 (5.20)

From equation 5.18 and 5.19,

0 ≤ SNMRS(g1, g2) + SNMRS(g2, g3) < 1 + 1

⇒ 0 ≤ SNMRS(g1, g2) + SNMRS(g2, g3) < 2 (5.21)

From equation 5.20 and 5.21,

SNMRS(g1, g2) + SNMRS(g2, g3) ≥ SNMRS(g1, g3) (5.22)

Hence, it is proved that SNMRS satisfies the triangle inequality property.

5.2.3 Proposed GCN construction and Module extraction

method

Table 5.1: Dataset description

Dataset Type Details

D1 Synthetic data 9 genes x 9 conditions

D2 Synthetic data 8 genes X 20 conditions

D3 Synthetic data 8 genes x 10 conditions

Iris data Real data - Multivariate 150 instances , 4 features

Yeast sporulation data Real data - Microarray 6118 genes x 7 time points

Esophageal Squamous
Cell Carcinoma

Real data - RNA-seq 58000 genes, (14 tumor, 15 nor-
mal samples
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The workflow mechanism and the algorithm for gene co-expression network

construction using proposed measure SNMRS and module extraction are pre-

sented in Figure 5-1 and Algorithm 1, respectively. A list of datasets used in

proposed method is presented in Table 5.1. In Figure 5-1, time-series microar-

ray and RNA-seq data with both normal (used as control) and disease conditions

(test) are used as inputs. Time series data provides gene expressions over time

points. The RNA-seq dataset provides genes and samples with normal and tu-

mor samples. After preprocessing of the experimental raw data, normal versus

diseased datasets are compared to identify statistically significant DEGs. Inde-

pendent analysis is performed for these two types of data. The step for identifying

DEGs is optional if precalculated DEGs list is used. The measure SNMRS is ap-

plied on preprocessed data to construct a weighted positive co-expression network

using SNMRS co-expression measure with genes of higher SNMRS score. Each

gene is considered as a vertex in the network and an edge exists between a pair

of vertices if the SNMRS score of the corresponding genes is more than the user

defined threshold value. To extract network modules from the co-expression net-

work, a dissimilarity matrix is computed as (1-SM). Similarity matrix contains

gene pairs with a SNMRS value greater than user defined threshold. Based on

experimental study it has been observed that with correlation value 0.8 as cutoff,

results are found significant. The diagonal of the similarity matrix is identical

with a value 1 because of self-similarity between gene pairs and it is maximum.

The resulting dissimilarity matrix is used as input for module extraction. In or-

der to extract modules/clusters from the network, hierarchical clustering has been

used. An average linkage hierarchical algorithm is applied and found a dendro-

gram for the effective extraction of biologically significant modules. The dynamic

thresholding approach is used and specified the minimum module size as 30 for

microarray data and RNA-seq data to identify the gene modules. These modules

are assigned with a unique colour and extracted all the detected modules for sub-

sequent downstream analysis. Modules are validated using GO analysis, pathway
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analysis and literature search and from these modules, potential gene biomarkers

are identified. A set of genes present in the non-preserved modules are recognized

as hub genes using intra-modular connectivity analysis [78] and these genes are

further studied to know their association in the progression of ESCC.

Figure 5-1: The workflow of module finding using SNMRS measure [DEA: Dif-
ferential Expression Analysis]

Definition 1: Two genes (g1, g2) are co-expressed and associated in forming

the GCN iff their SNMRS score is ≥ a user-defined threshold value.

Proposition 1: If Mi is an enriched module extracted by this method and

(g1,g2) is a pair of genes belonging to Mi, i.e. (g1,g2)∈Mi, then g1 and g2 are

also functionally similar.

Proof: If (g1,g2) are two genes and they belong to a module say Mi extracted

by our method, i.e., (g1,g2)∈Mi, and assume that they are not similar functionally.
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Algorithm 2: Construction of weighted signed GCN using SNMRS and
extraction of modules

Input: Gene expression matrix (G), threshold
Output: Gene co-expression network, Gene Module

1: Preprocess the dataset.
2: Find SNMRS similarity matrix, SM by computing SNMRS for each pair of

gene (gi, gj).
3: for i← 1 to nrow(dataset) do
4: for j ← 1 to ncol(dataset) do
5: Compute SNMRS(gi,gj)
6: end for
7: end for
8: Consider upper or lower triangle for the GCN.
9: if (SNMRS(gi, gj) ≤ threshold) then

10: SM(i,j) = 0
11: end if
12: Gene co-expression network (Similarity matrix) ← SM
13: Dissimilarity matrix (DM) ← 1 - SM
14: Apply hierarchical clustering method on DM.
15: Set threshold to find minimum module size.
16: Identify different modules using dynamic cut tree technique
17: Assign different types of colors to the detected modules
18: A set of gene modules.

