I dedicate this thesis to my beloved parents (Maa and Deuta), who have been my source of inspiration and my constant pillars of strength. I am forever indebted to them for all their sacrifices in making me what I am today.

To my loving parents.....

I hereby declare that the thesis entitled "Inhibition approaches of Amyloid- β and *a-Synuclein amyloidogenic aggregation: an In-silico study*" has been submitted to Tezpur University in the Department of Molecular Biology and Biotechnology under the School of Sciences for partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology.

I am the sole author of this thesis. This is a true copy of an original work carried outby me including any required final revisions, as accepted by my examiners.

Further, I declare that no part of this work has been reproduced elsewhere for award of any other degree.

Date :

Place: Tezpur University

Registration No.: TZ154896 of 2015

Priyanka Borah

तेजपुर विश्वविद्यालय /TEZPUR UNIVERSITY (संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament) DEPARTMENT OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY तेजपुर–784028:: असम / TEZPUR – 784028 :: ASSAM

Dr. Venkata Satish Kumar Mattaparthi Assistant Professor E-mail: <u>venkata@tezu.ernet.in</u> Ph.no: +91-8811806866(M) +91-3712-275443(O) Fax: +91-3712-267005/6

CERTIFICATE OF THE PRINCIPAL SUPERVISOR

This is to certify that the thesis entitled "Inhibition approaches of Amyloid- β and α -Synuclein amyloidogenic aggregation: an In-silico study" submitted to the School of Sciences Tezpur University in part fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of research work carried out by Ms. Priyanka Borah under my supervision and guidance.

All helps received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree/diploma.

Date: Place: Tezpur University, Tezpur (Dr. Venkata Satish Kumar Mattaparthi) Supervisor

तेजपुर विश्वविद्यालय /TEZPUR UNIVERSITY (संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament) DEPARTMENT OF MOLECULAR BIOLOGY AND BIOTECHNOLOGY तेजपुर–784028:: असम / TEZPUR – 784028 :: ASSAM

CERTIFICATE OF THE EXTERNAL EXAMINER AND ODEC

The committee recommends for the award of the degree of Doctor of Philosophy.

Signature of:

Principal Supervisor Date: External Examiner Date: First and foremost, I bow down my head to the **almighty God** for good health, wellbeing and for blessing me with immense patience that were necessary to complete this journey of Ph.D. successfully.

I would not have been able to complete this degree without the support of numerous people, for which I would like to acknowledge their support. First, I would like to express my sincerest gratitude towards my supervisor **Dr. Venkata Satish Kumar Mattaparthi**, for taking a chance on me and giving me freedom in my research and for his consistent encouragement that I have received throughout the research work. Under his guidance, I successfully overcame many difficulties and learned a lot. He always kept faith in me and guided me through the right direction whenever I needed it the most. At the same time, his constructive criticism and constant vigilance inspired me to perform better. My deep gratitude goes to him for all his dedication and steadiness during the writing of the thesis. I whole-heartedly thank him for everything.

I would also like to thank **Prof. Robin Doley**, the Head of the Department of MBBT, Tezpur University, and my Doctoral Committee members – **Prof. S.K. Ray, Dr. R. Mukhopadhyay, and Dr. S. Dasgupta**, Department of MBBT, Tezpur University, for their insight, comments, and valuable suggestions during my Ph.D. tenure.

I would like to acknowledge all other faculty members in the Department of MBBT, Tezpur University for their help and encouragement and the technical and the non-teaching staffs of the Department for their technical support. I would like to take this opportunity to thank Tezpur University for providing me with the state of the art infrastructure and facilities for advanced research.

I would like to acknowledge the financial support provided by **Tezpur University** and **DST (INSPIRE)** for the DST-INSPIRE JRF and SRF Fellowships (IF190310) to carry out my research work is duly acknowledged.

No word would be enough for expressing my gratitude towards lab mates in MOMO Lab: Mary Ba, Himakshi Ba, Airy Ba, Sushmita Di, P.K. Da, Dorothy and Chainee, for their immense help and support in the lab works and personal time. Heartfelt thanks to all the project students (Gariyoshi, Navamallika, Pallav, Krishna, Ambika, Barsha, Hrishikesh and Ayon) for their help and support.

I would like to express my gratitude to my **batchmates and friends** for supporting me in many occasions during this work and for all the time we spent together.

