
Chapter 1

Introduction

Association rule mining is the process of uncovering the relationships or connec-

tions among a set of items. Association rule mining algorithms have been used

in many diverse applications like Market Basket Analysis, Stock, Network, Neu-

roscience, etc. The development of new technologies has led to an exponential

increase in the amount of data. A huge amount of data is generated in the digital

world with applications such as social networks, stock markets, e-banking, eco-

nomics, agriculture, education, medical [44], fraud detection [42], e-commerce,

teaching[82], monitoring system [71]. Due to the increase in the size of the

database, the importance of storing such valued information has become a neces-

sity. Many businesses have adapted to digitisation generating gigantic amounts of

data every nanosecond. There is a need to store the data for maintaining, process-

ing, accessing, manipulating, and analyzing. A huge amount of storage is needed

for storing such voluminous data [67].

Association rule mining algorithms are used to find all the interconnec-

tions or the relations of all the items in a dataset satisfying the constraints. The

constraints are user-specified and it includes support and confidence metrics. The

association rule mining problem is split into two subproblems. The first problem

is to discover all the itemsets that satisfy a user-defined threshold in the dataset.

These itemsets are called the frequent itemsets. The second one is to produce the

rules from these frequent itemsets that satisfy the constraint, of minimum con-

fidence. Such algorithms used for discovering and determining the patterns and

trends are the Apriori Algorithm, FPTree algorithm, ECLAT algorithm, etc[1]

[47].
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1.1 Association Rule Mining (ARM)

Let T={t1, t2, t3..., tn} be the number of transactions where each transaction

contains a set of itemsets I= { i1, i2, i3..., in}. Each itemset contains a group of

items or elements. The association rule is a method of inferring the items in the

form of A → B, where A and B ⊆ I. The itemset A, B contains a set of items.

The item A is called the antecedent whereas the item B is called the consequent.

The rule A → B means that in the same transaction if the items A occur then

the items B also appear.

The user-defined constraints; support and confidence are required for the

process of generating the association rules. The database is very large and users are

often concerned with only those itemsets that are frequent. Thus, the user defines

the threshold for support and confidence so that the uninteresting or irrelevant

rules may be dropped. The patterns are extracted from the database as rules. A

rule is considered interesting if it satisfies both the minimum threshold of support

and confidence.

1.2 Background Literature

The problem of mining the association rule is quite intensive. Thus, it is neces-

sary to implement efficient algorithms [38]. Algorithms such as SETM Algorithm

use only simple database operations like merge-scan join and sorting [41]. Other

fast algorithms used for mining association rules proposed include AIS algorithm

[1], Apriori algorithm [2], DHP algorithm [62], OCD algorithm [73], Incremental

Temporal Association Rules Mining (ITARM) Algorithm [31].

Association rule mining was introduced by Agarwal et al.,[1]. Various researchers

tried to attempted to solve the problem of association rule mining in different

ways. The approach focuses on the frequent itemset generated with candidate

generation. The Apriori algorithm is used for the generation of frequent itemset

with candidate generation. Depending on the value of the support threshold, the

candidate itemset whose support count satisfies the constraint is considered as the

frequent itemset. This process continues until there are no frequent itemsets left.

The itemsets can be used for demonstrating the relationship of the items that are

in the form of rules, IF ELSE based on condfidence[1]. In the paper[8], Bodon et.

al uses a trie data structure for Apriori Algorithm. A trie is a hash tree that has

a pointer that points to the node and the root is at depth 0. This trie uses array

2



1.2. Background Literature

and vector for implementation. The nodes in the hash tree are in sorted order.

For the process of transversing, a linear search is used to find the searched item.

The process of candidate generation becomes faster if the nodes are sorted since it

is easier to perform the union operation and search for the itemset. Using a hash

table, the searching technique is also improved. For computing a large dataset, an

algorithm called Carma is introduced. The algorithm generates the large itemsets

and provides the user the flexibility of choosing the support count only at the first

scan. It outperforms the Apriori and DIC algorithms at lower thresholds [40].

GA-PPARM uses the algorithm Frequent Pattern method to mine the

rules. In the first phase, the FP-Growth algorithm generates the association rules

by using the metrics confidence. The generated association rules are then used for

processing using the GA to produce the preserved privacy association rule keeping

in view the sensitive rules [54]. IFTARMFGT is an algorithm proposed that

combines the pros of the boolean matrix and incremental mining. In the beginning,

the time series is transformed to discrete which includes the time intervals with

fuzzy membership. Then, the boolean matrices concept was incorporated into the

fuzzy membership for generating a fuzzy grid table to mine the itemsets. In the

end, fuzzy temporal association rules are mined. The updation is done without

scanning repeatedly the database and inherits the previous mining information

[77].