As per definition 1, two genes (g1,g2) are co-expressed and associated in forming

the GCN if their co-expression similarity is ≥ 0.8. Again, our approach extracts

a module say Mi from the co-expression network, if the co-expression similarity

between any pair of genes, say (g1,g2)∈Mi is very high i.e.≥0.85. Therefore, the

assumption is false and hence proved.

The construction of the similarity matrix involves a complexity of O(n(n-1))/2)

and the finding of a module involves a complexity of O(nxn log n), where n is the

number of genes.

5.3 Experimental Results

The proposed method is implemented in RStudio and use platform Intel(R) Core(TM)

i7-10750H CPU @ 2.60GHz 2.59 GHz processor with 16 GB memory running in

Windows 10 operating system.
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5.3.1 Benchmarking of the SNMRS measure using Syn-

thetic and Multivariate data

5.3.1.1 Description of Datasets used

Three synthetic datasets and one Multivariate dataset called Iris from the UCI

machine learning repository https://archive.ics.uci.edu/ml/datasets/iris

are used to establish the effectiveness of the proposed measure SNMRS.

The synthetic data - D1 shown in Figure 5-2 consists of 9 genes and 9 condi-

tions; synthetic data - D2 shown in Figure 5-3 contains 8 genes and 20 conditions;

synthetic data - D3 presented in Table 5.2 consists of 8 genes and 10 conditions.

First synthetic data - D1 is referred from [7]. D1 contains 9 genes from ‘a’ to

b1-b8’ and 9 conditions from ‘c1 to c9’. The variable ‘b1’ is perfectly shifted from

variable ‘a’ and the variable ‘b8’ is negatively shifted from ‘a’. The variable from

‘b2 to b3’ are obtained by distributing uniformly intermediate patterns between

‘b1 and b8’. D2 presents genes from ‘x to x1-x7’ and samples from ‘S1 to S20’.

Each gene ‘x1 to x7’ are associated with ‘x’ and thus all the genes from ‘x to x7’

are correlated with each other. ‘x1, x2, and x3’ have the +shifting, +scaling, and

+shifting-and-scaling pattern, respectively. Again, ‘x4, x5, x6, and x7’ exhibit

-absolute, -shifting, -scaling, and -shifting-and-scaling correlation patterns. D3

contains genes from ‘p to p1-p7’ and samples from ‘S1 to S10’. Each gene ‘p1

to p1-p7’ are associated with ‘p’ and thus all the genes are correlated with each

other. ‘p1, p2, and p3’ have the +shifting, +scaling, and +shifting-and-scaling

pattern. Again, ‘p4, p5, p6, and p7’ exhibit -absolute, -shifting, -scaling, and

-shifting-and-scaling pattern.

The iris dataset includes samples from three different Iris species (Iris versi-

color, iris virginica, and iris setosa). The length and width of the sepals and petals,

both in centimetres, are measured for each sample. The dataset is composed of

three classes, each with 50 instances, each referring to a different iris plant kind.
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Figure 5-2: Synthetic data - D1 : The artificial gene patterns for analysis of
different similarity measures.

Figure 5-3: Synthetic data - D2 : The artificial gene patterns for analysis of
different similarity measures.

5.3.1.2 SNMRS vs other measures: A comparison

Seven similarity measures PCC, NMRS, NCNMRS, SPEARMAN, KENDALL,

MI, and SNMRS are applied on synthetic datasets D1, D2, and D3 and evaluated
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Table 5.2: Synthetic data - D3

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

p 1 3 1 3 1 3 1 3 1 3

p1 3 5 3 5 3 5 3 5 3 5

p2 3 9 3 9 3 9 3 9 3 9

p3 9 15 9 15 9 15 9 15 9 15

p4 -1 -3 -1 -3 -1 -3 -1 -3 -1 -3

p5 -3 -5 -3 -5 -3 -5 -3 -5 -3 -5

p6 -3 -9 -3 -9 -3 -9 -3 -9 -3 -9

p7 -9 -15 -9 -15 -9 -15 -9 -15 -9 -15

Figure 5-4: Correlation values obtained from NMRS, NCNMRS, SPEARMAN,
KENDALL, MI, and SNMRS while applied on example patterns ‘b1-b8’ with that
of ‘a’

based on their co-expression results.

Figure 5-4 is the output for given synthetic data D1. This figure presents cor-

relation scores given by each measure for gene pattern ‘a’ with ‘b1-b8’. Figure 5-5

shows the correlation values resulting from NMRS, NCNMRS, PCC, SPEAR-

MAN, KENDALL, MI, and SNMRS for each gene pair (x, x1)-(x, x7) for D2.