I extend my sincere gratitude to the special person of my life, my best friend and my fiancé, **Sidharth**, for being the driving force of this journey with all his unwavering moral and emotional support both professionally and personally. I am deeply thankful to him for helping me in the toughest time of this tenure and for being a source of positivity throughout.

Above ground, my biggest thanks of all goes to my **mother** and my **father** for their fulltime support and unconditional love and for giving me a meaningful life. Love you both.

I thank all those people who have helped me in some way or the other whose names I may have missed out.

Priyanka Borah

List of Tables

Table No.	Chapter 2	Page No.
2.1	Neurodegenerative diseases associated with the protein	11
	misfolding mechanism	
	Chapter 4	
4.1	Summary of the number of sodium and chloride ions added	78
	in the preparation of the three different ionic concentrations	
	of NaCl for the molecular dynamics simulation of $A\beta_{1\text{-}42}$	
	peptide monomer	
4.2.	Intramolecular Hydrogen bond occupancy of $A\beta_{1-42}$ peptide	85
	at 0 M NaCl solution	
4.3	Intramolecular Hydrogen bond occupancy of $A\beta_{1-42}$ peptide	87
	at 0.15 M NaCl solution	
4.4	Intramolecular Hydrogen bond occupancy of $A\beta_{1-42}$ peptide	88
	at 0.30 M NaCl solution	
4.5	Comparison of diffusion coefficient values for $A\beta_{1\text{-}42}$	91
	peptide at different ionic concentrations of NaCl (0 M, 0.15	
	M and 0.30 M) solution	

Chapter 5

5.1	List of top 10 docked clusters of (A β_{1-42} peptide + A β_{1-42}	98
	peptide) complex along with their members based on their	
	weighted score from ClusPro online docking server	
5.2	List of top 10 docked clusters of (A β_{1-42} peptide + CTerm)	100
	complex along with their members based on their weighted	
	score from ClusPro online docking server	
5.3	Calculated binding free energy MM-GBSA and MM-PBSA	106
	values for the (A β_{1-42} - A β_{1-42}) Homodimer complex.	
5.4	Calculated binding free energy MM-GBSA and MM-PBSA	107

Tables		
	values for the (A β_{1-42} - CT _{erm}) Heterodimer complex	
5.5	Interface statistics of $A\beta_{1-42}$ - $A\beta_{1-42}$ peptide Homodimer complex.	110
5.6	Interface statistics of $A\beta_{1-42}$ -CTerm Heterodimer complex	110
	Chapter 6	
6.1	Physico-chemical properties of Resveratrol (RSV)	114
6.2	Secondary structure content of the $A\beta_{1-42}$ peptide monomer(apo) and ($A\beta_{1-42}$ peptide monomer + RSV) complex	123
6.3	Inter-molecular Hydrogen bonds between RSV and $A\beta_{1-42}$ peptide monomer present in ($A\beta_{1-42}$ peptide monomer + RSV) complex	126
6.4	Interactions of residues of $A\beta_{1-42}$ peptide(receptor) with RSV (ligand) obtained from Ligplot+ software	133
6.5	The different energy components of the Binding Free Energy (kcal mol ⁻¹) evaluated by Molecular Mechanics- Generalized Borne Surface Area (MM-GBSA) approach for (A β_{1-42} peptide + RSV) complex.	142
6.6	The different energy components of the Binding Free Energy (kcal mol ⁻¹) evaluated by Molecular Mechanics- Poisson–Boltzmann Surface Area (MM-PBSA) approach for (A β_{1-42} peptide + RSV) complex. Chapter 7	143
7.1	Diffusion coefficient comparison for α-Synuclein at non- crowded and crowded environment Chapter 8	159
8.1(A).	Inter-molecular Hydrogen bond occupancy between ligand and receptor components of (α -synuclein-K84s) complex considering K84s peptide as hydrogen donor and α - synuclein as hydrogen acceptor	169

