CHAPTER 6

STUDY OF THE ROLE OF SMALL MOLECULE INHIBITOR IN PREVENTING AGGREGATION OF AB $_{1-42}$ PEPTIDE

Study of the role of small molecule inhibitor in preventing aggregation of $\mathbf{A} \beta_{1-42}$ peptide

6.1. Abstract:

Resveratrol (RSV), a polyphenolic compound is reported to have antiaggregation property against Amyloid- β peptides. It is therefore significant to understand the mechanism of inhibition of $A \beta_{1-42}$ peptide aggregation by the RSV at the molecular level. We have used Molecular docking along with Molecular dynamics (MD) simulation techniques to address the role of RSV in the inhibition $A \beta_{1-42}$ peptide aggregation. In this computational study, we have docked the RSV to $A \beta_{1-42}$ peptide using Molecular Docking software and then performed MD simulation for $A \beta_{1-42}$ peptide monomer as well the $A \beta_{1-42}$ peptide-RSV complex using the AMBER force field. From the analysis of MD trajectories, we obtained salient structural features and determined the Binding Free Energy (BFE) and Per-residue Energy Decomposition Analysis (PRED) using MM-PBSA/GBSA method. The secondary structure and the conformational analysis obtained from MD trajectories show that the binding of RSV with $\mathrm{A} \beta_{1-42}$ peptide monomer causes an increase in the helical content in the structure of the $A \beta_{1-42}$ peptide. The BFE and PRED results show a high binding affinity $\left(\mathrm{GB}_{\text {total }}=-\right.$ $\left.11.07 \mathrm{kcal} \mathrm{mol}^{-1} ; \mathrm{PB}_{\text {total }}=-1.82 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ of RSV with $\mathrm{A} \beta_{1-42}$ peptide. Also we found the RSV to interact with crucial residues (Asp 23 and Lys 28) of $A \beta_{1-42}$ peptide. These residues are known to play a significant role in facilitating the formation of toxic amyloid oligomers and amyloid fibrils. The salt bridge interaction between these residues D23-K28 was found to be destabilized in the $A \beta_{1-42}$ peptide when it is complexed with RSV. In summary, it can be concluded that the prevention of the $A \beta_{1-42}$ peptide aggregation is greatly aided by RSV and therefore it can be considered as a possible drug candidate for therapeutic strategies of $A D$.

6.2. Introduction:

Many inhibitors, such as small molecule inhibitors, peptide-based inhibitors and nanoparticle conjugates, have been developed and synthesized in recent years in an effort to better understand the pattern of aggregation and progression of $A \beta$ [592-601]. To prevent the production of $\mathrm{A} \beta$ oligomers and fibrils, the inhibitors either stabilize the
monomeric $\mathrm{A} \beta$ peptide conformation or cause the oligomeric structure to break down. Hence, there has been a constant search for inhibitors to prevent or lower the aggregation of amyloid deposits. RSV is one such polyphenol which has possesses antiamyloidogenic properties.

Resveratrol (RSV) is a polyphenolic compound that can be found in a diversity of foods, including grapes, peanuts, tea and wine. The RSV was first studied for its antioxidative, anti-inflammatory, anti-amyloidogenic properties, as well as its ability to remove $A \beta$ from the body by promoting the intracellular degradation of the amyloid peptide by a mechanism that implicates the proteasome [602, 603]. It also has the ability to surpass the blood-brain barrier (BBB) [36]. Previous research has shown that RSV suppresses $A \beta$ aggregation and remodels $A \beta$ fibrils into non-toxic unstructured species in a dose-dependent manner. RSV has been discovered to have free-radical scavenging properties in a diversity of cell types [604, 605]. An important study performed by JinFang Ge et al. in 2012 [606] highlighted the binding of RSV with amyloid-beta fibril as well as monomer. This study observed that incubation of RSV with monomer A $\beta(1-42)$ or $\mathrm{A} \beta(1-40)$ noticeably decreased the number and length of amyloid fibrils formed, however some aggregates were observed. It has been proposed that RSV inhibits A β fibril formation via creating hydrophobic contacts with residues in the polypeptide, in addition to its anti-oxidant properties [607-610].

To better understand RSV's inhibitory mechanism against $A \beta_{1-42}$ peptide monomer aggregation, Molecular docking and Molecular dynamics (MD) simulations were used. Computational techniques provide an alternative tool for discovering atomiclevel protein-ligand interactions, which are normally difficult to interpret using experimental methods [611-613]. In an experimental study by Al-Edresi et al., 2020, a novel mechanism has been proposed by which RSV disrupts $A \beta_{1-42}$ aggregation by mediating fragmentation of $\mathrm{A} \beta_{1-42}$ into smaller peptides, which have no propensity to aggregate further [614]. This cleavage occurs at residues Phe 4- Arg 5, which may be the primary site for RSV catalyzed cleavage of the $A \beta_{1-42}$ peptide. In addition to experimental studies, MD simulations have been widely employed to examine the precise structure of various $A \beta$ forms in aqueous settings as well as the inhibitory mechanism of various inhibitors against $\mathrm{A} \beta$ aggregation [615, 616]. Recent studies have also focused on how RSV may reduce or prevent A β induced neuronal damage and can
help in improving cognitive and behavioral functions [617-619]. Different experimental mice models have also been tested in this regard and positive results have been found. An appropriate example of experimental evidence on the interaction of RSV with A β_{1-42} peptide is the study performed by Andrade, S. et.al, 2015 [617]. Few interesting works have also studied on the interaction of mutated RSV with amyloid peptides and amyloid precursor proteins that hinder the aggregation of amyloid peptides [618]. Therefore, in this computational study, we have used MD simulations to investigate the role of RSV in the structure and stabilization of $\mathrm{A} \beta_{1-42}$ peptide monomer that subsequently leads to the prevention of amyloid aggregates [619]. We have analyzed the MD trajectories, performed a salt-bridge interaction study, and also studied the per-residue interaction to understand the effect of RSV on the aggregation of $A \beta_{1-42}$ peptide monomer with newer atomic details.

6.3. Materials and Methods:

6.3.1. System preparation

6.3.1.1. Preparation of receptor:

The receptor molecule was constructed using the micelle-bound human $A \beta_{1-42}$ peptide monomeric 3-D structure (PDB ID: 1IYT) [547] obtained from RCSB Protein Data Bank [502, 503].

6.3.1.2 Preparation of ligand:

RSV (ligand) structure in SDF format was obtained from the PubChem database [620].The Open Bable server [621] was used for conversion of the structure of RSV from SDF format to PDB format. Table 6.1 summarises the physicochemical features of RSV.

Table 6.1. Physico-chemical properties of Resveratrol (RSV).

Chemical structure	
	$5-[(E)-2-(4-$-hydroxyphenyl)ethenyl]benzene-1,3-diol
Chemical name) (IUPAC	$\mathrm{C}_{14}=\mathrm{CC}(=\mathrm{CC}=\mathrm{C} 1 \mathrm{C}=\mathrm{CC} 2=\mathrm{CC}(=\mathrm{CC}(=\mathrm{O} 2) \mathrm{O}) \mathrm{O}) \mathrm{O}$
Canonical SMILES	$228.24 \mathrm{~g} / \mathrm{mol}$
Molecular formula	3
Molecular weight	3
H-Bond donor	1.34
H-Bond acceptor	2
Log P ${ }^{c}$	$60.7 \AA^{2}$
Rotatable bonds	
TPSA (A ${ }^{2}$)	

TPSA $=$ Topological polar surface area; $\log \mathrm{P}=$ octanol-water partition coefficient.