For D3, the resultant correlation scores are shown by plotting a graph in Fig-

ure 5-6. In Figure 5-4 to 5-6, correlation scores given by NMRS, NCNMRS, PCC,
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Figure 5-5: Correlation values obtained from NMRS, NCNMRS, SPEARMAN,
KENDALL, MI, and SNMRS while applied on example patterns ‘x1-x7’ with that
of ‘x’

SPEARMAN, KENDALL, MI, and SNMRS are plotted individually. It has been

observed that NMRS, NCNMRS, and SNMRS give output in the range between

0 to 1. Also, SNMRS, SPEARMAN, KENDALL, and PCC can identify different

types of correlation patterns for each gene pair whereas NMRS, MI and NCNMRS

give some undesired correlation values for gene pairs (a, b1)-(a, b8), (x, x1)-(x,

x8) and (p, p2)-(p, p8). SNMRS, SPEARMAN, KENDALL, and PCC are found

capable to distinguish patterns with shifting, scaling, and shifting-and-scaling as-

sociations. Further, it is observed that the negative correlation is -1 to 0 for PCC,

SPEARMAN, and KENDALL, but for SNMRS it is from 0 to 0.5.

5.3.1.3 Internal cluster validation of SNMRS with Iris data

Iris (Fisher 1936) dataset is considered and NbClust [271] is used on Iris data

for internal cluster validity indices implemented in the package. One of the most

useful features of this package is that it includes a comprehensive list of indices
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Figure 5-6: Correlation values obtained from NMRS, NCNMRS, SPEARMAN,
KENDALL, MI, and SNMRS while applied on example patterns ‘p1-p7’ with that
of ‘p’

in the R package. It allows the user to change the number of clusters, the clus-

tering algorithm, and the indices all at the same time to determine the optimal

way to group the observations in a dataset. NbClust also recommends the ideal

number of clusters for each index. Validity indices are found by applying the clus-

tering method on dissimilarity matrices obtained by computing SNMRS, NMRS,

NCNMRS, PCC, SPEARMAN, KENDALL, MI, and Euclidean measures individ-

ually so that all these measures can be compared and know the performance of

each measure while clustering. According to the majority rule, the Iris dataset’s

optimal number of clusters for each case is two i.e. individual dissimilarity ma-

trix obtained by SNMRS, NMRS, NCNMRS, PCC, SPEARMAN, KENDALL,

MI, and Euclidean measure. A performance comparison table is shown in Ta-

ble 5.3- 5.6. Here, 25 cluster validity indices [271] are considered and found the

performance of SNMRS is better in most indices as compared to NMRS, NCN-

MRS, PCC, SPEARMAN, KENDALL, MI, and euclidean. This experiment is
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performed for average linkage hierarchical and K-means clustering algorithms. It

is found that for Iris data, average hierarchical clustering method is effective than

k-means while applying SNMRS. The values with the bold font (in Table 5.3- 5.6)

signifies the better output for the corresponding measure and the italic font indi-

cates the second better index score among each other. In order to examine the

degree of goodness of a clustering structure without referring to external data,

internal cluster validation with the help of internal knowledge of the clustering

process is carried out. Further, the clustering procedure and the total number of

clusters can also be estimated with the help of this technique without any use of

external data.

5.3.2 Benchmarking of the SNMRS method using inde-

pendent RNA-seq and microarray dataset

5.3.2.1 Datasets used and preprocessing

A time-series microarray dataset and an RNA-seq dataset are used which are as-

sociated with Esophageal Squamous Cell Carcinoma (ESCC) disease. Microarray

dataset is Yeast Sporulation with 6118 gene profiles measured across 7 different

time points downloaded from the website 1 and the RNA-seq data used here is

ESCC - accession number RP064894 with 58000 genes and 29 samples downloaded

from Recount2 2. ESCC dataset consists of 14 tumor and 15 normal samples. The

yeast Sporulation dataset is log-transformed and among the 6118 genes, the genes

whose expression levels are not changing significantly have been ignored from fur-

ther analysis. After preprocessing Yeast Sporulation dataset consists of 474 genes.

Differentially expressed genes are found from ESCC dataset using DEseq2 [39],

edgeR [37], and Limma-Voom [44] using the method reported in [272]. Prepro-

cessing of the ESCC dataset is done by discarding low read count instances with

a user-defined threshold (here, it is 5). TMM normalization method available in

1 http://cmgm.stanford.edu/pbrown/sporulation
2https://jhubiostatistics.shinyapps.io/recount/
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edgeR is used to obtain the normalized expression values of the RNA-seq dataset.

Transformation of the data is done by using “vst” transformation method avail-

able in the R package. At last 5165 genes from the ESCC dataset are considered

for further analysis. Ensemble id of each gene is mapped to Official Symbol gene

name.

5.3.3 Threshold selection

Our experimental study reveals that for effective GCN analysis the appropriate

SNMRS threshold value is 0.8. Figure Figure 5-7 evidenced the decision. Figure 5-

7 presents a comparative study which depicts the change of node and change of a

number of edges or connectivity with different values of SNMRS respectively. It

is observed that from a threshold value of 0.8 a drastic change can be seen in the

number of nodes. A number of nodes are constant up to correlation value 0.7 for

Yeast Sporulation and ESCC datasets and after that gradually it decreases. Also

for connectivity, it is noticed that the detected number of edges decrease with the

increase of the SNMRS score.