bles		
8.1(B)	Inter-molecular Hydrogen bond occupancy between ligand	169
	and receptor components of (α -synuclein-K84s) complex	
	considering α -synuclein as hydrogen donor and K84s	
	peptide as hydrogen acceptor	
8.2(A)	Inter-molecular Hydrogen bond occupancy between ligand	169
	and receptor components of (α -synuclein-K102s) complex	
	considering K102s as hydrogen donor and α -synuclein as	
	hydrogen acceptor	
8.2(B)	Inter-molecular Hydrogen bond occupancy between ligand	170
	and receptor components of (α -synuclein-K102s) complex	
	considering α -synuclein as hydrogen donor and K102s as	
	hydrogen acceptor.	
8.3(A)	List of atom-atom interactions (4 Hydrogen bonds) across	171
	the protein-protein interface in (α -synuclein-K84s peptide)	
	complex from PDBsum server	
8.3(B)	List of atom-atom interactions (41 Non-bonded contacts)	171
	across the protein-protein interface in $(\alpha$ -synuclein-K84s	
	peptide) complex from PDBsum server	
8.4	Interface statistics of (α -synuclein-K84s) complex.	172
8.5(A)	List of atom-atom interactions (9 Hydrogen bonds) across	173
	the protein-protein interface in (α-synuclein-K102s	
	peptide) complex from PDBsum server	
8.5(B)	List of atom-atom interactions (78 Non-bonded contacts)	173
	across the protein-protein interface in $(\alpha$ -synuclein-K102s	
	peptide) complex from PDBsum server	
8.5(C)	List of atom-atom interactions (2 salt-bridges) across the	175
	protein-protein interface in (α-synuclein-K102s peptide)	
	complex from PDBsum server	
8.6	Interface statistics of (α -synuclein-K102s) complex	175
8.7	The various components of the Binding Free Energy (kcal	179
	mol ⁻¹) calculated by Molecular Mechanics-Generalized	

	Borne Surface Area (MM-GBSA) method for (α-synuclein-	
	K84s) complex	
8.8	The various components of the Binding Free Energy (kcal	179
	mol ⁻¹) calculated by Molecular Mechanics-	.,,
	Poisson-Generalized Borne Surface Area (MM-GBSA)	
	method for (α -synuclein-K102s) complex	
	Chapter 9	
9.1.	Physico-chemical properties of Oleuropein aglycone (OleA)	186
9.2	Interactions of residues of α -synuclein (receptor) with	199
	OleA(ligand) obtained from Ligplot ⁺ software	
9.3	Secondary structure content of the α -synuclein (apo) and (α -	201
	synuclein + OleA) complex showing the secondary contents	
	of α -helix, β -sheets, Turns, 3_{10} -helix, Coils, and Pi	
9.4	Intra- molecular Hydrogen bond occupancy between NAC	202
	and C-terminal domain of α-synuclein (apo)	
9.5	Intra-molecular Hydrogen bond occupancy between NAC	204
	and C-terminal domain of (α -synuclein + OleA) complex	
9.6	The various components of the Binding Free Energy (kcal	209
	mol ⁻¹) calculated by Molecular Mechanics-	
	Poisson-Boltzmann Surface Area (MM-PBSA) method for	
	(α-synuclein+OleA) complex.	
9.7	The various components of the Binding Free Energy (kcal	210
	mol ⁻¹) calculated by Molecular Mechanics-	
	Generalized-Born Surface Area (MM-GBSA) method for	
	(a-synuclein+OleA) complex	
9.8(A)	The various components of the Binding Free Energy (kcal	211
	mol ⁻¹) calculated by Molecular Mechanics-Generalized	
	Borne Surface Area (MM-GBSA) method between (α -	
	synuclein+OleA) complex (for Simulation II)	212
9.8(B)	The various components of the Binding Free Energy (kcal	212
	mol ⁻¹) calculated by Molecular Mechanics-	

Tables		
	Poisson–Boltzmann Surface Area (MM-PBSA) between (α-	
	synuclein+OleA) complex (for Simulation II)	
9.9(A)	The various components of the Binding Free Energy (kcal	213
	mol ⁻¹) calculated by Molecular Mechanics-Generalized	
	Borne Surface Area (MM-GBSA) method between (α -	
	synuclein+OleA) complex (for Simulation III)	
9.9(B)	The various components of the Binding Free Energy (kcal	214
	mol ⁻¹) calculated by Molecular Mechanics-	
	Poisson–Boltzmann Surface Area (MM-PBSA) between (α-	
	synuclein+OleA) complex (for Simulation III)	

