
Chapter 5

Generate Rules from Mined

Frequent Itemsets

5.1 Introduction

Association rule mining aims to find the frequent itemsets to analyze and predict.

In many domains, there are numerous approaches used for improving the process

of decision-making. One such application is the detection system. The intrusion

data is analyzed using the association rules. It also constructs the inspection rule

base. This enables the system to independently learn by itself. Thus, it provides

scalability of the system [83]. The healthcare system collects its records through

Electronic health records (EHRs) used by different organizations. With the help

of association rule mining algorithms, the system enhances patient care and the

efficiency of the delivery of healthcare. It facilitates the health care routine and

gives accurate results for identifying the disease [25]. With a dynamic environ-

ment, there is a need to address the issue of decision making. An approach was

introduced to improve the decision-making process. The feature of the approach

is that it is a hybrid of machine learning algorithms [43]. For rule generation, the

metric confidence is applied to the itemset. Confidence measures the strength of

the rule and how many times X occurs in the transaction that Y also exists. Y

→ X = P(X|Y)= Number of transactions that contain both X and Y/ number of

transactions that contain Y.

Thus, it is observed that rule mining algorithms have proved beneficial for different

applications and various domains. Some of the algorithms used for generating the

rules from the already mined frequent itemsets are discussed in the next section.
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5.1.1 Agarwal’s Algorithm

It was the algorithm introduced by Agarwal for generating the rules from the

frequent itemsets. In this algorithm, the rule is generated with a consequent part

containing only one item or an element. A rule of the form x → y is generated

from a frequent itemset I ={I1, I2, I3, ..., In} such that n ≥ 2. In the rule, the

antecedent part is a subset k of I where k has n-1 items and the consequent part

has I- k items. The disadvantage of the algorithm is that it is ineffective and

inability to generate all the possible rules. Although there are (2n -2) possibilities,

the algorithm can test only n rules [1].

5.1.2 Srikant’s 1st Algorithm

This algorithm is also known as Srikant’s Simple Algorithm. It is more of a

generalized structure from Agarwal’s algorithm. The consequent part of the rule

is not constrained to one item. The frequent itemsets whose subsets are not

empty are discovered first. Then, for every subset x, a rule is produced based on

the threshold value. The algorithm generates all the possible rules but it wastes

a lot of time due to redundant checking. Suppose an itemset ABCD, its subsets

are ABC, AB, and A. Based on the confidence metric, the possible rules are as

follows:

� ABC → D

� AB → C D

� A → B C D

If the confidence value of the rule ABC → D is not above the threshold value

then the rule A B → C D cannot be greater than the threshold value. Also, the

support count of the itemset AB cannot be more than ABC. The confidence of rule

first rule AB cannot be more than the second rule ABC. Srikant’s first algorithm

checks for the second rule which wastes time and likewise, the rule A → BCD will

be checked [3].
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5.1.3 Srikant’s 2nd Algorithm

Srikant’s 2nd algorithm is an enhancement of the previous algorithm. The reason

is that it removes the redundancy by avoiding redundant checking of the rule. If a

has a subset c, then the support of the itemset c cannot be more than the support

count of the itemset a. Similarly, the confidence of the rule c→l- c cannot be more

than a→l- a. This approach is known as the downward closure property which

states that ”if an itemset is frequent then its subset is also frequent”.

The algorithm produces the same consequent numerous times for different an-

tecedents. Suppose if W ⊂ Y, all the consequents are generated while generating

the rules for W. However, the operation will be repeated for Y although these are

already generated before for the Y since Y is a superset of W. This process is a

setback reducing the algorithm efficiency and effectiveness [3].

5.1.4 NBG’s Algorithm

This algorithm can tackle the issue faced in Srikant’s 2nd algorithm. The feature

of the algorithm is that it can produce all the possible rules fulfilling the minimum

confidence criteria. The algorithm discovers all the rules with different consequents

and fixed antecedents. It proceeds to the next level with the same antecedent if

the present level has at least two itemsets that satisfy the minimum confidence.

It starts generating the rules starting with the fixed and single-item antecedent.

After all the rules with fixed antecedents are generated then it will proceed to the

next antecedent. Likewise, it also checks the consequent part with one item and

proceeds to the next level for the same antecedent. If at level k, the rules have

confidence less than the threshold, then no rules will be generated at level k + 1

[32].

5.2 Rule Generation with Existing Representa-

tion

The array itemset representation is used for representing the itemsets which are

then mined using the Apriori algorithm. The rules are generated from the fre-

quent itemsets using the algorithms mentioned in the above section. The following

datasets are used for experimenting:
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Figure 5-1: Memory(kbs) consumption of rule generation algorithms using pro-
posed itemset representation for Hunington’s dataset with confidence=1% and
support count= 1%, 2.5%, 5%

� Huntington’s dataset: The dataset 1 consists of the patient’s details including

whether the patient has repeated CAG chain, patient’s age, patient’s gender.

The time and memory consumption for the generation of the rules using

Apriori algorithms for Huntington’s dataset are shown in Figure 5-1, 5-2,

5-3, 5-4, 5-5, 5-6, 5-7, 5-8, 5-9, 5-10, 5-11, 5-12.

� Synthetic dataset: There are three types of datasets depending on the size.

The datasets are as follows:

– 1st dataset: The dataset consists of 1000 transactions with 50 at-

tributes.

– 2nd dataset: consists of 5000 transactions including 50 attributes.

– 3rd dataset: contains 20,000 transactions with 50 attributes.