5.3.4 Time Series data

The yeast sporulation dataset is preprocessed and the SNMRS score is computed

for each gene pair. To understand the performance of NMRS, PCC, NCNMRS,

SPEARMAN, KENDALL, MI, and SNMRS, they are applied separately on Yeast

Sporulation dataset with different clustering algorithms. Internal validation of

clusters for each case is examined using the Dunn index, Silhouette width, cindex,

and Mcclain index. The validation results are reported in Table 5.7. Silhouette

width [273] and Dunn index [274] combine measures of compactness and separation

of the clusters. From the comparison, it can be observed that for measure SNMRS

the compactness and separation scores are better as compared to other measures

in most cases. Since the hierarchical clustering method gives the best result for

SNMRS, this clustering method is used in the subsequent downstream analysis.

141



Chapter 5. SNMRS : An Effective Measure for Co-expression Network
Analysis

(a) (b)

(c) (d)

(e) (f)

Figure 5-7: Comparative study of node (Y-axis) and connectivity (Y-axis) at
different correlation scores (X-axis) to analyse the threshold value. Effect diagram
of the node after threshold 0.8 is increased. Here, (a) Node vs SNMRS for Yeast
sporulation dataset, (b) Connectivity vs SNMRS for Yeast sporulation dataset,
(c) Node vs SNMRS for ESCC normal dataset, (d) Node vs SNMRS for ESCC
normal dataset, (e) Node vs SNMRS for ESCC tumor dataset, and (f ) Node vs
SNMRS for ESCC tumor dataset.
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Using the corresponding dissimilarity scores of SNMRS values, the average linkage

clustering method is applied. Finally, the dynamic tree cut approach is used, which

allows us to find a total of five gene modules. It extracts a total of 6 modules as

green, turquoise, blue, yellow, brown, and red. The number of genes detected in

each module is reported in Table 5.8.

Each module in this experiment contains a different number of genes. After

finding the modules, validation is done in terms of the p-value. Gene enrichment

analysis is performed for each module using DAVID 3 and through the gene-

ontology (GO) and KEGG pathway analyses, it is observed that the percentage of

enrichment of genes belonging to a module in Biological Process (BP), Molecular

Function (MF), and Cellular Component (CC) is more than 90% in most cases, as

reported in Table 5.8. The table 5.9 reports the GO enrichment term and KEGG

pathway with the lowest p-values for each module.

5.3.5 Gene Expression data with normal and tumor con-

ditions

Preprocessed ESCC dataset is vertically partitioned into two subsets based on the

type of samples. One subset is for normal samples and the other is for tumor sam-

ples. Experiments have been performed for these two. For each pair of genes from

both datasets, the SNMRS score is computed and found two separate similarity

matrices (SMN and SMT). The GCN is constructed using the threshold 0.8 as this

threshold signifies the highly correlated genes. The dissimilarity score is calculated

as 1-SMN for the normal sampled dataset and 1-SMT for tumor sampled dataset.

The average linkage clustering method is applied using the corresponding SNMRS

dissimilarity scores. Finally, the dynamic tree cut technique is used and a total of

16 gene modules are identified for the ESCC normal dataset and 17 gene-modules

for the ESCC tumor dataset through the dynamic tree cut method. The Figure 5-

8-5-9 present the pictorial view of expression patterns of each gene present in a

3https://david.ncifcrf.gov/
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module of ESCC normal dataset and tumor subsets of dataset, respectively.

Figure 5-8: Visualization of extracted module (salmon) for ESCC normal

Figure 5-9: Visualization of extracted module (tan) for ESCC tumor

These clusters or modules are found highly co-expressed. Each module is

assigned a colour name. GO enrichment analysis and pathway analysis are carried

out to establish the performance by identifying biologically associated genes with
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ESCC cancer for the proposed measure. The number of genes detected in each

module and percentage of enriched GO terms are presented in Table 5.10 for ESCC

normal dataset and in Table 5.11 for ESCC tumor dataset. Details of enriched

GO terms and pathways with the lowest p-value for each module for ESCC normal

and tumor are reported in Table 5.12 and 5.13.

Table 5.10: Comparative biological analysis results obtained using ESCC normal
dataset. Different types of colours are assigned to module names. Abbreviations:
BP-Biological Process, MF-Molecular Function, CC-Cellular Component.