List of Figures

Figure No.	Chapter 2	Page No.
2.1	Energy landscape of protein folding and misfolding	5
2.2	Schematic representation of protein aggregation mechanism	7
2.3	Factors affecting the protein aggregation mechanism	7
2.4	Normal brain vs Alzheimer's disease brain	13
2.5	The formation process of amyloid beta plaques from the cleavage	17
	of the APP: a hypothetical pathway	
2.6	Clinical symptoms associated with Parkinson's disease progression	25
2.7	Schematic representation for mechanisms of α S aggregation and	28
	propagation	
2.8	Schematic representation of the 3-D structure of α S along with	30
	the three different structural components	
2.9	Potential mechanisms linking A β and α S pathology	40
	Chapter 3	
3.1	Schematic illustration of the main contribution to the potential	47
	energy function.	
3.2	Periodic boundary conditions in two dimensions. The simulation	51
	cell (dark color) is surrounded by translated copies of itself (light	
	color).	
3.3	Schematic flowchart of steps involved in MD Simulation	52
3.4	Schematic representation of TIP3P water model.	54
3.5	A schematic one-dimensional energy surface. Minimization	55
	methods move downhill to the nearest minimum.	
3.6	A line search is used to locate the minimum in the function in the	56
	direction of the gradient.	
3.7	Computational schemes of the binding free energies based on	60
	MM- PBSA/GBSA. The free energies colored in black are	
	directly calculated, while the free energy of interest colored in	
	blue is indirectly did using the thermodynamic cycle of other free	

Figure		
	energies.	
3.8	Computational schemes of the binding free energies based on MM-	63
	PBSA/GBSA. The free energies colored in black are directly	
	calculated; while the free energy of interest colored in blue is	
	indirectly did using the thermodynamic cycle of other free energies	
3.9	Ligplot+ analysis showing the interaction of hydrophobic residues	69
	of α-Synuclein with OleA	
	Chapter 4	
4.1	(A) Temperature, (B) Pressure and (C) Energy plots of $A\beta_{1-42}$	78
	peptide as a function of simulation time for the 0 M NaCl	
	system.	
4.2	Comparative MD analyses of (A) Root mean square deviation,	81
	(B) Radius of gyration, (C) Root mean square fluctuation, and	
	(D) Solvent accessible surface area of $A\beta_{1-42}$ peptide in the three	
	different ionic concentrations of NaCl (0 M, 0.15 M and 0.30 M).	
4.3	Probability score of secondary structure for $A\beta_{1-42}$ peptide in	82
	different ionic concentrations;(1) 0 M NaCl, (2) 0.15 M NaCl,	
	and (3) 0.30 M NaCl solution.	
4.4	Conformational snapshots of $A\beta_{1-42}$ peptide monomer in three	83
	different ionic concentrations of NaCl (0 M, 0.15 M and 0.30 M)	
	at different time intervals of simulation time.	
4.5	Average structures of A β_{1-42} peptide at 0, 0.15 and 0.30 M NaCl	83
	solution.	
4.6	Hydrogen Bond analyses for $A\beta_{1-42}$ peptide monomer in three	84
	different ionic concentrations of NaCl (0 M, 0.15 M and 0.30 M)	
	as a function of simulation time in picoseconds.	
4.7	Mean Square Deviation vs Time (ps) plot of $A\beta_{1-42}$ peptide at 0	91
	M, 0.15 M and 0.30 M NaCl solution.	
	Chapter 5	
5.1	Top 10 representative docked models for $(A\beta_{1-42} \text{ peptide} + A\beta_{1-42})$	97

5.1 Top 10 representative docked models for $(A\beta_{1-42} \text{ peptide} + A\beta_{1-42}$ 97 peptide) complex obtained from ClusPro online docking server.

