
Chapter 3

Proposed Representation of

Itemset

3.1 Motivation

Most of the researchers have focused their research on mining the itemsets to dis-

cover most of the researchers have focused their research on mining the itemsets

for discovering the relationship between the itemsets in large datasets[28]. The

dataset usually contains a huge number of transactions where each transaction

consists of each item. Mining the itemset is challenging when the search space

is large. If there are n number of distinct items, the search space will consist of

2n. Hence, researchers have introduced various data structures and algorithms for

optimizing the search space [29]. One solution is to implement the breadth-first

search algorithm in the mining algorithm. One such example is the well-known

Apriori Algorithm where the frequency of the items is achieved by scanning the

dataset every time for different sizes of candidate itemset. Unfortunately, when

the number of generated itemsets is large, the memory requirements to handle

such itemsets are overwhelming, and infeasible for an Apriori-based algorithm to

mine the itemsets on a single machine. Other approaches show that by increasing

the minimum threshold support, the count of generated candidate itemsets will

automatically reduce [69]. Secondly, current approaches tend to keep the output

and runtime under control by increasing the minimum frequency threshold, au-

tomatically reducing the importance of the number of candidates and frequent

itemsets. However, studies have revealed that the itemsets with low-frequency

count are more interesting [57]. the relationship between the itemsets in large

datasets[28]. The dataset usually contains a huge number of transactions where

17



Chapter 3. Proposed Representation of Itemset

each transaction consists of each item. Mining the itemset is challenging when

the search space is large. If there are n number of distinct items, the search space

will consist of 2n. Hence, researchers have introduced various data structures and

algorithms for optimizing the search space [29]. One solution is to implement the

breadth-first search algorithm in the mining algorithm. One such example is the

well-known Apriori Algorithm where the frequency of the items is achieved by

scanning the dataset every time for different sizes of candidate itemset. Unfortu-

nately, when the number of generated itemsets is large, the memory requirements

to handle such itemsets are overwhelming, and infeasible for an Apriori-based al-

gorithm to mine the itemsets on a single machine. Other approaches show that

by increasing the minimum threshold support, the count of generated candidate

itemsets will automatically reduce [69]. Secondly, current approaches tend to

keep the output and runtime under control by increasing the minimum frequency

threshold, automatically reducing the importance of the number of candidates

and frequent itemsets. However, studies have revealed that the itemsets with low

frequency. Most of the researchers have focused their research on mining the item-

sets to discover the relationship between the itemsets in large datasets[28]. The

dataset usually contains a huge number of transactions where each transaction

consists of each item. Mining the itemset is challenging when the search space

is large. If there are n number of distinct items, the search space will consist of

2n. Hence, researchers have introduced various data structures and algorithms for

optimizing the search space [29]. One solution is to implement the breadth-first

search algorithm in the mining algorithm. One such example is the well-known

Apriori Algorithm where the frequency of the items is achieved by scanning the

dataset every time for different sizes of candidate itemset. Unfortunately, when

the number of generated itemsets is large, the memory requirements to handle

such itemsets are overwhelming, and infeasible for an Apriori-based algorithm to

mine the itemsets on a single machine. Other approaches show that by increasing

the minimum threshold support, the count of generated candidate itemsets will

automatically reduce [69]. Secondly, current approaches tend to keep the output

and runtime under control by increasing the minimum frequency threshold, au-

tomatically reducing the importance of the number of candidates and frequent

itemsets. However, studies have revealed that the itemsets with low-frequency

count are more interesting [57]. count are more interesting [57].

So in practice, to represent a set of the size of 200 elements, memory of 1600 bytes

is used. However, the same 1600 bytes can be used to represent a set having 200

elements but from a universal set with cardinality 232−1, by simply assuming every

element to be an integer. This representation may be useful for sets with smaller

cardinality. Array representation can be used only for the finite set (a universal

18



3.2. Description of Proposed Representation

set has a fixed number of elements). If the universal set size ≥ is greater than 256

to represent any random set coming from this, a minimum of 256 bytes (1 byte for

each element) but this representation will fail to represent sets with a cardinality

of more than 256. To handle this situation, every element must be considered an

integer. In this case, domain size may be extended up to 232. If a set of maximum

cardinality 300 is to be represented, then 1200 bytes will be used irrespective of

the cardinality of the set that is stored at this moment. This representation will

use the same amount of effective memory to represent the set irrespective of the

elements present in the set.