Module Name Gene BP CC MF KEGG pathway

black 285 82.10% 89.1% 82.5% 38.00%

blue 583 85.00% 88.30% 85.2% 36.00%

brown 457 82.10% 88.70% 82.10% 38.8%

cyan 196 85.50% 89.2% 87.10% 41.9%

green 397 81.80% 89.40% 81.6% 35.8%

greenyellow 251 80.40% 88.60% 80.80% 34.30%

grey 200 80.00% 82.60% 82.10% 38.4%

magenta 275 77.60% 87.60% 78.80% 31.70%

midnightblue 187 92.2% 96.1% 93.90% 43.3%

pink 283 87.70% 91.0% 86.6% 41.9%

purple 268 73.60% 78.50% 74.40% 27.60%

red 302 79.2% 84.20% 81.70% 29.00%

salmon 199 77.40% 88.70% 79.00% 27.4%

tan 246 87.1% 91.6% 89.80% 38.7%

turquoise 605 87.30% 91.80% 85.7% 34.90%

yellow 431 86.7% 92.00% 85.50% 37.9%

5.4 Discussion

As reported by Mahanta et. al [7], a line graph is plotted of the data shown in

Figure 5-2 and visually observe that the genes (variables) are correlated or co-

expressed with each other prominently. Patterns of ‘a’ and ‘b1-b8’ are matched

at each condition. If one is going down, the other is also going down and vice

versa. Mahanta et. al [7] reported that PCC results in some undesired output

when applied to the artificial data having no shifting or scaling correlation pattern.

However, NMRS [7] can distinguish patterns throughout this uniform distribution

from a shifted pattern to a shifted and negatively correlated pattern of a given
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Table 5.11: Comparative biological analysis results obtained using ESCC tumor
dataset. Different types of colours are assigned to module names. Abbreviations:
BP-Biological Process, MF-Molecular Function, CC-Cellular Component.

Module Name Gene BP CC MF KEGG pathway

turquoise 580 84.2% 88.00% 82.5% 37.60%

purple 268 88.40% 96.50% 88.40% 38.80%

blue 457 86.60% 90.90% 85.60% 39.2%

brown 405 84.7% 88.40% 85.2% 34.70%

cyan 200 66.7% 79.70% 69.5% 24.3%

green 364 76.5% 82.8% 78.5% 31.4%

greenyellow 238 82.0% 87.70% 83.30% 39.5%

grey 136 73.4% 78.10% 73.40% 25.0%

magenta 319 86.8% 91.80% 87.2% 41.10%

midnightblue 340 83.90% 87.7% 85.20% 31.60%

pink 340 81.70% 90.10% 82.6% 30.1%

red 356 89.20% 92.40% 87.2% 38.7%

salmon 229 81.9% 89.80% 81.9% 31.20%

tan 230 79.3% 86.20% 83.9% 38.7%

black 347 83.50% 89.00% 83.2% 37.50%

yellow 369 84.9% 90.3% 87.10% 38.90%

lightcyan 163 89.70% 92.90% 87.10% 40.00%

pattern by giving different correlation values of patterns ‘b1-b8’ with that of ‘a’.

It is true that from the ‘b1 to b7’ variable, there is no perfect pattern of neither

shifting nor scaling but PCC can detect the pattern and give results as perfectly

correlated. It is also plotted each pair of variables and scatter random plot for pair

‘a’ with ‘b1-b8’ shown in Figure 5-10a- 5-10h. It is known that PCC is a linear

measure and it checks the perfect fitting of data in the linear regression line; based

on the regression line PCC gives value with a sign positive or negative. The data

of pair of genes with different types of correlation patterns are perfectly fitted in

the straight line or regression line, that’s why the PCC value 1 or -1 results for

positively shifting patterns or negatively shifting patterns. Here, from Figure 5-

10a- 5-10h, It is observed that the scatter plot behaviour of fitting is in the straight

lines of each gene pairs ‘a’ with ‘b1-b8’, and found all are perfectly fitted. PCC

is giving more reliable output than NMRS. NMRS gives correlation values within

the range of 0 to 1 and PCC gives values in the range of -1 to +1. NMRS gives

a perfectly negative correlation value of 0. The NMRS method fails while applied

to synthetic data as mentioned in Table-1 for the detection of shifting and scaling
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Table 5.12: P-value biological analysis results obtained by ESCC Normal dataset