		Figure
5.2	Top 10 representative docked models for (A β_{1-42} peptide +	99
	CTerm) complex obtained from ClusPro online docking server	
5.3	Potential of Mean force as a function of the reaction coordinates	104
	for the showing the association of $A\beta_{1-42}/A\beta_{1-42}$ (homodimer) and	
	$A\beta_{1-42}$ /CTerm (heterodimer) (kcalmol ⁻¹).	
5.4	Snapshots of (A β_{1-42} peptide + A β_{1-42} peptide) Homodimer	104
	complex structures at discrete distance of separation (in Å)	
	during the course of simulation from 1 Å to 23 Å.	
5.5	Snapshots of (A β_{1-42} +CTerm) Heterodimer complex structures at	105
	discrete distance of separation (in Å) during the course of	
	simulation from 1 Å to 23 Å.	
5.6	Schematic representation of interacting residues of $A\beta_{1-42}$ peptide	109
	(PDB ID: 1IYT) with residues of $A\beta_{1-42}$ peptide (homodimer	
	state), and CTerm of human albumin (PDB ID: 5FUO) with	
	residues of A β_{1-42} peptide (heterodimer state).	
	Chapter 6	
6.1	A schematic illustration demonstrating the construction of	115
	docked complex from $A\beta_{1-42}$ peptide (PDB ID-1IYT) and	
	Resveratrol (RSV).	
6.2	Top 10 representative docked models for (A β_{1-42} peptide + RSV)	115
	complex generated by Patchdock along with their rankings based	
	on their Atomic Contact Energies (ACE), score and area.	
6.3	(A)Energy, (B) Temperature, and (C) Pressure plots of (A β_{1-42}	117
	peptide + RSV) complex system as a function of simulation time.	
6.4	Ligplot analysis showing the interaction of hydrophobic residues	118
	of A β_{1-42} peptide with RSV.	
6.5	RMSD Vs simulation time calculated for Resveratrol (RSV).	120
6.6	Comparative Molecular Dynamics analysis of (A) Root mean	122
	square deviation, (B) Root mean square fluctuation, (C) Solvent	
	accessible surface area, and (D) B-factor for $A\beta_{1\text{-}42}$ peptide	
	monomer (apo), and (A β_{1-42} peptide monomer+ RSV) complex.	

ıre		
6.7	Secondary structure analysis of (A) $A\beta_{1-42}$ peptide monomer	123
	(apo), (B) (A β_{1-42} peptide monomer+ RSV) complex.	
6.8	Snapshots of the conformers of $A\beta_{1-42}$ peptide monomer obtained	125
	at different time interval during the course of simulation time:	
	(A) A β_{1-42} peptide monomer (apo), (B) (A β_{1-42} peptide monomer+	
	RSV) complex.	
6.9	The total number of intra-molecular hydrogen bonds found in the	126
	structures of A β_{1-42} peptide monomer (apo) and (A β_{1-42} peptide	
	monomer+ RSV) complex.	
6.10	The entire number of intra-molecular hydrogen bonds found in	126
	(A β_{1-42} peptide monomer + RSV) complex with (A) considering	
	RSV as donor and $A\beta_{1-42}$ peptide as acceptor and (B) considering	
	$A\beta_{1-42}$ peptide as donor and RSV as acceptor.	
6.11	Distance distributions between Asp23 and Lys28 residues for	141
	salt-bridge formation in A β_{1-42} peptide (apo) in black and (A β_{1-42}	
	peptide monomer+ RSV) complex in red. The distance is	
	measured in Angstroms between the C γ atom of Asp23 and N ξ	
	atom of Lys28.	
6.12	The salt bridge distance between Asp23 and Lys28 residues	141
	calculated from MD simulation for a particular conformer in (A)	
	$A\beta_{1-42}$ peptide (apo) and (B) ($A\beta_{1-42}$ peptide monomer + RSV)	
	complex. The distance is measured in Angstroms between the $C\gamma$	
	atom of Asp23 and Nξ atom of Lys28.	
6.13	Per-residue energy decomposition (PRED) plots for the interface	144
	residues of ligand (RSV) and receptor $A\beta_{1-42}$ peptide calculated	
	by MM-PBSA method.	
6.14	Per-residue energy decomposition (PRED) plots for the interface	144
	residues of ligand (RSV) and receptor A β_{1-42} peptide calculated	
	by MM-GBSA method.	