6.3.1.3. Preparation of the complex:

The receptor molecule ($\mathrm{A} \beta_{1-42}$ peptide monomer) was docked to the ligand (RSV) using an online docking server, Patchdock [511]. Figure 6.1 depicts schematically how a complex is created from a receptor and a ligand molecule. The complex in this study was chosen from among the docked complexes retrieved from the Patchdock server (Model 1) with the best atomic contact energy (ACE) (i.e. $-113.77 \mathrm{kcalmol}^{-1}$) score, geometric surface, and geometric form complementarity score as the beginning complex structure in this experiment (Figure 6.2). The chosen complex structure was examined using the UCSF Chimera software alpha v.1.12 [530], the ligand and receptor components of the complex were separated, and their co-ordinates were saved in mol2 and PDB formats, respectively. Using the antechamber protocol, the selected solution structure was further curated in xleap. This includes bcc charge addition, frcmod file generation, and complicated system in explicit and implicit solvation. The topology and the coordinate files for both systems were then created separately. To perform MD simulations on the
complex system, we used explicit solvation. The required topology and parameter input files for the binding free energy analysis were also created.

Figure 6.1. A schematic illustration demonstrating the construction of docked complex from $A \beta_{1-42}$ peptide (PDB ID-1IYT) and Resveratrol (RSV).

Figure 6.2. Top 10 representative docked models for $\left(A \beta_{1-42}\right.$ peptide + RSV) complex generated by Patchdock along with their rankings based on their Atomic Contact Energies (ACE), score and area.

6.3.2. Setup for MD simulations:

The AMBER ff99SBildn force field [477, 478] in the AMBER 14 Leap module was used to simulate the $A \beta_{1-42}$ peptide monomer (apo) and ($\mathrm{A} \beta_{1-42}$ peptide +RSV) complex systems for a time period of 50 ns using a standard MD simulation protocol as discussed in detail in Section 4.3.2.

6.3.3. Analysis of MD Trajectories:

AmberTools 14's PTRAJ (short for Process TRAJectory) and CPPTRAJ (a C++ rewrite of PTRAJ) modules [549] were used to investigate the MD trajectories for both the apo and complex. The two systems were also subjected to RMSD, RMSF, Rg, SASA, and salt bridge distance investigations. Based on the potential donors (HD) and acceptors (HA) of the hydrogen atom, intra-molecular hydrogen bond analysis was used independently for apo and complex. The 3D structure of the molecules was seen using UCSF Chimera. The graphs were made using the xmgrace plotting tools. The pressure, temperature, potential energy, kinetic energy, and total energy of the ($\mathrm{A} \beta_{1-42}$ peptide+ RSV) complex were plotted as a function of simulation time to confirm the NPT simulation approach (as shown in Figure 6.3).

Figure 6.3. (A)Energy, (B) Temperature, and (C) Pressure plots of ($A \beta_{1-42}$ peptide + $R S V)$ complex system as a function of simulation time.

6.3.4. MMPBSA/ GBSA Binding free energy and PRED calculation:

The binding free energy (BFE) and the per-residue energy decomposition (PRED) for the ($\mathrm{A} \beta_{1-42}$ peptide +RSV) complex were calculated using the AMBER 14 suite's MMPBSA.py software. The methodology for the calculation of BFE and PRED is followed according to the methods discussed elaborately in Section 3.1.3.

6.4. Results and Discussion

6.4.1. Molecular docking of RSV with $\mathbf{A} \boldsymbol{\beta}_{1-42}$ peptide monomer:

The molecular docking investigations were carried out utilizing the Patchdock docking service to gain insight into the intermolecular interactions of RSV with $A \beta_{1-42}$ peptide monomer. We acquired 10 docked complexes from the Patchdock server (see to Figure 6.2), and the complex (Model 1) with the largest negative Atomic contact energy $\left(-113.77 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ was chosen for further investigation. The Ligplot ${ }^{+}$analysis in

Figure 6.4 shows the residues that form hydrogen bonds with the receptor molecule $A \beta_{1-}$ ${ }_{42}$ peptide. The experimental validation of the interaction of RSV with $\mathrm{A} \beta_{1-42}$ peptide can be well understood from the work of Andrade, S. et al., 2015 [617]. Ge Jing-Fang et. al., 2012 [604] inferred that RSV could bind directly to A β in different states.

Figure 6.4. Ligplot analysis showing the interaction of hydrophobic residues of $A \beta_{1-42}$ peptide with RSV.

6.4.2. RSV maintains $A \beta_{1-42}$ peptide monomer stability and avoids conformational change:

To understand the precise mechanism by which RSV inhibits the aggregation of the $A \beta_{1-42}$ peptide, MD simulations were run and the dynamic properties as a function of time were examined.

6.4.2.1. Effect of RSV on the structural stability of $A \beta_{1-42}$ peptide monomer:

Using 50 ns MD trajectory data, conformational changes in $A \beta_{1-42}$ peptide monomer (apo) and the ($\mathrm{A} \beta_{1-42}$ peptide +RSV) complex as a function of time were studied. To confirm the quality of the simulations, all preliminary analyses such as Root mean square deviation (RMSD), Root mean square fluctuation (RMSF), Radius of gyration $\left(\mathrm{R}_{\mathrm{g}}\right)$, Solvent accessible surface Area (SASA) and secondary structure analysis were performed.

6.4.2.1.1. Root Mean Square Deviation (RMSD) analysis:

To examine the stability of the two systems, the RMSD values of all C_{α}-atoms referred to their starting structures were calculated for (a) $A \beta_{1-42}$ peptide monomer (apo) and (b) (A β_{1-42} peptide + RSV) complex (depicted in Figure 6.6 (A)).The RMSD figure revealed that the $A \beta_{1-42}$ peptide monomer's structure was stable in both the apo and complex forms. The RMSD value fluctuates during the simulation time in the apo form. The RMSD value in the complex form was observed to fluctuate until 20 ns into the simulation period and then settle. The RMSD for the ligand RSV present in the (A β_{1-42} peptide + RSV) complex (as shown in Figure 6.5) was separately evaluated w.r.t to the simulation time of 50 ns , and the results show that the ligand RSV is rigid and stable in its conformation bound to the $A \beta_{1-42}$ peptide due to steric constraints from the receptor's nearby atoms.

Figure 6.5. RMSD Vs simulation time calculated for Resveratrol (RSV).

6.4.2.1.2. Root Mean Square Fluctuation (RMSF) Analysis:

To quantify individual residue flexibility, or how much a single residue moves (fluctuates) throughout a simulation, the RMSF values of all C_{α}-atoms were obtained for the two systems: (a) $\mathrm{A} \beta_{1-42}$ peptide monomer (apo) and (b) $\left(\mathrm{A} \beta_{1-42}\right.$ peptide +RSV) complex. RMSF per residue is often displayed vs. residue number and can reveal which amino acids in a protein contribute the most to molecular motion structurally. According to Figure 6.6 (B), the area corresponding to the residue indices 6, 10, 20, 24, 28, 32, 36, 39,41 contained in the ($\mathrm{A} \beta_{1-42}$ peptide +RSV) complex have descents as compared to the apo form. The binding of the ligand RSV to residues Phe 19, Ala 21, Asp 23, Val 24, Gly 29 and Met 35 in the $A \beta_{1-42}$ peptide monomer is responsible for the descent in the area of residues 20 to 36 . Furthermore, the $A \beta_{1-42}$ peptide monomer's residues Val 36 and Val 40 create a hydrogen bond with RSV. As a result, the binding of RSV with the $\mathrm{A} \beta_{1-42}$ peptide lowers the fluctuation in the binding region and also in the adjacent regions. According to research on fibrils made from full-length $\mathrm{A} \beta$, the peptide folds into a β bend shape and join forces with other molecules to form a parallel, in-register β-structure [622, 623]. Hence overall lowering in the flexibility of $A \beta_{1-42}$ peptide monomer in the
complex form with RSV indicates that RSV has the ability to hinder $\mathrm{A} \beta_{1-42}$ peptide fibril formation.