Module Name CC PValue BP PValue MF PValue KEGG PATHWAY PValue

turquoise
GO:0005654
nucleoplasm

2.09E-26
GO:0051301
cell division

2.81E-30
GO:0005524
ATP binding

8.67E-15
hsa04110
Cell cycle

7.73E-18

blue
GO:0005737
cytoplasm

8.68E-10
GO:0098609

cell-cell adhesion
1.25E-08

GO:0098641
cadherin binding
involved in cell-

cell adhesion

1.25E-08
hsa04114

Oocyte meiosis
3.40E-04

brown
GO:0070062
extracellular

exosome
1.13E-21

GO:0006914
autophagy

4.55E-04
GO:0008417

fucosyltransferase
activity

6.65E-04
hsa01100
Metabolic
pathways

1.63E-04

cyan
GO:0005576

extracellular region
9.36E-08

GO:0030198
extracellular matrix

organization
4.22E-08

GO:0008083
growth factor

activity
2.54E-05

hsa05146
Amoebiasis

1.68E-04

green
GO:0005788
endoplasmic

reticulum lumen
1.32E-08

GO:0034341
response to

interferon-gamma
3.24E-06

GO:0004553
hydrolase activity,

hydrolyzing O-
glycosyl compounds

1.70E-04
hsa04142
Lysosome

5.06E-15

greenyellow
GO:0005578

proteinaceous
extracellular matrix

3.67E-04
GO:0030198

extracellular matrix
organization

5.20E-07
GO:0003725

double-stranded
RNA binding

7.21E-04
hsa04512

ECM-receptor
interaction

8.33E-07

grey
GO:0043235

receptor complex
7.88E-04

GO:0048007
antigen processing
and presentation,
exogenous lipid

antigen via MHC
class Ib

0.00163
GO:0030884

exogenous lipid
antigen binding

8.23E-04
hsa04640

Hematopoietic
cell lineage

0.00207

magenta
GO:0005615

extracellular space
7.00E-08

GO:0001895
retina homeostasis

0.00127
GO:0008201

heparin binding
7.13E-04

hsa00260
Glycine, serine
and threonine
metabolism

0.01059

midnightblue
GO:0005887

integral component
of plasma membrane

3.47E-07
GO:0006954
inflammatory

response
6.24E-09

GO:0004872
receptor activity

6.43E-05
hsa04380

Osteoclast
differentiation

9.75E-05

pink
GO:0031090

organelle membrane
0.0070

GO:0034220
ion transmembrane

transport
9.62E-04

GO:0070330
aromatase activity

5.32E-04
hsa01100
Metabolic
pathways

4.68E-05

purple
GO:0005578

proteinaceous
extracellular matrix

2.83E-05
GO:0009952

anterior/posterior
pattern specification

1.84E-07
GO:0004222

metalloendopeptidase
activity

3.05E-05
hsa04620

Toll-like receptor
signaling pathway

0.019438

red
GO:0005622
intracellular

9.30E-05

GO:0007264
small GTPase

mediated signal
transduction

0.00154
GO:0005149

interleukin-1 receptor
binding

0.01273
hsa01100
Metabolic
pathways

0.03585

salmon
GO:0070062
extracellular

exosome
1.24E-07

GO:0030216
keratinocyte

differentiation
4.60E-05

GO:0003810
protein-glutamine
gamma-glutamyl-

transferase activity

0.00257

hsa04960
Aldosterone-

regulated sodium
reabsorption

0.03233

tan
GO:0031012

extracellular matrix
1.09E-09

GO:0030199
collagen fibril
organization

5.38E-06
GO:0048407

platelet-derived
growth factor binding

6.03E-06
hsa04512:ECM

receptor interaction
5.51E-10

black
GO:0005925

focal adhesion
0.002357549

GO:0071559
response to

transforming growth
factor beta

8.72E-05
GO:0015301
anion:anion

antiporter activity
0.00339

hsa04670
Leukocyte

transendothelial
migration

0.00735

yellow
GO:0005654
nucleoplasm

3.30E-09
GO:0000398

mRNA splicing,
via spliceosome

8.72E-05
GO:0044822

poly(A) RNA
binding

1.89E-12
hsa00510
N-Glycan

biosynthesis
7.72E-04

patterns. Further, it is observed that while testing for shifting and scaling for the

given dataset, PCC, SPEARMAN, and KENDALL met it in a perfect match.

Therefore, it is concluded that NMRS, NCNMRS, and MI are not able to

provide the results of scatter plot which in turn leads to their conclusion, but while

testing for the same with the PCC it is very prominent even from Figure 5-10a- 5-

10h. For the data, it achieves the output 0 or 1 because the standard deviation is

the same for that pair. Moreover, it is found from this analysis that NMRS could

not detect perfect shifting, scaling, and shifting-and-scaling correlations which

have motivated us to enhance this measure and consequently, SNMRS has been

introduced.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5-10: The artificial gene patterns and their scatter plot of Synthetic data
- D1: (a) a vs b1, (b) a vs b2, (c) a vs b3, (d) a vs b4, (e) a vs b5, (f) a vs b6, (g)
a vs b7, (h) a vs b8
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5.4. Discussion