		Figure
	Chapter 7	
7.1(A).	Conformational snapshots of α -Synuclein Monomer (control)	150
	structure from 0 ns to 100 ns of simulation time period.	
7.1(B).	Conformational snapshots of 5PEG-a-Synuclein Monomer	151
	structure from 0 ns to 100 ns of simulation time period	
7.1(C).	Conformational snapshots of 10PEG-a-Synuclein Monomer	152
	structure from 0 ns to 100 ns of simulation time period.	
7.2.	Root Mean Square Deviation (RMSD) analysis with respect to	153
	simulation time period for (A) a-Synuclein (control), (B) 5PEG-	
	α-Synuclein and (C) 10PEG-α-Synucleinstructure.	
7.3.	Root Mean Square Fluctuation (RMSF) analysis with respect to	154
	simulation time period for (A) a-Synuclein (control), (B) 5PEG-	
	α -Synuclein and (C) 10PEG- α -Synuclein structure.	
7.4.	Radius of Gyration (R_g) analysis with respect to simulation time	155
	period for (A) α -Synuclein (control), (B) 5PEG- α -Synuclein and	
	(C) 10PEG-α-Synuclein structure.	
7.5.	Probability of secondary structure with respect to residue indices	156
	for (A) α-Synuclein (control) Monomer, (B) 5PEG-α-Synuclein	
	and (C) 10PEG- α -Synuclein structure throughout the simulation	
	period.	
7.6.	Secondary structure analysis with respect to residue indices for	157
	(A) α -Synuclein (control) Monomer, (B) 5PEG- α -Synuclein and	
	(C) 10PEG- α -Synuclein structure throughout the simulation	
	period.	
	Chapter 8	
8.1.	Schematic representation of the interaction of K84s and K102s	163
	peptides with α -synuclein as shown in (A) and (B) respectively.	
8.2.	Molecular Dynamics analysis of Root mean square deviation	165
	(RMSD) with respect to time period for the (α -synuclein-K84s)	
	complex for (A) peptide (K84s) and (B) α -synuclein	

8.3.	Molecular Dynamics analysis of Root mean square deviation	166
	(RMSD) with respect to time period for the (α -synuclein-K102s)	
	complex for (A) peptide (K102s) and (B) α -synuclein on their	
	Atomic Contact Energies (ACE), score and area.	
8.4.	Molecular Dynamics analysis of Root mean square fluctuation	167
	(RMSF) with respect to time period for the (α -synuclein-K84s)	
	complex for (A) peptide (K84s) and (B) α-synuclein.	
8.5.	Molecular Dynamics analysis of Root mean square fluctuation	168
	(RMSF) with respect to time period for the (α -synuclein-K102s)	
	complex for (A) peptide (K102s) and (B) α -synuclein.	
8.6.	Schematic representation of interacting residues of (A) K84s	176
	with residues of α -synuclein and (B) K102s with residues of α -	
	synuclein	
8.7.	Schematic representation of (a-synuclein-K102s) complex	176
	showing the residues of α -synuclein interacting with K102s	
	peptide	
8.8.	Probability score of the residues of α -synuclein of (α -synuclein-	178
	K84s) complex	
8.9.	Probability score of the residues of α -synuclein of (α -synuclein-	178
	K102s) complex	
8.10.	Per-residue energy decomposition (PRED) plots for the interface	181
	residues of K84s in the (α -synuclein-K84s) complex calculated	
	by MM-GBSA method.	
8.11.	Per-residue energy decomposition (PRED) plots for the interface	181
	residues of α -synuclein in the (α -synuclein-K84s) complex	
	calculated by MM-GBSA method.	
8.12.	Per-residue energy decomposition (PRED) plots for the interface	182
	residues of K102s in the (α -synuclein-K102s) complex calculated	
	by MM-GBSA method.	
8.13.	Per-residue energy decomposition (PRED) plots for the interface	182
	residues of α -synuclein in the (α -synuclein-K102s) complex	
	calculated by MM-GBSA method.	

		Figure		
Chapter 9				
9.1.	Schematic representation showing the formation of docked	187		
	complex from α -synuclein (PDB ID-1XQ8) and Oleuropein			
	aglycone (OleA).			
9.2.	Top 10 representative docked models for (α -synuclein + OleA)	187		
	complex generated by Patchdock along with their rankings based			
9.3	(A) Temperature, (B) Pressure, and (C) Energy plots of (α -	189		
	Synuclein + OleA) complex system as a function of simulation			
	time.			
9.4.	Comparative Molecular Dynamics analysis of (A) Root mean	192		
	square deviation, (B) Radius of gyration, (C) Solvent accessible			
	surface area, and (D) B-factor for α -synuclein (apo), and (α -			
	synuclein + OleA) complex.			
9.5.	A) Average RMSD at each block versus block size in	193		
	picoseconds B) Standard deviation for the RMSD at each block			
	size versus block size in picoseconds for the α -synuclein (apo)			
	Molecular dynamics trajectory.			
9.6.	A) Average RMSD at each block versus block size in	194		
	picoseconds B) Standard deviation for the RMSD at each block			
	size versus block size in picoseconds for the (α -synuclein +			
	OleA) complex Molecular dynamics trajectory			
9.7.	Snapshots of the conformers of α -synuclein taken at different	196		
	interval of simulation time (A) α -synuclein (apo), (B) (α -			
	synuclein + OleA) complex.			
9.8.	Ligplot analysis showing the interaction of hydrophobic residues	197		
	of α-synuclein with OleA.			
9.9.	Snapshots of the conformers (from simulation-II) of α -synuclein	198		
	taken at different interval of simulation time (A) α -synuclein			
	(apo), (B) (α -synuclein + OleA) complex.			
9.10.	Snapshots of the conformers (from simulation-III) of α -synuclein	198		
	taken at different interval of simulation time (A) α -synuclein			
	(apo), (B) (α -synuclein + OleA) complex.			