If the bitmap representation is used to represent any set that is a subset of a uni-

versal set with the cardinality 300, only 300 bits are needed. These 38 bytes can

be treated as a sequence of 38 bytes longer integers. These 300-bit long integers

can be realized as an array of 38 characters or 10 system-given integers resulting

in a total memory requirement of 40 bytes. Hence, to represent 300 elements set,

the linked list will consume 2400 (i.e., 4+4 * 300) bytes, array representation will

need 1200 (i.e., 4 * 300) bytes and bit representation will require 40 bytes. The

rule mining algorithm attempts to find out the frequent itemsets that are a subset

of all the items present in the dataset. Since the number of items in the dataset

is finite, bit map representation can be used to represent any itemset. During the

mining process, many set-theoretic operations like checking membership, union,

intersection, difference, etc., have to be performed. If this operation can be de-

signed on an integer of 40 bytes long, then the representation will benefit the

mining process.

3.2 Description of Proposed Representation

The proposed itemset representation is represented in such a way that if an item is

present in the itemset then the item is marked by ’1’ and if the item is not present

in the itemset then the item is marked by ’0’. Each item in the itemset takes one

bit. If the maximum size of the domain set is 384, then a 384-bit long integer can

be visualized as 12 system-given integers with a total memory requirement of 48

bytes. An example of an itemset I ={1, 3, 5, 12, 17, 30, 31} is represented with

the help of a diagram in Figure 3-1. The set operations can be performed after

transforming the dataset into the proposed itemset representation. The bitwise

operators such as AND, NOT, and OR are used for performing the different set

operations. The set operations are those operations used in the association rule

mining process as follows:

19



Chapter 3. Proposed Representation of Itemset

Figure 3-1: Proposed itemset representation for the itemset I ={1, 3, 5, 12, 17,
30, 31}

Figure 3-2: Union operation of the itemset A = {1, 3, 5, 12, 17, 30, 31} and B=
{1, 3, 5, 13, 18, 29, 31}.

� Union operation: is performed by using OR operation on the two itemsets.

Each item is mapped to bit representation. The union operation is achieved

when each item from the one itemset is OR’ed with the item from another

itemset that takes only O(c). Suppose the first itemset contains A = {1,

3, 5, 12, 17, 30, 31} and the second set B= {1, 3, 5, 13, 18, 29, 31}. The

resultant set now is {1, 3, 5, 12, 13, 17, 18, 29, 30, 31} after performing the

union operation is shown in Fig 3-2.

� Superset and Subset operation: To check whether an itemset is a subset

or superset of another itemset. An itemset A is the subset of B if the

elements in A are elements of itemset B. For example, if itemset A = {1,

2} and itemset B ={1, 3, 4}, then itemset A can be considered as the

subset of B since all the elements of A {1, 2} are in itemset B. The oper-

ation of checking subset and superset using bitwise operation is implemented.

� Intersection operation: is accomplished by performing AND operation be-

tween the two itemsets. The operation takes only O(c) time as it uses only

bitwise operation instead of computing the process recursively to find the

intersection between the two itemsets. The bitwise operation of computing

intersection is shown as follows in Fig 3-3.

20



3.2. Description of Proposed Representation

Figure 3-3: Intersection operation of the itemset A = {1, 3, 5, 12, 17, 30, 31}
and B= {1, 3, 5, 13, 18, 29, 31}

� Membership operation: To find out whether an itemset is a member of

another itemset takes at least O(log n) in the worst case using array rep-

resentation. The proposed itemset representation uses a bitwise operation

making the process of searching faster instead of recursively searching for

such an itemset.

3.2.1 Dealing Numerical Attributes

In the dataset, each record or observation is expressed in terms of a feature or

a characteristic. These features or characteristics are called attributes. This at-

tribute ranges from one set of observations to another. These attributes can be

numerical or categorical. A numerical attribute is either an integer or a float data

type. This type of attribute contains a range of values.