Table 5.13: P-value biological analysis results obtained by ESCC Tumor dataset

Module Name CC PValue BP PValue MF PValue KEGG PATHWAY PValue

turquoise
GO:0070062
extracellular

exosome
2.17E-07

GO:0006066
alcohol metabolic

process
3.89E-04

GO:0004029
aldehyde dehydro-

genase (NAD) activity
9.22E-04

hsa00071
Fatty acid

degradation
3.07E-06

purple

GO:0005578
proteinaceous
extracellular

matrix

4.70E-18
GO:0030198

extracellular matrix
organization

2.30E-15
GO:0005201

extracellular matrix
structural constituent

8.17E-11
hsa04510

Focal adhesion
2.95E-08

blue
GO:0005813
centrosome

7.03E-08
GO:0007067

mitotic nuclear
division

7.88E-11
GO:0005524
ATP binding

4.62E-08
hsa05323

Rheumatoid
arthritis

2.08E-07

brown
GO:0005654
nucleoplasm

1.60E-10
GO:0006281
DNA repair

5.96E-07
GO:0044822

poly(A) RNA binding
4.70E-08

hsa00240
Pyrimidine
metabolism

0.01190

cyan
GO:0005615
extracellular

space
3.18E-05

GO:0070244
negative regulation

of thymocyte
apoptotic process

0.0544
GO:0005198

structural molecule
activity

0.002122
hsa04512

ECM-receptor
interaction

0.01572

green
GO:0030672

synaptic vesicle
membrane

0.001633
GO:0050905

neuromuscular
process

0.00148
GO:0042826

histone deacetylase
binding

0.023621
hsa04727

GABAergic
synapse

0.04292

greenyellow
GO:0070062
extracellular

exosome
6.28E-05

GO:0016310
phosphorylation

0.005094
GO:0019902

phosphatase binding
0.0138858

hsa01100
Metabolic
pathways

2.83E-05

grey

GO:0016021
integral

component
of membrane

0.031715
GO:0060037

pharyngeal system
development

0.004382
GO:0030276

clathrin binding
0.0333156 - -

magenta
GO:0031012
extracellular

matrix
1.55E-07

GO:0030198
extracellular matrix

organization
1.90E-09

GO:0004222
metalloendopeptidase

activity
7.07E-05

hsa04512
ECM-receptor

interaction
3.12E-06

midnightblue
GO:0005737
cytoplasm

6.42E-05
GO:0018149

peptide cross-linking
3.98E-05

GO:0005198
structural molecule

activity
0.012666

hsa04973
Carbohydrate
digestion and

absorption

0.03438

pink
GO:0070062
extracellular

exosome
2.26E-06

GO:0008544
epidermis

development
5.38E-05

GO:0098641
cadherin binding

involved in cell-cell
adhesion

5.69E-05
hsa01100
Metabolic
pathways

0.00750

red
GO:0005829

cytosol
4.79E-06

GO:0098609
cell-cell adhesion

0.001465
GO:0004842

ubiquitin-protein
transferase activity

2.70E-04
hsa04114

Oocyte meiosis
0.00125

salmon
GO:0000502
proteasome

complex
3.95E-05

GO:0002479
antigen processing
and presentation of
exogenous peptide
antigen via MHC

class I, TAP-
dependent

4.88E-05
GO:0005515

protein binding
4.64E-05

hsa03050
Proteasome

5.67E-05

tan
GO:0005923

bicellular tight
junction

2.41E-07
GO:0006805

xenobiotic metabolic
process

0.001197

GO:0015280
ligand-gated

sodium channel
activity

0.003068
hsa04530

Tight junction
8.61E-06

black
GO:0070062
extracellular

exosome
8.05E-08

GO:0034372
very-low-density

lipoprotein particle
remodeling

1.42E-04

GO:0004553
hydrolase activity,

hydrolyzing O-
glycosyl compounds

0.012182
hsa04142
Lysosome

2.52E-09

yellow
GO:0005654
nucleoplasm

2.04E-18
GO:0051301
cell division

2.63E-21
GO:0005524
ATP binding

2.39E-07
hsa04110
Cell cycle

1.61E-14

lightcyan
GO:0043025
neuronal cell

body
1.23E-06

GO:0006954
inflammatory

response
2.93E-06

GO:1902282
voltage-gated

potassium channel
activity involved in
ventricular cardiac
muscle cell action

potential repolarization

0.001697

hsa00531
Glycosamin-

oglycan
degradation

5.81E-04

SNMRS has been tested on publicly available datasets. The network modules

determined by our method have been biologically validated in terms of the p-

value. The measure SNMRS can detect absolute, scaling, shifting, and shifting-

and-scaling correlation patterns, and it has the ability to discover biologically

significant network modules from GCN, according to our findings. P-values are

used to evaluate the biological significance of the gene sets contained in the derived

network modules. [275]. The p-value indicates how well these genes match various
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GO categories.

DAVID, a web-based tool is used to calculate the p-value 4. Based on Molec-

ular Function, Cellular Component, and Biological Process annotations, DAVID

computes the hyper-geometric functional enrichment score. Tables 5.8-5.13 show

the enriched functional categories for some of the network modules produced using

the proposed method on the datasets. The GCN modules produced by the method

for yeast Sporulation dataset include highly enriched GO terms such as nucleo-

lus, prospore membrane, fungal-type cell wall, ribosome, chromosome, ribosome

biogenesis, sporulation resulting in the formation of a cellular spore, gluconeogene-

sis, cytoplasmic translation, meiotic cell cycle, snoRNA binding, ubiquitin-protein

transferase activity, structural constituent of ribosome, and carnitine O- acetyl-

transferase activity. KEGG pathway analysis results involved genes in Ribosome

biogenesis in eukaryotes, Meiosis - yeast, Glycolysis / Gluconeogenesis, Ribosome,

and Meiosis - yeast.