An improved version of the previous Crow Search Algorithm (CSA) known

as the NDCSA-CAR algorithm for mining the Class Association Rules from the

dataset that is collected from gathered from the survey [39]. A fast algorithm

was discovered for mining the association rules for temporal data based on the

support of anti-monotonicity. The algorithm is divided into steps, discovering the

frequent association rules and reliability of the rules. The algorithm used the two

strategies, joining and pruning method [26].

An algorithm known as TM (Transaction Mapping) algorithm compresses

the transaction ids of each itemset to transaction intervals [70]. The itemset are

mapped and compressed to continuous transaction intervals using a tree. The

intersection time is saved by this compression. However, this algorithm does not

perform well as compared to FP growth. BIN - Tree is one of the data structures

introduced by Rai et al. that represents the dataset in a compact form. Each

transaction is stored as a node in the tree. This data structure is used to discover

all the rare frequent itemsets in the main memory[65]. A novel algorithm was

introduced for mining itemsets to solve the problem of scalability. The itemset

tree compresses all the closed itemsets and a proposed search technique is used
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to prune the tree. A fuzzy set-based frequent itemset mining algorithm (FSFIM)

was introduced for mining the frequent itemsets and generation of the association

rules expressed in the form of items. The itemsets in the dataset are categorized

into three levels:- low, medium, and high depending on the item’s quantity. Then,

the item is classified into a category where each category is depicted as a fuzzy set.

The number of generated patterns is less as compared to conventional methods

[6]. SufRec is an algorithm that uses a suffix tree for the process of construction

of a tree. The process of mining is divided into a series of tasks. The first part is

called the SufRecDep algorithm which employs the outcome of the previous and

the second part i.e., the SufRecInd algorithm which accomplishes and completes

the task independently. The algorithm recursively works on updating the process

of mining when new items are excluded or added [58].

A novel algorithm called the Weighted Binary Count Tree (WBIN ) is im-

plemented in CUDA to find the rules with the combination of frequent consequent

and rare antecedent by using the parallel approach. However, the performance of

the algorithm is low when the dataset with very large size or dimensions. The

WBIN tree is a tree data structure that stores the data in memory. The node

in the tree represents each transaction and every item is represented using a bit.

However, the efficiency of the algorithm is limited by bounded by the dimension of

the GPU during the process of mining [66]. A novel prediction model for generat-

ing itemsets based on the different objectives: non-defective class rules, defective

class rules, and association relationships using features. During the process of

mining the itemsets, the itemsets combine the selection of features to find the fea-

ture combination using mutual information. The correlation coefficient is further

employed to portray the relation between the defect classes and the features [79].

1.3 With Candidate Generation

In association rule mining, there are two ways of generating frequent item sets:

with candidate generation and without candidate generation. In candidate gen-

eration, the candidate itemsets are used for the generation of frequent itemsets.

Some of the issues faced in the candidate generation phase are as follows:-

� Consumption of memory space

When the database is large, a huge number of candidate itemsets are gen-

erated. Suppose 1-itemset generated by Apriori algorithm is 104 1-itemsets,
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then it will generate 107 2-candidate itemsets. Furthermore, to produce a

frequent pattern of itemset size 100, it will generate at most 2100≈ 1030 can-

didates in total. Thus, storing a large number of candidate itemsets becomes

an issue if memory is limited [35].

� Time consumption

The performance of the algorithm depends on time consumption for run-

ning the algorithm. Association rule mining algorithm usually consumes a

significant amount of time for its execution as it involves scanning the large

database for computing the frequent itemsets[1].

� Identifying the threshold value

When the database size increases, the threshold for support count needs to

be adjusted. There is no appropriate index to define the threshold value.

The main issue for setting the threshold is that it needs expert knowledge

to set the parameter. The current mining techniques require the user to

specify the parameters before executing the method. The user has to wait

until the execution to adjust the parameters [72]. Sometimes, if the wrong

threshold is given, the algorithm has to re-run again from the start. Since

the algorithm cannot stop while running, this will take a long time for the

algorithm to execute especially when the database is very large[23][1][72].

1.4 Without Candidate Generation Phase

Without candidate generation phase is a phase where the frequent itemsets are

generated without producing the candidate itemsets. Some of the challenges faced

during the generation of frequent itemsets without candidate itemsets generation.

� Construction of tree

Creating an FP tree is unrealistic if the database size is very large. Traversing

the FP tree is easy if the trees can fit in the main memory but it is impractical

if it is not available in the memory as additional costs will be incurred for

swapping operation [37].

� Selection of support threshold

Choosing a good support threshold is dependent on the user’s query. If 60%

of the query has a support threshold greater than 50%, threshold=50 can

be assigned. For the remaining 40%, a new FP will be constructed. This
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creates a problem because every time FP tree will be constructed depending

on the user’s query.