6.4.2.1.3. Radius of gyration (\mathbf{R}_{g}) Analysis:

R_{g} is frequently used to calculate the total distance between each atom in a given biomolecule and its common axis or centre of gravity. Rg_{g} serves as a measure of protein structural compactness [624]. The Rg_{g} values for the apo and complex systems are shown in Figure 6.6(C). According to the Rg_{g} study, the $\mathrm{A} \beta_{1-42}$ peptide monomer is more compact in complex form, but in apo form, the $\mathrm{A} \beta_{1-42}$ peptide monomer adopts a unique folding pattern at different intervals of the simulation period. Additionally, the $A \beta_{1-42}$ peptide monomer's varied conformations and their molecular interactions during the simulation are reflected in the fluctuations in R_{g} values. According to R_{g} analysis, the structure of the $A \beta_{1-42}$ peptide monomer becomes substantially more compact when attached to RSV.

6.4.2.1.4. Solvent Accessible Surface Area (SASA) Analysis:

Amyloidogenic amino acid stretches from 16-21 (KLVFFA) and 32-36 (IGLMV) were discovered in nature. These areas are potentially hydrophobic and have the highest risk of aggregation. The SASA investigation is crucial because it could provide details about the $A \beta_{1-42}$ peptide's tendency for aggregation. We used a $1.4 \AA$ radius molecular probe to map the surface area that our explicit systems' water solvent could access. Figure 6.6 (D) depicts the SASA profile of the $A \beta_{1-42}$ peptide (apo) and ($\mathrm{A} \beta_{1-42}$ peptide + RSV) complex systems. According to Figure 6.6 (D), the total SASA for the $\left(A \beta_{1-42}\right.$ peptide + RSV) complex is much lower than that of the $\mathrm{A} \beta_{1-42}$ peptide (apo) monomer. As a result, less surface area is exposed to the solvent in the case of complex than in the case of apo. As a result, we may anticipate the monomeric structure of $A \beta_{1-42}$ peptide (apo) to aggregate more readily than the $\mathrm{A} \beta_{1-42}$ peptide monomer structure complexed with RSV.

Figure 6.6. Comparative Molecular Dynamics analysis of (A) Root mean square deviation, (B) Root mean square fluctuation, (C) Solvent accessible surface area, and (D) B-factor for $A \beta_{1-42}$ peptide monomer (apo), and ($A \beta_{1-42}$ peptide monomer $+R S V$) complex.

6.4.2.2. Secondary structure analysis of $A \beta_{1-42}$ peptide monomer and (A β_{1-42} peptide + RSV) complex:

The Kabsch and Sander method was used to analyze the secondary structure of the $\mathrm{A} \beta_{1-42}$ peptide monomer (apo) and ($\mathrm{A} \beta_{1-42}$ peptide +RSV) complex [532]. The analysis of secondary structure findings are shown in Figure 6.7 (A) and 6.7 (B). The graph shows how each residue's secondary structure changes as a function of frame numbers. The complex form of the $A \beta_{1-42}$ peptide monomer retains the helical content in contrast to the apo form. Using the corresponding average structure obtained from 50 ns MD simulations, we also calculated the percentage of individual secondary structure
content in the apo and complex forms of the $A \beta_{1-42}$ peptide monomers [625]. When compared to the apo form, the complex form of the $A \beta_{1-42}$ peptide monomer has a higher helical content and no β-sheet structure, as seen in Table 6.2. The secondary structure analysis shows that RSV maintains the continuous helical conformation in the N terminal domain (residues 4-12aa) and C-terminal region (residues 32-36aa) of $A \beta_{1-42}$ peptide, stabilizing the monomeric form of the peptide.

Figure 6.7. Secondary structure analysis of (A) A β_{1-42} peptide monomer (apo), (B) (A β_{1-} 42 peptide monomer + RSV) complex.

Table 6.2. Secondary structure content of the $\mathrm{A} \beta_{1-42}$ peptide monomer (apo) and ($\mathrm{A} \beta_{1-42}$ peptide monomer + RSV) complex.

A $\boldsymbol{\beta}_{1-42}$ peptide	Secondary Structure content					
Variants	α-helix $(\%)$	β-sheets $(\%)$	Turns $(\%)$	3_{10-} helix $(\%)$	Coils $(\%)$	$\operatorname{Pi}(\%)$
A $\boldsymbol{1}_{1-42}$ peptide (apo)	3.6	4.3	34.3	0.0	57.9	0.0
(Aß1-42 peptide + RSV) complex	33.3	0.0	19.0	0.0	38.1	0.0

6.4.3. Analysis of the conformational dynamics:

The conformational changes in the apo and complex structures have been depicted at various stages during the simulation period (Figure 6.8(A) and 6.8(B)). Because of partial folding in the structure, the $A \beta_{1-42}$ peptide monomer structure in apo form is stabilized, as seen in Figure 6.6 (A) and 6.8 (A). The ligand RSV binds to Ile 41, Gly 37, Phe 19, Ala 21, Asp 23, Val 24 and Met 35 residues in the $A \beta_{1-42}$ peptide monomer in the complex (as shown in Figure 6.4). RSV forms a hydrogen bond with the residues Glu 22, Val 18, Val 36, Val 39, and Leu 17 (as shown in Figure 6.4). This research sheds light on the secondary structural alterations that the $A \beta_{1-42}$ peptide undergoes in the absence and presence of RSV. The continuous helical structure of the $A \beta_{1-42}$ peptide is broken, yet the total helical content of the $A \beta_{1-42}$ peptide in the complex form is higher than in the apo form. The presence of RSV lends credence to the $A \beta_{1-42}$ peptide's α-helical content. In this regard, a research by Nerelius et al. 2009 [626] revealed that stability of the core α-helix counteracts polymerization into hazardous assemblies and provides a scope for the design of specialized $A \beta$ polymerization inhibitors. As a result, it can be accepted that the presence of RSV as an inhibitor for $A \beta_{1-42}$ peptide supports the retention of the $A \beta_{1-42}$ peptide's α-helical content.
(A)

0 ns

30 ns

10 ns

40 ns

20 ns

50 ns

Figure 6.8. Snapshots of the conformers of $A \beta_{1-42}$ peptide monomer obtained at different time interval during the course of simulation time: (A) A β_{1-42} peptide monomer (apo), (B) (A β_{1-42} peptide monomer $+R S V$) complex.

6.4.4. Hydrogen bond analysis:

Figure 6.9 depicts the hydrogen bond analysis of the monomeric $A \beta_{1-42}$ peptide's overall structure in both the apo and complex forms. For computing the hydrogen bond, the angle and distance cut-offs were set at 120° and 3.5 , respectively. The total number of intra-molecular hydrogen bonds discovered in $A \beta_{1-42}$ peptide monomer (apo) is observed to decrease as those found in the ($\mathrm{A} \beta_{1-42}$ peptide +RSV) complex. This is due to the increased compactness of the complex structure compared to the apo structure as observed from the Rg_{g} analysis (as shown in Figure 6.6(C)), as well as the decrease in the overall SASA (as shown in Figure 6.6 (D)) of the complex compared to the apo. Figures 6.10 (A) and $6.10(B)$ illustrates the average number of intermolecular hydrogen bonds formed between the two components of the complex ($\mathrm{A} \beta_{1-42}$ peptide+ RSV) throughout simulation. Table 6.3 shows the inter-molecular Hydrogen bonds between RSV and A β_{1-} ${ }_{42}$ peptide monomer (atom level information) present in ($\mathrm{A} \beta_{1-42}$ peptide monomer +RSV) complex. Also using LigPlot ${ }^{+}$program, we determined the bonded and non-bonded interactions that are present in the lowest energy structure of the $A \beta_{1-42}$ peptide-RSV complex (shown in Figure 6.4 and Table 6.4).