In Tables 5.10- 5.13 biological validation results are shown for ESCC dataset.

The co-expression network modules for ESCC normal dataset produced by our

method contains the highly enriched cellular components, Biological process and

Molecular Function such as cell division, extracellular matrix organization, poly(A)

RNA binding. We observe that the genes of modules follow either an ESCC re-

lated significant pathway or a GO annotation term using KEGG pathway and

gene-ontology analysis such as Focal adhesion reported in [276], Fatty acid degra-

dation reported in [277], Tight junction reported in [278], Oocyte meiosis reported

in [248], Proteasome reported in [279], Lysosome reported in [280], Metabolic

pathways [281], extracellular matrix reported in [282] [283], mitotic nuclear di-

vision reported in [284], ATP binding reported in [285]. Based on the reported

p-values, we may conclude that our suggested technique using SNMRS provides

good enrichment functional category. As a result, it projects positive biological

importance.

4https://david.ncifcrf.gov/
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A PPI network has been generated using STRING web tool for the module

(Yellow) of ESCC normal presented in the Figure 5-11 which reveals existence of

connectivity among most of the genes from biological databases and known web

resources.

Module preservation analysis is carried out and two non-preserved modules

[78] are found with zsummary score [78] 3.2 and 3.3 and median rank [78] 62 and

61, respectively. From these modules we find the hub genes using the intramod-

ular connectivity method available in WGCNA [78]. From these hub gene lists

IP6K3, EMP1, PIK3C2B, FMO2, FREM2, and AJAP1 potential biomarkers are

identified. Details are given in Table 5.14.

SNMRS is an advanced version of NMRS and it outperforms many co-expression

measures such as NMRS, NCNMRS, PCC, Spearman, MI, and Kendall. It is a

suitable method to construct a co-expression network from microarray and RNA-

seq data. The main limitation of this method that we have not yet tested in with

Single-cell RNA sequencing (scRNA-seq).

GCN is used to extract biologically relevant information, such as for the identi-

fication of novel genes not yet associated with explicit biological function, processes

and phenomena. The assumption is that tightly co-expressed genes (modules) are

associated with similar types of biological processes. Therefore, new functional

associations can be derived for causality. This can be used in identifying novel

biomarkers across domains such as basic biology, biotechnology, medicine (identi-

fying disease-causing genes, diagnostic and therapeutic targets), agriculture (iden-

tifying stress tolerant genes in crops, genes for better traits), microbiology, envi-

ronmental science etc. These methods are benchmarked using two independent

datasets from human cancer and Yeast Sporulation.
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Figure 5-11: Network obtained from STRING tool for module (Yellow) from
ESCC normal
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5.5. Conclusion

Table 5.14: Potential biomarker list for ESCC with biological processes and liter-
ature evidences

Gene
ID

Literature Evidence Enriched GO Terms

IP6K3 Significantly associated with risk of
renal cell carcinoma (RCC)

Protein phosphorylation, inositol
phosphate biosynthetic process

EMP1 Highly associated with ESCC de-
velopment [259], Downregulated
mRNA in ESCC [286], tumour sup-
pressor gene [287]

Regulation of the cell cycle and pro-
liferation [288], multicellular organ-
ism development, cell growth

PIK3C2B Associated with ESCC - tumour
metastasis [289]

Phosphatidylinositol biosynthetic
process, Akt signalling pathway
[289]

FMO2 Down-regulated in ESCC, Associ-
ated with ESCC progression [290]

Organic acid metabolic process,
toxin metabolic process

FREM2 Overexpressed in ESCC tissue sam-
ples, contributed to ESCC recur-
rence [291].

Cell adhesion, morphogenesis of an
epithelium

AJAP1 It acts as a putative tumor suppres-
sor in ESCC, a tumor biomarker
to predict recurrence of ESCC after
esophagectomy [292].

Cell adhesion

5.5 Conclusion

An effective co-expression/similarity measure called SNMRS has been introduced.

A method has been presented to construct a co-expression network using SNMRS

that handles all types of correlations followed by extraction of network modules

from the network applying average linkage clustering algorithm. SNMRS is able

to find highly similar patterns containing genes with high biological relevance.

Experiments using real-world datasets show that proposed method is capable of

extracting clusters that are much better than other similar methods on a variety

of quality measures.

Identification of potential biomarkers from the ESCC single cell RNA sequenc-

ing dataset is another important task which can be performed using the differential

expression analysis method. The next chapter presents a framework to identify

potential biomarkers using an ensemble of differential expression analysis methods

and SNMRS based module detection method on scRNA-seq data.
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