The attribute can also be continuous. Since most of the data mining algorithms

usually work on discrete values, the dataset needs to be converted to discrete

values. The continuous attribute can be divided into intervals or ranges. Every

interval is considered as a discrete value where the original value is mapped with

the discrete value. Suppose the dataset consists of the following items as shown

in Figure 3-4. The attribute is divided into intervals such as 1st Attribute which

consists of 1.2, 1.3, and 1.9 can be mapped to 2, and 2nd Attribute which contains

23.1, 24.2, and 24.6 can be mapped to 25. The proposed itemset representation

stores the dataset in the form of ’1’ or ’0’ which takes only one bit per item. Sup-

pose an example of the itemset I1={1, 2, 25 } is to be stored, a 32-bit integer is

used. The items are not stored in the form of item values but in the form of the

bit where ’1’ denotes the presence of the item in the itemset and ’0’ is if the item

is absent from the itemset. An example is shown in Figure 3-5:

21



Chapter 3. Proposed Representation of Itemset

Figure 3-4: Dataset consisting of continuous values

Figure 3-5: Representation of the itemset I={1, 2, 25} using the proposed itemset
representation

3.2.2 Dealing Categorical Attributes

Categorical attributes represent a value or a condition of a particular attribute in

the instance data. Categorical attributes may consist of a set of discrete values

which are more than two values [76]. The data mining field is overwhelmed with a

huge amount of categorical attributes. To handle categorical attributes, they are

mapped to numerical attributes and the dataset can be applied to the association

rule mining algorithms. For example, an itemset that consists of I={’a’, ’b’, ’j’,

’z’} is mapped to numerical values. It can be represented as shown in Figure 3-6.

Figure 3-6: An example of a categorical dataset I={’a’, ’b’, ’j’, ’z’}

22



3.3. Theoretical Analysis

3.3 Theoretical Analysis

The numerical and categorical attributes are stored in the memory with the help

of a data structure. Depending on the type of data structure used, the amount

of memory required for storing these attributes will also vary. This plays an

important role because it affects the process of association rule mining. When the

dataset is very large, all the itemsets cannot be kept in the main memory. It will

require additional storage for storing the itemsets. Moreover, this process will just

take away time since time will be spent more on I/O operation.

3.3.1 Effect of Attribute Values on the size of a single item-

set

The attributes both categorical and numerical affect the size of the itemset. The

dataset is stored in the memory based on the number of attributes. The size of the

itemset will vary depending on the number of attributes present on the dataset.

If the number of attributes is 6, then the size of this itemset is 6. Hence, if the

number of attributes is large, the size of the itemset will also increase.

If the attribute is in numerical form, the attribute is stored based on the attribute

value. The numerical attribute will be stored as int or float value. Each int or

float takes 4 bytes for storage if an array representation is used. If the size of the

itemset is 6, I ={1, 5, 8, 23, 31}, then the amount of memory needed will be 24

bytes(i.e., 4 *6). If the number of elements is n, the memory consumed will be

4*n bytes since each item takes 4 bytes.

If the attribute value is categorical in form, then the attribute value can be mapped

to a numerical value that takes 4 bytes if array representation is used. Further-

more, if the attributes are stored in the form of characters then each character

takes one byte. If the number of attributes is 6 then the memory consumed is 6

bytes(i.e., 1*6).

3.3.2 Existing Representations

The itemset representation is stored using a data structure. A data structure

is a technique used for storing data efficiently in the computer. Different data

structures can be used to represent an itemset on the computer. Most of the

researchers have employed different types of data structures for representing the

23



Chapter 3. Proposed Representation of Itemset

Figure 3-7: Linked list representation of an Itemset I ={1, 3, 5, 12, 17, 30, 31}

Figure 3-8: Array representation of an Itemset I ={1, 3, 5, 12, 17, 30, 31}

itemsets. The most common data structures used for storing these itemsets are:

� Linked list: is one of the data structures used that is divided into two parts:

the first part contains the element and the second part contains a pointer

to the next element. To store an item using a linked list, 8 bytes will be

required i.e., 4 bytes for the element and another 4 bytes for the pointer.