Figure 6.9. The total number of intra-molecular hydrogen bonds found in the structures of $A \beta_{1-42}$ peptide monomer (apo) and (A β_{1-42} peptide monomer $+R S V$) complex.

Figure 6.10. The entire number of intra-molecular hydrogen bonds found in ($A \beta_{1-42}$ peptide monomer + RSV) complex with (A) considering RSV as donor and $A \beta_{1-42}$ peptide as acceptor and (B) considering $A \beta_{1-42}$ peptide as donor and RSV as acceptor.

Table 6.3. Inter-molecular Hydrogen bonds between RSV and A β_{1-42} peptide monomer present in (A β_{1-42} peptide monomer $+R S V$) complex

Acceptor	Donor	Fraction	Average Distance (A)	Average Angle (${ }^{\circ}$)
GLU_23@O	HET_1@O2	0.3952	2.7294	161.7149
VAL_37@O	HET_1@O1	0.1638	2.7212	162.9874
VAL_40@O	HET_1@O	0.1052	2.7568	154.3747
GLY_38@O	HET_1@O	0.0631	2.7463	161.6426
VAL_19@O	HET_1@O1	0.0299	2.7632	164.1277
ALA_22@O	HET_1@O2	0.0266	2.7087	166.0161
GLU_23@OE1	HET_1@O2	0.0238	2.6784	163.017
ILE_42@O	HET_1@O	0.0186	2.7206	161.6045
LEU_35@O	HET_1@O1	0.018	2.717	161.2726
MET_36@O	HET_1@O	0.0165	2.7488	157.1311
LEU_18@O	HET_1@O1	0.0129	2.8031	155.1469
ILE_32@O	HET_1@O2	0.0071	2.7485	163.5145
ALA_22@O	HET_1@O1	0.0044	2.7523	157.0489
ALA_22@H	HET_1@C12	0.0024	2.8824	150.2185
MET_36@HB3	HET_1 @C10	0.0022	2.9391	143.6074
VAL_19@HA	HET_1@O1	0.0019	2.8532	142.0655
GLU_23@HA	HET_1@C9	0.0017	2.9361	143.9426
ILE_42@HG21	HET_1@C5	0.0013	2.9515	142.0103
VAL_37@H	HET_1 @C10	0.001	2.8144	139.4796
VAL_37@O	HET_1@O	0.001	2.7748	161.5973
PHE_21@CE1	HET_1@O1	0.0009	2.9593	158.3913
GLU_23@OE2	HET_1@O2	0.0008	2.7035	162.3518
ALA_22@H	HET_1@C4	0.0008	2.8508	139.3834
PHE_5@HD2	HET_1@C8	0.0007	2.9108	139.6424
ILE_42@HG12	HET_1@C5	0.0007	2.9434	144.3136
ILE_42@HG13	HET_1@C5	0.0007	2.977	141.1934
GLU_23@HA	HET_1@C12	0.0006	2.9385	140.419

PHE 21@CZ	HET 1@O1	0.0006	2.9482	147.1309
ARG_6@HH12	HET_1@O2	0.0005	2.933	147.2644
PHE_20@HA	HET_1@C9	0.0004	2.9531	138.7616
ILE_42@HD13	HET_1@C5	0.0004	2.9325	139.0857
ALA_3@HB1	HET_1@C11	0.0004	2.9606	142.64
ALA_3@HB3	HET_1@C11	0.0004	2.9394	143.1189
PHE_21@CD1	HET_1@O1	0.0004	2.9458	143.5417
ALA_3@HB2	HET_1@C11	0.0003	2.9611	139.8023
ARG_6@HH22	HET_1@O2	0.0003	2.9381	140.5115
PHE_21@CE2	HET_1@O1	0.0003	2.9264	142.8968
ALA_22@HB3	HET_1@C4	0.0003	2.9482	142.6598
ASP_24@HA	HET_1@C12	0.0003	2.925	140.1576
MET_36@HG2	HET_1@C5	0.0003	2.9263	140.8192
ILE_42@HG22	HET_1@C5	0.0003	2.9568	139.6545
ILE_42@HD11	HET_1@C2	0.0003	2.9631	139.1276
ILE_42@HD11	HET_1@C5	0.0003	2.9169	139.1397
PHE_21@HE1	HET_1@C4	0.0003	2.9358	139.8203
ALA_22@HB2	HET_1@C4	0.0003	2.9504	137.7802
GLY_38@O	HET_1@O1	0.0003	2.7688	164.3081
VAL_40@HG21	HET_1@O	0.0003	2.7863	142.0274
VAL_40@HG22	HET_1@O	0.0003	2.8948	138.4265
PHE_5@HB3	HET_1@C11	0.0003	2.957	137.1107
PHE_5@HB3	HET_1@C8	0.0003	2.9641	139.0472
ALA_22@HB3	HET_1@C3	0.0003	2.9573	141.4124
GLY_26@HA2	HET_1@C11	0.0003	2.9027	145.3732
VAL_40@HB	HET_1@O	0.0003	2.8535	140.7929
VAL_40@HG23	HET_1@O	0.0003	2.7935	142.8782
ILE_42@HG23	HET_1@C5	0.0003	2.9504	142.4808

ILE_42@HD12	HET_1@C5	0.0003	2.9537	143.7227
ARG_6@HD3	HET_1@C12	0.0002	2.9323	140.2498
ARG_6@NH1	HET_1@O2	0.0002	2.8493	143.6073
ALA_22@HB1	HET_1@C4	0.0002	2.9686	144.7545
ALA_22@HB3	HET_1@C9	0.0002	2.9234	140.9153
VAL_25@HG21	HET_1@O2	0.0002	2.8667	140.6468
MET_36@HE2	HET_1@C2	0.0002	2.9488	137.3381
VAL_37@HG23	HET_1@C10	0.0002	2.9604	139.1794
ILE_42@HG13	HET_1@C2	0.0002	2.978	137.9974
ILE_42@HD13	HET_1@C2	0.0002	2.9547	141.8741
PHE_5@HD2	HET_1@C2	0.0001	2.9748	140.5369
PHE_21@HE2	HET_1@C5	0.0001	2.9395	138.1793
VAL_25@HG23	HET_1@C2	0.0001	2.9584	140.6202
ILE_32@HG12	HET_1@C2	0.0001	2.9579	137.6925
MET_36@HG3	HET_1@C4	0.0001	2.9175	144.3173
MET_36@SD	HET_1@O	0.0001	2.97	137.8476
GLY_38@H	HET_1@C10	0.0001	2.9344	172.0527
VAL_41@HA	HET_1@C10	0.0001	2.931	137.964
ILE_42@HD11	HET_1@C8	0.0001	2.9539	141.6686
ARG_6@HH11	HET_1@C12	0.0001	2.975	138.4673
VAL_19@HA	HET_1@C4	0.0001	2.9401	142.8449
VAL_19@HG11	HET_1@O1	0.0001	2.9497	138.3613
VAL_19@HG12	HET_1@O1	0.0001	2.7522	146.811
PHE_20@HB3	HET_1@C4	0.0001	2.9129	136.7579
PHE_21@HE1	HET_1@O1	0.0001	2.681	151.327
PHE_21@HE2	HET_1@O1	0.0001	2.6899	137.9099
ALA_22@HB2	HET_1@C9	0.0001	2.9644	141.1769
ALA_22@HB2	HET_1@C12	0.0001	2.9644	137.3307

