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   PREFACE  

v 
 

In the pursuit of addressing the continuously growing needs in the field of polymer science 

and technology, extensive research is conducted on waterborne polyurethanes (WPUs) and 

their nanocomposites (WPUNCs) to assess their adaptability and usefulness across a wide 

range of applications. Among these endeavors, the creation of smart WPUs and WPUNCs by 

judicial molecular engineering and incorporating carbon-based nanomaterials demonstrate 

significant promise for high-performance applications, thanks to their exceptional and 

distinctive properties. Again, contemporary circumstances have underscored the 

importance of "going green" and embracing "sustainability" in scientific research, in 

response to the global ecological challenges linked to the polymer industry. Hence, current 

endeavors are dedicated to the development of environmentally friendly, economically 

feasible, and industrially robust WPUs and WPUNCs by utilizing renewable resources such 

as vegetable oil, glycerol, etc. These materials are suitable for a wide range of advanced 

applications with smart features like shape memory, self-healing, photoluminescence, and 

so forth. 

 Hence, this work introduces a novel perspective on the development of 

environmentally friendly, high-performance WPUs and WPUNCs derived from renewable 

resources, exhibiting unique properties and holding significant potential for various 

contemporary applications. 
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6.8 Representative live-dead stained micrographs of human 
dermal fibroblasts on day 7 when cultured on (a) Mo@S-CN 
nanohybrid coated surfaces, (b) SHWPU/NS-1.5 and (c) 2D 
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control tissue culture dishes. (i) Merged image, (ii) represent 
the live (green channel) cells and (iii) represent the dead (red 
channel) cells. Representative phalloidin-DAPI stained 
micrographs of human dermal fibroblasts on day 7 when 
cultured on (d) Mo@S-CN nanohybrid coated surfaces, (e) 
SHWPU/NS-1.5, and (f) 2D control tissue culture dishes. (i) 
Show merged images, (ii) represent the nucleus (blue 
channel) of the cells, and (iii) represent the cytoskeleton 
(green channel) of the cells 

6.9 (a) and (b) Representative unstained micrographs of human 
dermal fibroblasts under various excitations; (i) 365 nm 
excitation, (ii) 470 nm excitation, (iii) 545 nm excitation, (iv) 
brightfield images, and (v) merged images 
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6.10 (a) Encryption application of the luminescent image in the 
virtual military scenario, the appearance of the word “APNL” 
written by using SHWPU/NS1.5 dispersions in the presence of 
(b) white light, (c) UV-365 nm, and (d) UV-254 nm light 
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