Let’s say the dataset size is 12, and the number of generated candidate

itemsets would be 212 ≈ 4096. To store the candidate itemsets, the memory

consumption would be 8(4+4) * 4096 = 32768 bytes. The association rule

mining algorithms such as FP-growth algorithm [36], Trie-based Apriori [9],

Transaction Mapping Algorithm [70]. Each item in the itemset is accessed

using a pointer causing a delay in the mining process. Another disadvantage

of using a linked list is that it also takes up more memory since for each

item an additional 4 bytes are needed for pointer[50]. An example is shown

in Fig 3-7 where an itemset I ={1, 3, 5, 12, 17, 30, 31} is represented using

a linked list. This scheme may be found useful to represent the set of lower

cardinality but if the cardinality of the range is too big the space overhead

increases linearly as the cardinality increases.

� Array: contains successive blocks where each block can store only one ele-

ment. The element in the array is accessed using an index and each block

is of the same size [51]. When the cardinality of the set is 12, the number

of generated candidate itemsets would be 212 ≈ 4096. The total memory

consumption for generated itemsets is 4*4096 = 8192 bytes. H-mine is one

such algorithm that uses array representation for itemset representation [64].

Another algorithm implemented by Gosta Grahne et.al also uses an array

for the FP tree algorithm to enhance the performance[34].

An itemset I ={1, 3, 5, 12, 17, 30, 31} can be represented using the array

representation shown in Figure 3-8.

24



3.3. Theoretical Analysis

Figure 3-9: Bitmap representation of an Itemset I ={1, 4, 5, 13, 16, 17, 31}

� Bitmap: is a bit string of bits containing one bit per attribute value [22].

Each bit is represented as ’1’ if the element is present and ’0’ if the element is

absent [7]. Suppose the number of generated items is 4096, then the amount

of memory consumed will be 4096 * 1 bit = 512 bytes. Takeaki Uno et al.[75]

have combined the three types of data structures such as prefix tree, array,

and bitmap. A bitmap is marked by ’1’ using a matrix if the element is

present. The prefix tree stores the sequences representing the trial starting

from the leaf to the root. Another bitmap-based representation is introduced

by Chen et al.,[11]. The database is scanned only once and the itemset is

represented as a bit string. If the dataset contains the four items {1, 2, 3, 4},

the itemsets are {},{1}, {2}, {3}, {4}, {1, 2}, {2, 3}, {1, 3}, {1,4}, {2,4}, {3,

4},{1, 2, 3},{2, 3, 4}, {1, 2, 4}, {1, 3, 4}, {1, 2, 3, 4}. The itemsets are rep-

resented using 3 bitmap representation as {0000}, {0001}, {0010},{0100},

{1000}, {0011}, {0110}, {0101},{1001}, {1010} ,{1100}, {0111}, {1110},

{1011}, {1111}. The memory consumption is O(2n). However, the repre-

sentation can only handle 32-bit integer-size itemsets. Zaki et al., use the

vertical bitmap representation of itemset where each item in the transaction

is represented by the value ’1’ and ’0’, if otherwise. By applying the AND

operation of the items, the itemset {i, j, k} is mapped to bit representation.

However, this representation cannot be used when the size of the itemset is

larger than 64 [81]. An example of the itemset I ={1, 4, 5, 13, 16, 17, 31}
using bitmap representation is shown in Figure 3-9.

3.3.3 Proposed Representation

In the proposed itemset representation, the itemset can be represented using an

integer array. The dataset is mapped to bit representation where an item is marked

’1’ if it is present and ’0’ if it is absent. The integer array size will be controlled

by the highest cardinality set. Each item on the transaction is stored in the form

of bit ’1’ or ’0’ depending on the presence and absence of the item. For a set size

greater than 256 characters, then the integer bit array can be represented as 10

system-given integers. An example of the representation of the itemset is shown

in Figure 3-10.

25



Chapter 3. Proposed Representation of Itemset

Figure 3-10: Itemset I= { 1, 5, 10, 19, 23, 28, 31}represented using proposed
itemset representation

After mapping the dataset to the proposed itemset representation, the set

operations such as subset, intersection, superset, and membership are performed.

Theoretically, it is evident from the previously mentioned representation that the

array representation consumes less memory since only four bytes are used for

each item as compared to the linked list representation that consumes more than

8 bytes(4 bytes for an element + 4 bytes for the pointer). Hence, the array

representation is preferable to the linked list representation. For that reason, the

comparison of the proposed itemset representation with the array representation

of the set will be presented in the thesis. The time complexity of the different set

operations using an array and proposed itemset representation is shown in Table

3.1.