VAL_25@HG22	HET_1@C11	0.0001	2.9293	137.3877
GLY_26@O	HET_1@O2	0.0001	2.8563	164.2248
ILE_32@HG12	HET_1@C5	0.0001	2.9584	140.3609
ILE_32@HG12	HET_1@O2	0.0001	2.7647	136.1467
ILE_32@HG13	HET_1@O2	0.0001	2.7813	140.2215
ILE_32@HD11	HET_1@C2	0.0001	2.9535	143.6363
ILE_32@HD11	HET_1@C12	0.0001	2.9545	147.3688
ILE_32@HD13	HET_1@O1	0.0001	2.8786	140.5793
ILE_33@HD11	HET_1@O2	0.0001	2.7581	137.0061
LEU_35@HG	HET_1@C4	0.0001	2.9183	145.4808
LEU_35@HD22	HET_1@C12	0.0001	2.9812	136.891
LEU_35@O	HET_1@O	0.0001	2.9024	170.9443
MET_36@HA	HET_1@O1	0.0001	2.8795	138.7673
MET_36@HG2	HET_1@C10	0.0001	2.9596	140.3461
MET_36@HG3	HET_1@C5	0.0001	2.9107	138.5223
MET_36@HG3	HET_1@C3	0.0001	2.8985	136.7722
VAL_37@HG22	HET_1@O1	0.0001	2.9493	149.927
VAL_40@C	HET_1@O	0.0001	2.967	139.4664
ILE_42@HD12	HET_1@O	0.0001	2.795	144.0484
PHE_5@CZ	HET_1@O2	0.0001	2.9382	153.1096
PHE_5@HE2	HET_1@C8	0.0001	2.8808	137.7722
ARG_6@HH11	HET_1@O2	0.0001	2.8934	137.5667
ARG_6@HH12	HET_1@C12	0.0001	2.8932	143.3073
VAL_13@HG21	HET_1@C9	0.0001	2.8834	135.8361
VAL_13@HG23	HET_1@C9	0.0001	2.9476	139.954
HIE_14@HA	HET_1@C12	0.0001	2.9028	135.813
HIE_14@HB3	HET_1@O2	0.0001	2.8714	138.7973
HIE_14@HB3	HET_1@C12	0.0001	2.9427	137.4545

LEU_18@HD22	HET_1@C2	0.0001	2.9481	138.7124
VAL_19@HG11	HET_1@C4	0.0001	2.9984	138.1284
VAL_19@O	HET_1@O	0.0001	2.6585	160.4977
PHE_20@HB3	HET_1@C9	0.0001	2.923	140.6224
PHE_20@HE2	HET_1@C10	0.0001	2.9874	151.2566
PHE_21@HB2	HET_1@C11	0.0001	2.9534	145.3927
PHE_21@HD1	HET_1@C9	0.0001	2.8899	136.8313
PHE_21@HZ	HET_1@C8	0.0001	2.8028	136.7991
PHE_21@HE2	HET_1@C4	0.0001	2.8708	135.1842
PHE_21@CD2	HET_1@O1	0.0001	2.7955	137.2492
PHE_21@HD2	HET_1@O1	0.0001	2.9387	179.348
PHE_21@HD2	HET_1@O2	0.0001	2.6733	152.1166
ALA_22@HA	HET_1@C11	0.0001	2.9804	149.9933
ALA_22@HA	HET_1@C9	0.0001	2.993	141.4869
ALA_22@HB1	HET_1@C9	0.0001	2.9587	141.4798
ALA_22@HB2	HET_1@O1	0.0001	2.8359	139.3465
GLU_23@HB2	HET_1@C12	0.0001	2.9951	141.1038
VAL_25@HG11	HET_1@C9	0.0001	2.9879	138.3157
VAL_25@HG13	HET_1@C12	0.0001	2.9552	146.7106
VAL_25@HG13	HET_1@C8	0.0001	2.9398	147.9568
VAL_25@HG13	HET_1@C2	0.0001	2.9725	151.9079
VAL_25@HG21	HET_1@C8	0.0001	2.961	139.152
VAL_25@HG21	HET_1@C5	0.0001	2.9944	150.3534
VAL_25@HG22	HET_1@C8	0.0001	2.908	138.8626
VAL_25@HG22	HET_1@C2	0.0001	2.9953	136.4145
VAL_25@HG22	HET_1@C12	0.0001	2.8907	137.9562
VAL_25@HG23	HET_1@C11	0.0001	2.9232	137.3611
VAL_25@HG23	HET_1@C8	0.0001	2.8974	140.9096

VAL_25@HG23	HET_1@O1	0.0001	2.775	136.2253
VAL_25@HG23	HET_1@C5	0.0001	2.941	139.3849
VAL_25@HG23	HET_1@C12	0.0001	2.9732	145.3499
LYS_29@HD2	HET_1@C11	0.0001	2.9084	139.5988
LYS_29@HZ3	HET_1@C5	0.0001	2.8338	135.2428
ILE_32@HG21	HET_1@C8	0.0001	2.9999	145.207
ILE_32@HD11	HET_1@O1	0.0001	2.93	138.2443
ILE_32@HD11	HET_1@C8	0.0001	2.9777	159.6882
ILE_32@HD12	HET_1@C9	0.0001	2.9115	135.8349
ILE_32@HD12	HET_1@C12	0.0001	2.9591	138.4019
ILE_33@HD12	HET_1@C9	0.0001	2.9204	138.1191
ILE_33@HD12	HET_1@O2	0.0001	2.9238	170.1629
LEU_35@HG	HET_1@C9	0.0001	2.986	139.3728
LEU_35@HG	HET_1@O	0.0001	2.91	135.203
LEU_35@HG	HET_1@O1	0.0001	2.6518	136.3564
LEU_35@HD12	HET_1@C4	0.0001	2.999	140.8986
LEU_35@HD22	HET_1@O1	0.0001	2.6648	135.994
LEU_35@HD22	HET_1@C5	0.0001	2.9378	155.678
LEU_35@HD23	HET_1@C9	0.0001	2.8986	140.6248
LEU_35@HD23	HET_1@O1	0.0001	2.9667	135.8228
MET_36@HA	HET_1@C10	0.0001	2.8719	135.5926
MET_36@HB2	HET_1@C5	0.0001	2.982	143.528
MET_36@HB3	HET_1@O	0.0001	2.9308	135.0242
MET_36@HG2	HET_1@C3	0.0001	2.9517	157.4231
MET_36@HG2	HET_1@O	0.0001	2.7809	139.8522
MET_36@HG3	HET_1@C9	0.0001	2.9062	136.0591
MET_36@HE1	HET_1@C5	0.0001	2.9027	139.0456
MET_36@HE1	HET_1@C2	0.0001	2.9925	151.2297

MET_36@HE1	HET_1 @C4	0.0001	2.9919	140.6802
MET_36@HE2	HET_1@C8	0.0001	2.9807	139.2519
MET_36@HE2	HET_1@C4	0.0001	2.9385	147.0139
MET_36@HE2	HET_1@O	0.0001	2.974	140.9592
MET_36@HE3	HET_1@C3	0.0001	2.9402	136.5008
MET_36@HE3	HET_1@C5	0.0001	2.9119	138.8173
VAL_37@H	HET_1@O1	0.0001	2.9604	135.2303
VAL_37@HG22	HET_1@C10	0.0001	2.9882	140.7421
GLY_39@O	HET_1@O	0.0001	2.8116	148.5582
VAL_40@HB	HET_1@C10	0.0001	2.8692	135.6016
VAL_40@HG21	HET_1@C10	0.0001	2.97	138.2124
ILE_42@HG12	HET_1@C8	0.0001	2.9655	149.6419
ILE_42@HD12	HET_1@C2	0.0001	2.9605	154.5334
ILE_42@HD13	HET_1@C8	0.0001	2.9834	142.297
ALA_43@HA	HET_1@C5	0.0001	2.9053	137.1117
ALA_43@HA	HET_1@O	0.0001	2.8241	141.7815
ALA_43@HB2	HET_1@O	0.0001	2.7098	137.5356
ALA_43@O	HET_1@O	0.0001	2.9372	169.0506

Table 6.4. Interactions of residues of $A \beta_{1-42}$ peptide (Receptor) with RSV (ligand) obtained from Ligplot ${ }^{+}$software.