gure		
9.11.	Secondary structure analysis of (A) a-synuclein (apo), (B) (a-	200
	synuclein + OleA) complex. Secondary structure Probability	
	score of residue index for (C) α -synuclein (apo), (D) (α -synuclein	
	+ OleA) complex.	
9.12.	The total number of intra-molecular hydrogen bonds present in	202
	whole structure for (A) α -synuclein (apo), (B) (α -synuclein +	
	OleA) complex. The total number of intra-molecular hydrogen	
	bonds between NAC and C-terminal domain in (C) α -synuclein	
	(apo), (D) (α-synuclein + OleA) complex.	
9.13.	(A) Long-range hydrophobic interactions in the NAC domain of	205
	α -synuclein (apo) and (α -synuclein + OleA) complex, (B) Long-	
	range hydrophobic interactions between the NAC and C-terminal	
	domain of α -synuclein (apo) and (α -synuclein + OleA) complex.	
9.14.	Distance analysis between NAC and C-terminal domain of α -	206
	synuclein with respect to time in the presence and absence of	
	OleA.	
9.15.	Intra-molecular distance analysis (from simulation-II) between	207
	NAC and C-terminal domains as a function of simulation time	
	for the α -synuclein (apo) and (α -synuclein + OleA) complex.	
9.16.	Intra-molecular distance analysis (from simulation-III) between	207
	NAC and C-terminal domains as a function of simulation time	
	for the α -synuclein (apo) and (α -synuclein + OleA) complex.	
9.17.	$\Delta\Delta$ Gbind of various energy components in A) MM-PBSA and B)	215
	MM-GBSA method of Binding free energy calculation of (α -	
	synuclein + OleA) complex.	
9.18.	Per-residue energy decomposition (PRED) plots for the interface	216
	residues of ligand (OleA) and receptor α -synuclein calculated by	
	MM-GBSA/PBSA method.	

LIST OF ABBREVIATIONS

Å	Angstrom
ACE	Atomic contact Energy
AD	Alzheimer's Disease
ALS	Amyotrophic Lateral Sclerosis
αS	Alpha Synuclein
AMBER	Assisted Model Building with EnergyRefinement
Αβ	Amyloid-Beta
APP	Amyloid Precursor Protein
BBB	Blood brain Barrier
BFE	Binding free energy
CHARMM	Chemistry at HARvard Macromolecular
	Mechanics
CNS	Central Nervous System
CircRNA	Circular RNA
CoM	Centre of Mass
CPPTRAJ	A rewrite of PTRAJ in C++
CTerm	C-Terminal
3-D	3-Dimensional
DALY	Diability Adjusted Life Years
DBS	Deep Brain Simulation
DNA	Deoxyribonucleic Acid
FAD	Familial Alzheimer's Disease
FF99SB	Force-field 99 Stony Brook
GAFF	General Amber force field
GB	Generalized Born
GBSA	Generalized Born Surface Area
HA	Human Albumin
IAPP	Islet amyloid polypeptide
IDP	Intrinsically Disordered Protein
IDPR	Intrinsically Disordered Protein Region
LB	Lewy Body
MD	Molecular Dynamics