Time Complexity Array representation (if the
array is ordered)

Proposed Itemset
Representation

Subset Max(m,n) O(c)
Superset Max(m,n) O(c)
Membership O(n) O(c)
Union O(m+n) O(c)
Intersection O(m+n) O(c)
Set difference O(m+n) O(c)

Table 3.1: Time Complexity of Array and proposed itemset representation

As per Table 3.1, for example, the union operation in array representation

takes the complexity of Max(m,n) where m,n is the number of elements in the first

and second itemset respectively where each element consumes 4 bytes each. The

operation in array representation is done based on the value of the attribute. The

process of performing the union operation is done by iterating through both arrays

starting from the index 0 to maximum(m, n) where the elements in both arrays are

compared and then added to the set. The proposed itemset representation takes

O(c) where c represents the number of memory words (32 bits, 64 bits) and each

element consumes only 1 bit. The union operation using the proposed itemset

representation is performing bitwise OR operation between the two arrays which

is done at the bit level. Hence, operation using array representation may slow

26



3.4. Evaluation of the Performance of Proposed Representation for
Apriori Algorithm

down the operation as compared to the proposed itemset representation.

3.4 Evaluation of the Performance of Proposed

Representation for Apriori Algorithm

Theoretically, the time complexity of the set operations using the proposed item-

set representation is less than the array representation as shown in Table 3.1.

These set operations are used in the process of mining the itemsets by different

algorithms. One such algorithm is the Apriori algorithm.

3.4.1 Apriori Algorithm

The Apriori Algorithm has become the foundation of the association rule mining

algorithms. It was introduced by Agarwal. Many researchers have attempted to

enhance the performance of the algorithms. The Apriori Algorithm works on the

principle that if the ”itemset is large then its subset is also large.”

The Apriori Algorithm is divided into two parts:-

� To generate the frequent itemsets from the dataset.

� To generate the rules from the generated frequent itemsets.

In the beginning, the dataset is scanned to discover the frequency of the itemset.

The itemsets are called Large itemsets L. These are generated starting with the

itemset size 1. At level 1, the large itemset is L1. The large itemset with the same

cardinality is joined to generate the next itemsets. These itemsets are now called

the candidate itemsets C2. At the (k − 1)th level, the Lk−1 itemsets are joined

to generate the Lk. The union operation of the itemsets that belong to Lk−1

is considered only when the itemsets share the common first k-2 itemsets. The

support count of all the itemsets in Ck is calculated by scanning the dataset. The

itemset that has a support count equal to or greater than the minimum threshold

support count is called a frequent itemsets. The itemsets available in Ck that have

a support count more or equal to minimum support are designated as members of

Lk and the remaining are dropped. This process of generation of candidates and

finding the frequent itemsets continues till Ck becomes empty.

These frequent itemsets are then used for the generation of rules. The rules are

27



Chapter 3. Proposed Representation of Itemset

Figure 3-11: Union operation of itemset I1= {1, 3, 6, 11, 18, 29, 31} and I2 ={1,
2, 6, 13, 18, 30, 31} generates I1 ∪ I2 ={1, 2, 3, 5, 6, 11, 13, 18, 29, 30, 31}

generated depending on confidence. The frequent itemsets whose confidence count

is less than the threshold will not be considered.

3.4.2 Incorporating the Itemset Representation for the

Apriori and its variants

The array and proposed itemset representation are incorporated in the Apriori

Algorithm.

3.4.2.1 Itemset Generation

According to the Apriori Algorithm, the itemset with the same cardinality is

self-joined to generate the next level itemset. Using the proposed itemset repre-

sentation, the union operation is performed between the two itemsets to generate

the next itemset. The union operation is performed using bitwise operators that

take O(c) time. For example, union operation between the two itemsets I1= {1,

3, 6, 11, 18, 29, 31} and I2 ={1, 2, 6, 13, 18, 30, 31} generates I1 ∪ I2 ={1, 2, 3,

5, 6, 11, 13, 18, 29, 30, 31} as shown in Figure 3-11.

