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The advent of science and technology has bestowed upon humanity some amazing 

innovations that cannot be overlooked in the present times. Synthetic polymers, especially 

epoxy resins, are a prime example of such inventions whose impact can be realized in 

every facet of material science. In the contemporary world, there is a substantial 

consumption of commercial epoxy for preparing daily commodities, often without an 

awareness of the hazardous outcomes associated with the overuse of these petro-based 

commercial epoxies. However, to ameliorate the toxicity issues and circumvent the 

inherent brittleness of commercial epoxy systems, significant research interest has been 

concentrated on exploring replenishable resources as ingredients for producing epoxy. 

With regard to this instance, polyhydric phenols, especially tannins which are exclusively 

harvested from plant components, emerge as viable candidates for developing eco-friendly 

epoxy systems. The initial part of this thesis exemplified the same by using tannic acid to 

synthesize a bio-based epoxy with strong performance capabilities. The subsequent 

sections of the content delve into the fabrication of sustainable and robust composite 

systems, embracing bio-based epoxy and exciting nature-derived additives including 

microfibers, cellulose nanofibers, and iron oxide-decorated cellulose nanofibers. The 

biocomposites and nanocomposites thus fabricated were examined for some aspiring 

applications, for example, microfiber-containing biocomposites as environmentally 

durable structural materials, functionalized cellulose nanofiber-fused nanocomposites as 

anticorrosive coatings, iron oxide-cellulose nanofiber-based nanocomposites as pH 

sensitive antibacterial drug-releasing systems, etc. 

Therefore, this work unveils new insights into the development of sustainable, 

high-performance epoxy composites, encompassing some exclusive multifunctional 

features that render their engagement in a wide array of scenarios. 
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