1. Hydrogen bond interactions:

Atom name	Residue name	Residue number	H-bond	Atom name	Residue Name	Residue number	Chain Distance((\mathbf{A})
O	VAL	37	---	O	HET	1	2.8
O	VAL	40	---	O	HET	1	3.15
O	LEU	18	---	O1	HET	1	2.76
O	VAL	19	---	O1	HET	1	2.23
O	GLU	23	---	O2	HET	1	2.67

2. Non-bonded interactions:

Atom name	Residue name	Residue number	Nonbonded contacts	Atom name	Residue Name	Residue number	Chain Distance $(\AA$)
N	VAL	37	---	O	HET	1	3.84
CA	VAL	37	---	O	HET	1	3.79
C	VAL	37	---	O	HET	1	3.45
O	VAL	37	---	O	HET	1	2.8
N	VAL	40	---	O	HET	1	3.74
CA	VAL	40	---	O	HET	1	3.52
C	VAL	40	---	O	HET	1	3.36
O	VAL	40	---	O	HET	1	3.15
CB	VAL	40	---	O	HET	1	3.01
CG1	VAL	40	---	O	HET	1	3.07
CG2	VAL	40	---	O	HET	1	2.83
N	VAL	41	---	O	HET	1	3.67
CB	ILE	42	---	O	HET	1	3.66
CG1	ILE	42	---	O	HET	1	3.26
CG2	ILE	42	---	O	HET	1	3.47
CD1	ILE	42	---	O	HET	1	2.94
C	LEU	18	---	O1	HET	1	3.35
O	LEU	18	---	O1	HET	1	2.76
N	VAL	19	---	O1	HET	1	3.29
CA	VAL	19	---	O1	HET	1	2.59
C	VAL	19	---	O1	HET	1	2.69
O	VAL	19	---	O1	HET	1	2.23
CB	VAL	19	---	O1	HET	1	3.31
CG1	VAL	19	---	O1	HET	1	3.19
N	PHE	20	---	O1	HET	1	3.64

C	LEU	35	---	O1	HET	1	3.68
O	LEU	35	---	O1	HET	1	3
N	MET	36	---	O1	HET	1	3.67
CA	MET	36	---	O1	HET	1	2.95
C	MET	36	---	O1	HET	1	2.81
O	MET	36	---	O1	HET	1	3.27
CB	MET	36	---	O1	HET	1	3.64
N	VAL	37	---	O1	HET	1	2.45
CA	VAL	37	---	O1	HET	1	2.81
C	VAL	37	---	O1	HET	1	3.49
O	VAL	37	---	O1	HET	1	3.72
CB	VAL	37	---	O1	HET	1	2.27
CG1	VAL	37	---	O1	HET	1	1.96
CG2	VAL	37	---	O1	HET	1	1.56
C	GLU	23	---	O2	HET	1	3.49
O	GLU	23	---	O2	HET	1	2.67
O	VAL	19	---	C	HET	1	3.14
CG	MET	36	---	C	HET	1	3.66
SD	MET	36	---	C	HET	1	3.78
CE	MET	36	---	C	HET	1	3.28
C	ALA	22	---	C1	HET	1	3.63
O	ALA	22	---	C1	HET	1	3.11
CG1	VAL	25	---	C1	HET	1	3.62
CG2	VAL	25	---	C1	HET	1	3.22
CD1	PHE	20	---	C2	HET	1	3.81
CE	MET	36	---	C2	HET	1	3.62
CA	PHE	20	---	C3	HET	1	3.78
CD1	PHE	20	---	C3	HET	1	3.47

O	ALA	22	---	C3	HET	1	3.57
CB	ALA	22	---	C3	HET	1	3.65
CG1	VAL	25	---	C3	HET	1	3.76
CG2	VAL	25	---	C3	HET	1	3.67
CA	VAL	19	---	C4	HET	1	3.5
C	VAL	19	---	C4	HET	1	2.83
O	VAL	19	---	C4	HET	1	2.02
CG1	VAL	19	---	C4	HET	1	3.68
N	PHE	20	---	C4	HET	1	3.46
CA	PHE	20	---	C4	HET	1	3.62
CA	MET	36	---	C4	HET	1	3.57
C	MET	36	---	C4	HET	1	3.88
CB	MET	36	---	C4	HET	1	3.57
CG	MET	36	---	C4	HET	1	3.49
CE	MET	36	---	C4	HET	1	3.8
N	VAL	37	---	C4	HET	1	3.64
CG1	VAL	37	---	C4	HET	1	3.82
CG2	VAL	37	---	C4	HET	1	3.24
CB	MET	36	---	C5	HET	1	3.86
CG	MET	36	---	C5	HET	1	3.81
SD	MET	36	---	C5	HET	1	3.8
CE	MET	36	---	C5	HET	1	3.26
CA	MET	36	---	C6	HET	1	3.81
C	MET	36	---	C6	HET	1	3.58
CB	MET	36	---	C6	HET	1	3.49
CG	MET	36	---	C6	HET	1	3.82
CE	MET	36	---	C6	HET	1	3.78
N	VAL	37	---	C6	HET	1	3.25

CA	VAL	37	---	C6	HET	1	3.44
C	VAL	37	---	C6	HET	1	3.41
O	VAL	37	---	C6	HET	1	2.93
CB	VAL	37	---	C6	HET	1	3.48
CG1	VAL	37	---	C6	HET	1	3.8
CG2	VAL	37	---	C6	HET	1	3.16
CB	VAL	40	---	C6	HET	1	3.6
CG1	VAL	40	---	C6	HET	1	3.53
CG2	VAL	40	---	C6	HET	1	3.28
CA	VAL	19	---	C7	HET	1	3.14
C	VAL	19	---	C7	HET	1	2.95
O	VAL	19	---	C7	HET	1	2.25
CB	VAL	19	---	C7	HET	1	3.55
CG1	VAL	19	---	C7	HET	1	3.17
N	PHE	20	---	C7	HET	1	3.88
O	LEU	35	---	C7	HET	1	3.71
N	MET	36	---	C7	HET	1	3.87
CA	MET	36	---	C7	HET	1	2.89
C	MET	36	---	C7	HET	1	2.85
O	MET	36	---	C7	HET	1	3.38
CB	MET	36	---	C7	HET	1	3.17
CG	MET	36	---	C7	HET	1	3.51
N	VAL	37	---	C7	HET	1	2.48
CA	VAL	37	---	C7	HET	1	2.93
C	VAL	37	---	C7	HET	1	3.44
O	VAL	37	---	C7	HET	1	3.41
CB	VAL	37	---	C7	HET	1	2.58
CG1	VAL	37	---	C7	HET	1	2.52