Moreover, if the support count is too low, the FP Tree becomes infeasible.

There is an overhead for pointers and links which increases the overhead of

the FP tree. In such cases, the performance of FP Tree will be the same as

Apriori [37].

� Rule redundancy

If the support threshold is too low and the database size is large, many item-

sets will be generated. From these itemsets, rules will be created. If there

are millions of itemsets, then there will be redundancy in rule generation

[37].

1.5 Problem Statement

The problem statement is to design a scheme that is concise and efficient for

representing an itemset in the memory. If the memory for a single itemset can

be minimized then the total memory needed for the remaining itemsets will also

be minimized. If the representatin using bitmap can represent any set which is a

subset of a universal set with the cardinality 400, only 400 bits are needed. These

38 bytes can be treated as a sequence of 50 bit longer integer array. These 400

bit long integer is treated as an array of 50 characters or 10 system given integers

taking a total memory of 50 bytes. Therefore, to represent the set of 400 elements,

linked list consume (4+4 * 400) 3200 bytes, array representation takes (4 * 400)

1600 bytes and bit representation will used 50 bytes. The rule mining algorithms

attempts to find the frequent itemsets which is subset of the items in the dataset.

Many set operations are utilised during the process of mining such as union, set

difference, membership checking, intersection, etc. A 50 bytes long integer can be

designed to handle the set operations, then representation will benefit the process

of mining.

1.6 Motivation

Most of the existing work depends on support and experts for all situations to

generate minimum possible itemsets [14], [23],[71], [80]. The threshold value for

the support count has to be specified by the user in advance that sometimes require
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some experts knowledge on certain domain. By using the proposed algorithm, it

helps filtering the result depending on the user choice that may help the user to

use association rule mining without too much detail of the domain. However, if

we try to maintain all possible itemsets, huge amount of memory will be needed.

out to be large. If the database consists of more than a million transactions, then

storing itemsets becomes an issue because it requires more memory. Another issue

of the association rule mining algorithm is mining the datasets without accessing

the secondary memory. The dataset must fit into the main memory to enable

frequent scanning of the dataset. This saves the repetitive loading of the itemsets

from the disk and the I/O costs. The existing algorithms use either the linked list

or array representation to represent the itemsets. While representing as a linked

list, the space requirement may be 5 bytes for each element assuming that each

element item is represented as a symbol but using this scheme, sets of more than

256 cannot be represented. Moreover, to represent one element, a total of 8 bytes

will be used by the computer (though only 5 bytes are required by the system) due

to word alignment. However, same 1600 bytes can be used to represent a set having

200 elements but from a universal set with cardinality 232-1, by simply assuming

every element to be an integer. This representation may be useful for set with

smaller cardinality. Array representation can be used only for finite set (universal

set has fixed number of elements). If the universal set size ≥ 256 to represent any

random set coming from this, a minimum 256 bytes is needed (1 byte for each

element) but this representation will fail to represent sets with cardinality ≥ 256.

To handle this situation, every element must be considered as an integer. In this

case, domain size may be extended upto 232. If a set of maximum cardinality 300

is to be represented, then 1200 bytes is needed irrespective of cardinality of the

set that is stored at this moment. This representation will use same amount of

memory to represent the set irrespective of the elements present in the set.

1.7 Objective

Objective of the research

The objective of the thesis is to introduce a representation of the itemset that min-

imizes memory consumption. This representation of the itemset is incorporated

into the Apriori Algorithm. To achieve the above-said objective, the following

goals need to be fulfilled:-

� To define an itemset representation suitable for Association Rule Mining.
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� Improving Apriori Algorithm by using a proposed representation of itemsets.

� To develop a graph-based algorithm for maintaining the frequent item sets.

� To generate rules from the frequent itemsets that are represented using the

proposed itemset representation.

1.8 Organization of the Thesis

The thesis is organized as follows:

� Chapter 1 presents the research motivation in the thesis, the objective of the

research, and the organization of the thesis.

� Chapter 2 provides the literature survey of the different set representation

techniques, and generation of itemsets with candidate generation and with-

out candidate generation.

� Chapter 3 presents the proposed representation for Apriori Algorithm

– Incorporating the itemset representation for the Apriori

– Incorporating the searching techniques for the itemsets in the Apriori

Algorithm

� Chapter 4 presents the graph-based itemset algorithm. Motivation of the

proposed algorithm, proposed graph-based algorithm, and evaluation of the

proposed algorithm.

� Chapter 5 presents the different rule generation algorithms with the existing

representation and the rule generation algorithms with the proposed repre-

sentation.

� Chapter 6 concludes by summarizing the discoveries, illustrating the findings,

concluding the thesis, and enunciating the future directions of the work.
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