3.4.2.1.1 Performance Analysis of Existing Techniques

The array representation is incorporated for the Apriori Algorithm. The

process of generating itemsets is implemented using array representation including

the set operations. The set operations such as union, subset, superset, intersec-

tion, and membership are tested in the array representation. The operations are

done based on the attribute value. Since the operation is done on the value of

the item, the set operations take time due to the process of searching, finding

duplicates, and merging each item. Therefore, representing the itemsets using the

28



3.4. Evaluation of the Performance of Proposed Representation for
Apriori Algorithm

array representation will slow down the process of generating the frequent item-

sets. Furthermore, the size of each item is 4 bytes. If the dataset consists of an

itemset whose size is 4096, then the memory consumed is 4 *4096 = 16384 bytes.

Now, if the generated itemsets are huge and a single computer is used then these

itemsets may not fit in it. An additional memory requirement is needed for such

cases. The I/O operations may further delay the process of mining the itemsets.

A 4GB RAM 64-bit computer is used for experimenting using the synthetic

dataset. The three datasets used are as follows:

� First dataset: contains 50 attributes with 1000 transactions. The experiment

is run with support count= 1%, 2.5%, and 5%.

� Second dataset: has 50 attributes and a size of 2000 records.

� Third dataset: consists of attributes of 50 with a size 3000 number of trans-

actions.

The experiments are performed on the three datasets. The itemsets are generated

using the Apriori Algorithm. The time and memory consumption are recorded

with different support count=1%, 2.5%, and 5%.

3.4.2.1.2 Performance Analysis of Proposed Techniques

The proposed itemset representation is integrated into the Apriori Algo-

rithm. The set operations are computed using the bitwise operations that work

on the array at the individual bits. Typically, bitwise operations are considerably

quicker than division, multiplication, and addition. Using the proposed itemset

representation, the process of generating the frequent itemsets will be reduced.

Each item in the proposed itemset representation takes only one bit. If the size

of the highest cardinality of the itemset is 4096, then the memory consumption is

only 512 bytes. The proposed itemset representation is tested on the three datasets

based on the different support counts. The time and memory consumption with

different-sized support counts and datasets are also measured.

3.4.2.2 Proof of Correctness

The experiments are performed using the existing representation i.e., array repre-

sentation and the proposed itemset representation for the process of mining the

29



Chapter 3. Proposed Representation of Itemset

Sl.No Support Dataset Itemset Representation
count Size Array Proposed Itemsets

Representation Representation
Number of generated itemsets

2nd 3rd 4th 5th 2nd 3rd 4th 5th

1 1 1000 48 22 7 1 48 22 7 1
2 2.5 1000 38 14 3 - 38 14 3 -
3 5 1000 6 - - - 6 - - -
4 10 1000 - - - - - - - -
5 1 5000 48 22 7 1 48 22 7 1
6 2.5 5000 41 21 6 1 41 21 6 1
7 5 5000 1 - - - 1 - - -
8 10 5000 - - - - - - - -
9 1 20000 41 21 6 1 41 21 6 1
10 2.5 20000 41 21 6 1 41 21 6 1
11 5 20000 41 21 6 1 41 21 6 1
12 10 20000 1 - - - 1 - - -

Table 3.2: Number of generated itemsets using Array and Proposed itemset rep-
resentation

itemsets. The number of generated itemsets produced by the array and the pro-

posed itemset representation are also measured. Depending on the size of the

datasets and the support count, the number of generated itemsets is shown in

Table 3.2 above: As seen from Table 3.2 above, at each level the number of gener-

ated itemsets is the same for the Apriori algorithm using both the array and the

proposed itemset representation. Hence, the Apriori algorithm using the proposed

itemsets representation is correct.

3.4.2.3 Proof of Completeness

The generated itemsets that are represented using the proposed itemset represen-

tation and the array representation are measured at each level. The maximum

length of the itemset extracted from the different datasets is shown in Table 3.3.

From Table 3.3, it is observed that the maximum length of the generated itemsets

represented using the array representation is the same as those represented using

the proposed itemset representation. Therefore, the Apriori Algorithm represented

using the proposed itemset representation is complete. A compact bitmap repre-

sentation of a set supported by the corresponding implementation of the different

set-theoretic operations are used in the different stages of rule mining. The Apriori

algorithm was supported by the proposed itemset representation. The experimen-

30



3.4. Evaluation of the Performance of Proposed Representation for
Apriori Algorithm

Sl.No Dataset Maximum length of generated frequent itemsets
Size Array Proposed Itemsets

Representation Representation
1 1000 5 5
2 5000 5 5
3 20000 5 5

Table 3.3: Number of itemsets generated with maximum length using Array and
Proposed itemset representation from different Dataset

Figure 3-12: The time(millisecond) and memory(kilobits) consumption using
the proposed itemset representation and the array representation

tal results are shown in figure 3-12. The proposed representation outperforms the

array representation of itemsets significantly when used in the Apriori algorithm

concerning time and memory consumption.