ABBREVIATIONS

miRNA	MicroRNA
MM	Molecular Mechanics
ns	nanosecond
NMR	Nuclear Magnetic Resonance Spectroscopy
OleA	Oleuropein Aglycone
ps	picosecond
PB	Poisson-Boltzmann
PBC	Periodic boundary conditions
PBSA	Poisson-Boltzmann Surface Area
PD	Parkinson's Disease
PDB	Protein Data Bank
PEG	Polyethylene Gycol
PME	Particle Mesh Ewald
PMF	Potential of Mean Force
PPI	Protein-protein interaction
PRED	Per-residue energy decomposition
PRR	Proline-Rich Region
PSEN	Presenilin
PTM	Post Translational Modification
PME	Particle Mesh Ewald
PTRAJ	Short for Process TRAJectory
RCSB	Research Collaboratory for StructuralBioinformatics
REMD	Replica Exchange Molecular Dynamics
Rg	Radius of Gyration
RMSD	Root Mean Square Deviation
RMSF	Root Mean Square Fluctuation
RNA	Ribonucleic Acid
ROS	Reactive Oxygen Species
RSV	Resveratrol
SASA	Solvent-accessible surface area
TABFO	Toxic Amyloid Beta Fibrillar Oligomer
TIP3P	Transferable Intermolecular Potential Three-
	point

ABBREVIATIONS

UCSF	University of California, San Francisco
UniProt	Universal Protein Resource
US	Umbrella Sampling
VMD	Visual Molecular Dynamics
WHAM	Weighted Histogram Analysis Method
WHO	World Health Organization
WT	Wild Type

This thesis is partly based on the following original communications:

- Borah, P. and Mattaparthi, V. S. K. Insights Into Resveratrol as an Inhibitor Against Aβ1-42 Peptide Aggregation: A Molecular Dynamics Simulation Study, *Current Chemical Biology*,2022.DOI: <u>http://dx.doi.org/10.2174/2212796817666221221141713</u>
- Borah,P., Sanjeev, A., and Mattaparthi, V.S.K. Computational investigation on the effect of Oleuropein aglycone on the α-Synuclein aggregation. *Journal of Biomolecular Structure and Dynamics*, 39(4), 1249-1270, 2020. DOI: https://doi.org/10.1080/07391102.2020.1728384
- Dutta, N., Borah, P., and Mattaparthi, V. S. K. Effect of CTerm of Human albumin on the aggregation propensity of Aβ₁₋₄₂ peptide: A Potential of mean force study. *Journal* of Biomolecular Structure and Dynamics, 39(4),1-18, 2020. DOI: https://doi.org/10.1080/07391102.2020.1730970
- Borah, P. and Mattaparthi, V. S. K. Computational investigation on the role of C-Terminal of human albumin on the dimerization of Aβ₁₋₄₂ peptide. *Biointerface Research in Applied Chemistry*, 10(1), 4944-4944, 2020. DOI: <u>https://doi.org/10.33263/BRIAC101.94494</u>
- 5. **Borah, P.** and Mattaparthi, V. S. K. Effect of ionic strength on the aggregation propensity of Aβ₁₋₄₂ peptide: an *In-silico* study, *Current Chemical Biology*, 14, 216-226, 2020. DOI: http://dx.doi.org/10.2174/2212796814999200818103147
- Borah, P. and Mattaparthi, V. S. K. Computational Investigation on the Interaction Sites of the K84s and K102s Peptides with α-Synuclein for Understanding the Anti-Aggregation Mechanism . Current Biotechnology, 2023. DOI: <u>http://dx.doi.org/10.2174/2211440112666230331104839</u>

In addition, this thesis also contains unpublished data.

CONFERENCE PROCEEDINGS

- Borah, P and Mattaparthi, V.S.K. "An *In-silico* study of the role of Resveratrol on Aβ₁₋₄₂ peptide aggregation" National Seminar on "Excitements in Biological Research" held at Department of MBBT, Tezpur University on 6th March, 2023. (Oral Presentation, 3rd Prize).
- [2] Borah, P and Mattaparthi, V.S.K. "Computational Investigation on the effect of Polyethyene Glycol as crowding agent on the conformational dynamics of α-Synuclein" National Seminar on "Research at the Interface of Chemical, Biological and Material Sciences", Held at Department of Chemical Sciences, Tezpur University on 10th March, 2023. (Oral Presentation).
- [3] Borah, P and Mattaparthi, V.S.K. "An in-silico investigation on the role of oleuropein aglycone on the aggregation propensity of α-synuclein" the India-12th India-Japan Science and Technology Conclave: International Conference on Frontier Areas of Science and Technology (ICFAST-2022) held at the University of Hyderabad on September 09-10, 2022. (Poster Presentation).
- [4] Borah, P. "Awareness and Sensitization" Programme on "Good Academic Research Practices" held at the Dept. of MBBT, Tezpur University in association with UGC on 11 Dec, 2021.