CG2	VAL	37	---	C7	HET	1	1.87
CG2	VAL	25	---	C8	HET	1	3
N	ALA	22	---	C9	HET	1	3.81
CA	ALA	22	---	C9	HET	1	3.43
C	ALA	22	---	C9	HET	1	2.61
O	ALA	22	---	C9	HET	1	1.96
CB	ALA	22	---	C9	HET	1	3.62
N	GLU	23	---	C9	HET	1	3.02
CA	GLU	23	---	C9	HET	1	3.02
C	GLU	23	---	C9	HET	1	3.18
O	GLU	23	---	C9	HET	1	3.26
N	ASP	24	---	C9	HET	1	3.61
CG1	VAL	25	---	C9	HET	1	3.89
CG2	VAL	25	---	C9	HET	1	3.84
O	VAL	19	---	C10	HET	1	3.43
CG1	VAL	19	---	C10	HET	1	3.49
CA	MET	36	---	C10	HET	1	3.04
C	MET	36	---	C10	HET	1	2.65
O	MET	36	---	C10	HET	1	3
CB	MET	36	---	C10	HET	1	3.13
CG	MET	36	---	C10	HET	1	3.67
N	VAL	37	---	C10	HET	1	2.19
CA	VAL	37	---	C10	HET	1	2.35
C	VAL	37	---	C10	HET	1	2.53
O	VAL	37	---	C10	HET	1	2.28
CB	VAL	37	---	C10	HET	1	2.22
CG1	VAL	37	---	C10	HET	1	2.51
CG2	VAL	37	---	C10	HET	1	1.81

N	GLY	38	---	C10	HET	1	3.26
CA	GLY	38	---	C10	HET	1	3.81
O	GLY	38	---	C10	HET	1	3.86
CB	VAL	40	---	C10	HET	1	3.88
CG1	VAL	40	---	C10	HET	1	3.79
CG2	VAL	40	---	C10	HET	1	3.4
O	GLU	23	---	C11	HET	1	3.84
CG2	VAL	25	---	C11	HET	1	3.47
C	ALA	22	---	C12	HET	1	3.15
O	ALA	22	---	C12	HET	1	2.58
N	GLU	23	---	C12	HET	1	3.14
CA	GLU	23	---	C12	HET	1	2.59
C	GLU	23	---	C12	HET	1	2.52
O	GLU	23	---	C12	HET	1	2.24
CB	GLU	23	---	C12	HET	1	3.35
CG	GLU	23	---	C12	HET	1	3.82
N	ASP	24	---	C12	HET	1	3.2
CA	ASP	24	---	C12	HET	1	3.63
CA	GLU	23	---	C13	HET	1	3.63
C	GLU	23	---	C13	HET	1	3.21
O	GLU	23	---	C13	HET	1	2.66
N	ASP	24	---	C13	HET	1	3.77
CA	ASP	24	---	C13	HET	1	3.87

6.4.5. RSV destabilizes the salt-bridge distance (D23-K28) in (A $\boldsymbol{\beta}_{1-42}$ peptide + RSV) complex:

A salt-bridge formation is a vital event for the stability of the $A \beta_{1-42}$ peptide monomer that helps in the formation of subsequent oligomers and stable amyloid fibrils
that will facilitate aggregation. The presence of salt-bridge interaction between the D23 (Asp23) and K28 (Lys28) residues was experimentally verified by Petkova, A.T., et. al., 2005[627]. Several research studies have highlighted the importance of these salt bridge residues [628-630]. To determine the effect of RSV on the aggregation propensity of $A \beta_{1-42}$ peptide monomer, the probability of $D 23-K 28$ salt bridge formation in $A \beta_{1-42}$ peptide monomer and ($\mathrm{A} \beta_{1-42}$ peptide+ RSV) complex was investigated. Truong et al., 2014 [631] reported that the distance between two participating atoms should remain within 0.46 nm (i.e $4.6 \AA$) to form salt bridge between two charged residues. Figure 6.11 depicts the distance distributions between Asp23 and Lys28 residues for salt-bridge formation in $A \beta_{1-42}$ peptide (apo) in black and (A β_{1-42} peptide + RSV) complex in red. The distance between the salt-bridge residues Asp 23 and Lys 28 was calculated w.r.t the simulation time period of 50 ns . The number of frames obtained from this calculation was then used for the creation of probability distribution w.r.t. the distance. In order to calculate the distance of the salt-bridge, we have considered the $\mathrm{C} \gamma$ atom of Asp23 and $\mathrm{N} \xi$ atom of Lys 28 . For the $\mathrm{A} \beta_{1-42}$ peptide monomer (apo), a distance peak at $3.7 \AA$ and $4.1 \AA$ highlight D23-K28 salt bridge formation (Figure 6.11). The probability distribution of the salt bridge distance shifted to higher values for the $\left(A \beta_{1-42}\right.$ peptide + RSV) complex, and no peak was seen within $4.6 \AA$ (Figure 6.11). This underlines the decreased propensity for aggregation of the $A \beta_{1-42}$ peptide monomer in the presence of RSV and destabilization of the D23-K28 salt bridge interaction in the (A β_{1-42} peptide + RSV) complex. A similar trend line was also observed for the salt-bridge distance (D23K28) analysis performed by Saini et al., 2019 [608] where they observed that D23-K28 salt bridge interaction is destabilized in the complex form of $A \beta_{1-42}$ peptide monomer in the presence of the inhibitor molecule. The salt-bridge distance between residues Asp 23 and Lys 28 in the $\mathrm{A} \beta_{1-42}$ peptide monomer (apo) is within the given range ($4.6 \AA$) while in the case of $A \beta_{1-42}$ peptide-RSV complex, the salt-bridge distance is much higher than the given range as seen from the conformational snapshot for apo and complex respectively from Figure $\mathbf{6 . 1 2 (A)}$ and $\mathbf{6 . 1 2 (B)}$. Hence, it is observed that the salt-bridge distance between residues Asp 23 and Lys 28 present in $A \beta_{1-42}$ peptide increases in the presence of small molecule RSV.

Figure 6.11. Distance distributions between Asp23 and Lys28 residues for salt-bridge formation in $A \beta_{1-42}$ peptide (apo) in black and ($A \beta_{1-42}$ peptide monomer $+R S V$) complex in red. The distance is measured in Angstroms between the C γ atom of Asp 23 and $N \xi$ atom of Lys 28 .

Figure 6.12. The salt bridge distance between Asp23 and Lys 28 residues calculated from $M D$ simulation for a particular conformer in (A) $A \beta_{1-42}$ peptide (apo) and (B) ($A \beta_{1-42}$ peptide monomer + RSV) complex. The distance is measured in Angstroms between the $C \gamma$ atom of Asp 23 and $N \xi$ atom of Lys28.

6.4.6. Binding free energy analysis between RSV and A β_{1-42} peptide monomer:

Using the MM-PBSA/GBSA techniques, we calculated the binding free energy of the ($\mathrm{A} \beta_{1-42}$ peptide monomer +RSV) complex. These methods provide information on the many contributions to free energies, such as van der Waals, electrostatic, and solvation energy, and they produce reliable results at a lower cost. The characteristics of the BFE profile employing MM-GBSA and MM-PBSA computations are described in Tables $\mathbf{6 . 5}$ and 6.6.The values of $\Delta \mathbf{G G b}_{\text {g_total }}$ and $\Delta \mathbf{G p b}_{\text {fotal }}$ for the ($\mathrm{A} \beta_{1-42}$ peptide + RSV) complex were observed to be $\mathbf{- 1 1 . 0 7} \mathbf{~ k c a l ~} \mathbf{~ m o l}^{-1}$ and $\mathbf{- 1 . 8 2} \mathbf{~ k c a l ~ m o l}{ }^{-1}$ respectively. The binding free energy values indicate that RSV is tightly bound to the $A \beta_{1-42}$ peptide monomer protein, and thus the formation of this complex is advantageous.

Table 6.5. The different energy components of the Binding Free Energy (kcal mol ${ }^{-1}$) evaluated by Molecular Mechanics-Generalized Borne Surface Area (MM-GBSA) approach for ($A \beta_{1-42}$ peptide + RSV) complex.