3.4.3 Incorporating the Searching Techniques for Itemsets

in the Apriori Algorithm

The itemsets are generated and maintained for each level with multiple lists based

on the support count. The itemsets whose support count is less than the mini-

mum threshold are dropped, whereas the ones that are greater than the minimum

threshold will be added to the next level. Before adding the itemsets to the list,

redundant itemsets need to be removed. To remove redundancy, the itemset is

31



Chapter 3. Proposed Representation of Itemset

searched in the list whether the itemset is already present on the list or not.

For this purpose, a searching technique is used for searching the itemsets. The

commonly used search techniques are linear and binary search.

3.4.3.1 Performance Analysis of Linear Search Technique used in

Apriori Algorithm

The linear search technique searches for an item consecutively one after another

item. It starts its operation by searching for the item from the first position on

the list and continues the searching till it finds the searched item or it reaches the

last item on the list.

The linear search is incorporated into the Apriori algorithm. The synthetic

datasets are used for testing the improvised Apriori Algorithm. These synthetic

datasets consist of three different sizes.

� First dataset: The dataset consists of 1000 transactions.

� Second dataset: consists of 5000 transactions.

� Third dataset: consists of 20000 transactions.

The memory and time consumption for the itemsets represented using an array and

the proposed itemset represented by the improvised Apriori Algorithm is shown

in Figure 3-13, 3-15, 3-16, 3-18.

As seen from the results, it is evident that the linear search incorporated in

the Apriori Algorithm using the proposed itemset representation exploits that of

the array representation.

3.4.3.2 Performance Analysis of Binary Search Techniques used in

Apriori Algorithm

The binary search technique is used for locating a value in a sorted list[60]. Using

this searching technique in Multi-View Stereo methods on competitive benchmarks

shows that this method consumes much less memory[55]. The binary search tech-

nique is used only for a sorted list. It divides the list into two parts:- lower, middle,

and upper. The searched element is compared with the middle element and if it

is a match, then the element is found. If the searched element is greater than

the middle element, then searching is done on the upper part of the list. If the

32



3.4. Evaluation of the Performance of Proposed Representation for
Apriori Algorithm

2 3 4 5 6 7 8 9 10

1.4

1.6

1.8

2

2.2
·104

Support count

M
em

o
ry
(k
b
s)

Array representation using linear search Proposed representation using linear search

Figure 3-13: Memory consumption of candidate itemset generation represented
by array and proposed itemset representation using linear search for the first
dataset with support count =2.5%, 5% and 10%

2 3 4 5 6 7 8 9 10

1.4

1.6

1.8

2

2.2

2.4

·104

Support count

M
em

or
y
(k
b
s)

Array representation using linear search Proposed itemset representation using linear search

Figure 3-14: Memory consumption of candidate itemset generation represented
by array and proposed itemset representation using linear search for the second
dataset with support count =2.5%, 5% and 10%

33



Chapter 3. Proposed Representation of Itemset

2 3 4 5 6 7 8 9 10

1.5

2

2.5

3

3.5

4

·104

Support count

M
em

or
y
(k
b
s)

Array representation using linear search Proposed itemset representation using linear search

Figure 3-15: Memory consumption of candidate itemset generation represented
by array and proposed itemset representation using linear search for the third
dataset with support count =2.5%, 5% and 10%

2 3 4 5 6 7 8 9 10

0

1

2

3

4

·104

Support count

T
im

e(
k
b
s)

Array representation using linear search Proposed itemset representation using linear search

Figure 3-16: Time consumption of candidate itemset generation represented by
array and proposed itemset representation using linear search for the first dataset
with support count =2.5%, 5% and 10%

34



3.4. Evaluation of the Performance of Proposed Representation for
Apriori Algorithm

2 3 4 5 6 7 8 9 10

0

2

4

6

·105

Support count

T
im

e(
k
b
s)

Array representation using linear search Proposed itemset representation using linear search

Figure 3-17: Time consumption of candidate itemset generation represented
by array and proposed itemset representation using linear search for the second
dataset with support count =2.5%, 5% and 10%

2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

·106

Support count

T
im

e(
k
b
s)

Array representation using linear search Proposed itemset representation using linear search

Figure 3-18: Time consumption of candidate itemset generation represented by
array and proposed itemset representation using linear search for the third dataset
with support count =2.5%, 5% and 10%

35



Chapter 3. Proposed Representation of Itemset

2 3 4 5 6 7 8 9 10

1.4

1.6

1.8

2

2.2
·104

Support count

M
em

or
y
(k
b
s)

Array representation using binary search Proposed representation using binary search

Figure 3-19: Memory consumption of candidate itemset generation represented
by array and proposed itemset representation using binary search for the first
dataset with support count =2.5%, 5% and 10%

searched element is lesser than the middle element, then searching is done on the

lower part of the list.

This process continues until the list is empty. The memory and time

consumption of the itemsets are shown in Figure 3-19, 3-20, 3-21, 3-22, 3-23, 3-24

for the Apriori Algorithm that incorporates the binary search technique. They

show the performance of this improved Apriori Algorithm which is supported by

the array representation and the proposed itemset representation.

3.4.3.3 Conclusion

The proposed bitmap representation is implemented in the set and the operations

were used in the different phases of rule mining. The Apriori Algorithm avoids the

duplicate itemset generation for level k+1 by checking first k-1 items are common.

For example, an itemset ABC and ABD will generate ABCD but ABC and BCD

will not generate ABCD. We could not design an efficient method for checking

”first k-1 common items” in the proposed bitmap representation. Hence, we have

eliminated the duplicate items from the candidate set based on an efficient search-

ing technique on a sorted list of itemset. By following the candidate generation

procedure suggested by the Apriori algorithm, it can be ensured that the newly

generated candidate will be bigger than the currently available candidates. This,

in turn, ensures that the list of candidates generated till now will always be in

36



3.4. Evaluation of the Performance of Proposed Representation for
Apriori Algorithm

2 3 4 5 6 7 8 9 10

1.4

1.6

1.8

2

2.2

2.4

·104

Support count

M
em

o
ry
(k
b
s)

Array representation using binary search Proposed representation using binary search

Figure 3-20: Memory consumption of candidate itemset generation represented
by array and proposed itemset representation using binary search for the second
dataset with support count =2.5%, 5% and 10%

2 3 4 5 6 7 8 9 10

1.5

2

2.5

3

3.5

4
·104

Support count

M
em

or
y
(k
b
s)

Array representation using binary search Proposed representation using binary search

Figure 3-21: Memory consumption of candidate itemset generation represented
by array and proposed itemset representation using binary search for the third
dataset with support count =2.5%, 5% and 10%

37



Chapter 3. Proposed Representation of Itemset

2 3 4 5 6 7 8 9 10

0

1

2

3

4
·104

Support count

T
im

e(
k
b
s)

Array representation using binary search Proposed representation using binary search

Figure 3-22: Time consumption of candidate itemset generation represented by
array and proposed itemset representation using binary search for the first dataset
with support count =2.5%, 5% and 10%

2 3 4 5 6 7 8 9 10

0

2

4

6

·105

Support count

T
im

e(
m
s)

Array representation using binary search Proposed itemset representation using binary search

Figure 3-23: Time consumption of candidate itemset generation represented
by array and proposed itemset representation using binary search for the second
dataset with support count =2.5%, 5% and 10%

38



3.4. Evaluation of the Performance of Proposed Representation for
Apriori Algorithm

2 3 4 5 6 7 8 9 10

0

0.2

0.4

0.6

0.8

1

1.2

·106

Support count

T
im

e(
k
b
s)

Array representation using binary search Proposed representation using binary search

Figure 3-24: Time consumption of candidate itemset generation represented
by array and proposed itemset representation using binary search for the third
dataset with support count =2.5%, 5% and 10%

order without the need for any separate way of sorting procedure. Furthermore,

the binary search technique was integrated into the Apriori Algorithm. All the

experimental results were produced pertinently. The outcomes show that the pro-

posed representation surpasses the array representation of itemsets when used in

the Apriori algorithm.

39


	07_chapter 3