Energy components	COMPLEX	LIGAND	RECEPTOR	DELTA
	Energy (kcal mol $\left.{ }^{-1}\right) \pm$ SD	Energy (kcal mol $) \pm$ SD	Energy (kcal mol $) \pm$ SD	Energy (kcal mol $) \pm$ SD
$\mathbf{E}_{\text {vdW }}$	-231.35 ± 7.32	0.0602 ± 0.85	-216.67 ± 6.73	-14.74 ± 1.44
$\mathbf{E}_{\text {ele }}$	-2998.10 ± 16.44	67.32 ± 0.82	-3064.59 ± 16.13	-0.83 ± 1.71
$\mathbf{E}_{\text {GB }}$	-819.83 ± 9.71	-30.69 ± 0.48	-796.19 ± 9.58	7.05 ± 1.77
$\mathbf{E}_{\text {SURF }}$	30.03 ± 0.28	2.73 ± 0.01	29.84 ± 0.19	-2.54 ± 0.21
$\mathbf{G}_{\text {gas }}$	-3229.46 ± 14.74	67.38 ± 1.05	-3281.26 ± 13.97	-15.58 ± 2.80
$\mathbf{G}_{\text {solv }}$	-789.80 ± 9.66	-27.95 ± 0.48	-766.35 ± 9.55	4.51 ± 1.61
$\mathbf{G B}_{\text {Total }}$	-4019.26 ± 13.36	39.42 ± 1.34	-4047.61 ± 12.83	$\mathbf{- 1 1 . 0 7} \pm \mathbf{1 . 5 7}$

[^0]Table 6.6. The different energy components of the Binding Free Energy (kcal mol ${ }^{-1}$) evaluated by Molecular Mechanics-Poisson-Boltzmann Surface Area (MM-PBSA) approach for ($A \beta_{1-42}$ peptide $+R S V$) complex.

Energy components	COMPLEX	LIGAND	RECEPTOR	DELTA
	Energy (kcal mol $) \pm$ SD	Energy (kcal mol $) \pm$ SD	Energy (kcal mol ${ }^{-1} \pm$ SD	Energy (kcal mol $) \pm$ SD
$\mathbf{E v d W}$	-231.35 ± 7.32	0.06 ± 0.85	-216.67 ± 6.73	-14.74 ± 1.44
$\mathbf{E}_{\text {ele }}$	-2998.10 ± 16.44	67.32 ± 0.82	-3064.59 ± 16.13	-0.83 ± 1.71
$\mathbf{E}_{\text {PB }}$	-842.94 ± 8.34	-31.93 ± 0.31	-817.72 ± 8.19	6.71 ± 1.41
$\mathbf{E}_{\text {NP }}$	413.78 ± 1.86	27.15 ± 0.08	399.57 ± 1.70	-12.94 ± 1.02
$\mathbf{E}_{\text {dis }}$	-331.24 ± 2.02	-26.90 ± 0.16	-324.33 ± 1.57	19.99 ± 0.87
$\mathbf{G}_{\text {gas }}$	-3229.46 ± 14.74	67.38 ± 1.05	-3281.26 ± 13.97	-15.58 ± 2.80
$\mathbf{G}_{\text {solv }}$	-760.40 ± 8.54	-31.68 ± 0.29	-742.48 ± 8.48	13.76 ± 1.69
$\mathbf{P B}_{\text {ToTAL }}$	-3989.86 ± 11.35	35.69 ± 1.07	-4023.74 ± 10.72	$\mathbf{- 1 . 8 2} \pm \mathbf{2 . 1 5}$

*Abbreviations mentioned under Table 5.4; SD: Standard Deviation.

6.4.7. Per-residue energy decomposition (PRED) analysis:

The contribution of specific residues to the BFE has been investigated in depth to better understand the protein-ligand binding process. To generate the residue-ligand interaction spectrum, the BFE is decomposed in terms of interacting residue-ligand pairs, as shown in Figures 6.13 and 6.14. The residue breakdown approach is very useful for explaining the protein-ligand binding process at the atomic level and assessing the contribution of individual residues to binding free energy. The PRED values were computed using MM-PBSA/GBSA module of the AMBER 14 software package.

Figures 6.13 and 6.14 depict plots of the binding free energy calculated using the MM-PBSA/MM-GBSA method and the PRED analysis, respectively. From the Figures $\mathbf{6 . 1 3}$ and 6.14, we observed the residues Val 36, Gly 29, Leu 34, Ile 32, Val 24, Lys 28, Phe 20 , Met 35, Ile 31, Val 40, and Ala 30 from the $A \beta_{1-42}$ peptide monomer were predominantly involved in the interaction with RSV.

Figure 6.13. Per-residue energy decomposition (PRED) plots for the interface residues of ligand (RSV) and receptor $A \beta_{1-42}$ peptide calculated by MM-PBSA method

Figure 6.14. Per-residue energy decomposition (PRED) plots for the interface residues of ligand (RSV) and receptor $A \beta_{1-42}$ peptide calculated by MM-GBSA method.

6.5. Conclusion:

This study was performed to investigate the structural and dynamic changes undergone by the $A \beta_{1-42}$ peptide monomer when it binds to RSV and the consequent effects of RSV upon the aggregation properties of the $A \beta_{1-42}$ peptide. The analysis of secondary structure along with the conformational studies show that the binding of RSV
with the $A \beta_{1-42}$ peptide causes an increase in the helical content in the structure of the $A \beta_{1-42}$ peptide. The BFE results show a high binding affinity of RSV with the $A \beta_{1-42}$ peptide. The BFE value obtained through the MM-PBSA algorithm is $\mathrm{GB}_{\text {total }}=-11.07$ $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ and the BFE value obtained through the MM-GBSA algorithm is $\mathrm{PB}_{\text {total }}=-1.82$ $\mathrm{kcal} \mathrm{mol}{ }^{-1}$). Moreover, it is observed from the RMSD results that the ligand RSV is rigid and stable in its conformation bound to the $\mathrm{A} \beta_{1-42}$ peptide monomer because of the steric restrictions from the nearby atoms of the receptor. The PRED analysis using the MMPBSA/GBSA algorithm reveals that the receptor and ligand binding affinity is unquestionably high, and the residues that are responsible for their intermolecular interaction are Val 36, Gly 29, Leu 34, Ile 32, Val 24, Lys 28, Phe 20, Met 35, Ile 31, Val 40, Ala 30 found in the $A \beta_{1-42}$ peptide monomer.

Another important inference of this study throws insight into the interaction of RSV with residues Asp 23 and Lys 28 that plays a significant impact in reducing the tendency of formation of toxic amyloid oligomers and fibrils. The D23-K28 salt bridge interaction is destabilized in the ($\mathrm{A} \beta_{1-42}$ peptide +RSV) complex and this in turn highlights lower aggregation tendency of the $\mathrm{A} \beta_{1-42}$ peptide monomer in the presence of RSV. The salt-bridge distance between residues Asp 23 and Lys 28 in the $A \beta_{1-42}$ peptide monomer (apo) is within the given range ($4.6 \AA$) and incase of ($\mathrm{A} \beta_{1-42}$ peptide +RSV) complex, it is much higher than the given range as seen from the conformational snapshot for apo and complex. Hence, it is observed that the salt-bridge distance between residues Asp 23 and Lys 28 present in $\mathrm{A} \beta_{1-42}$ peptide increases in the presence of small molecule RSV. Therefore, it may be inferred that RSV is an important factor in preventing $A \beta_{1-42}$ peptide aggregation and may be a potential drug candidate for AD treatment.

[^0]: *Abbreviations mentioned under Table 5.4; SD: Standard Deviation.