The experiments are performed on different criteria shown in Figure 5-13,

5-14, 5-15, 5-16, 5-17, 5-18, 5-19, 5-20, 5-21, 5-22, 5-23, 5-24.

� Chess dataset: The dataset 2 consists of tables with game-theoretic values

for the legal position. The game-theoretic values stored designate which are

the winning positions for both sides consisting of 28056 instances.

1http://biogps.org/#goto=genereport&id=1017&show dataset=E-GEOD-8762
2httpshttps://archive.ics.uci.edu/dataset/21/chess+king+rook+vs+king+knight
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Figure 5-2: Memory(kilobits) consumption of rule generation algorithms using
proposed itemset representation for Hunington’s dataset with confidence 2.5% and
support count 1%, 2.5 %, 5 %
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Figure 5-3: Memory(kilobits)consumption of rule generation algorithms using
proposed itemset representation for Hunington’s dataset with confidence 5% and
support count =1%, 2.5 %, 5 %
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Figure 5-4: Time(ms) consumption of rule generation algorithms using proposed
itemset representation for Hunington’s dataset with confidence 1% and support
count 1%, 2.5% and 5%
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Figure 5-5: Time(ms) consumption of rule generation algorithms using proposed
itemset representation for Hunington’s dataset with confidence 2.5% and support
count 1%, 2.5 % and 5%
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Figure 5-6: Time(ms) consumption of rule generation algorithms using proposed
itemset representation for Hunington’s dataset with confidence 5% and support
count 1%, 2.5% and 5%
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Figure 5-7: Memory(kilobits) consumption of rule generation algorithms using
array itemset representation for Hunington’s dataset with confidence 1% and sup-
port count 1%, 2.5% and 5%
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Figure 5-8: Memory(kilobits) consumption of rule generation algorithms using
array itemset representation for Hunington’s dataset with confidence of 2.5% and
support count 1%, 2.5% and 5%
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Figure 5-9: Memory(kilobits) consumption of rule generation algorithms using
array itemset representation for Hunington’s dataset with confidence 5% and sup-
port count 1%, 2.5% and 5%
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Figure 5-10: Time(ms) consumption of rule generation algorithms using array
itemset representation for Hunington’s dataset with confidence 1% and support
count 1%, 2.5% and 5%
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Figure 5-11: Time(ms) consumption of rule generation algorithms using array
itemset representation for Hunington’s dataset with confidence 2.5% and support
count =1%, 2.5% and 5%
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Figure 5-12: Time(ms) consumption of rule generation algorithms using array
itemset representation for Hunington’s dataset with confidence of 5% and support
count= 1%, 2.5% and 5%
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Figure 5-13: Memory(kilobits) consumption of rule generation algorithms using
array representation for 1st dataset with support count=1%, 2.5%, 5% and 10%
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Figure 5-14: Memory(kilobits) consumption of rule generation algorithms using
proposed itemset representation for 1st dataset with support count =1%, 2.5%,
5% and 10%
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Figure 5-15: Memory(kilobits) consumption of rule generation algorithms using
array representation for 2nd dataset with support count=1%, 2.5%, 5% and 10%
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Figure 5-16: Memory(kilobits) consumption of rule generation algorithms using
proposed representation for 2nd dataset with support count= 1%, 2.5%, 5% and
10%
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Figure 5-17: Memory(kilobits) consumption of rule generation algorithms using
array representation for 3rd dataset with support count=1 %, 2.5%, 5% and 10%
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Figure 5-18: Memory(kilobits) consumption of rule generation algorithms using
proposed itemset representation for 3rd dataset with support count=1%, 2.5%, 5%
and 10%
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Figure 5-19: Time(ms) consumption of rule generation algorithms using array
representation for 1st dataset with support count=1%, 2.5%, 5% and 10%
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Figure 5-20: Time(ms) consumption of rule generation algorithms using pro-
posed itemset representation for 1st dataset with support count=1%, 2.5%, 5%
and 10%
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Figure 5-21: Time(ms) consumption of rule generation algorithms using array
representation for 2nd dataset with support count= 1%, 2.5%, 5% and 10%
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Figure 5-22: Time(ms) consumption of rule generation algorithms using pro-
posed representation for 2nd dataset with support count= 1%, 2,5 %, 5% and
10%
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Figure 5-23: Time(ms) consumption of rule generation algorithms array repre-
sentation for 3rd dataset with support count =1%, 2.5%, 5% and 10%

67



Chapter 5. Generate Rules from Mined Frequent Itemsets

1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

·105

Support count

T
im

e(
m
s)

Srikant’s 1st Algorithm Srikant’s 2nd Algorithm

Agarwal Algorithm NBG’s Algorithm

Figure 5-24: Time(ms) consumption of rule generation algorithms proposed
itemset representation for 3rd dataset with support count=1%, 2.5%, 5% and 10%

� Religious dataset: The dataset 3 were obtained from the UCI machine learn-

ing repository consisting of 8265 attributes and 590 instances.

� Corel Dataset: The dataset 4 consists of the features extracted from a Corel

image. The dataset consists of 68040 instances and 89 attributes.

The execution time and memory consumption of the itemset represented using

array representation for different datasets show different behavior. It has been ob-

served that with different sizes and characteristics, the execution time and memory

consumption also change. From the results shown in Figures 5-1 to 5-24, the al-

gorithms incorporating the proposed itemset representation takes less time and

memory as compared to the array representation. NBG’s algorithm incorporated

with proposed itemset representation outperforms the other three algorithms in

terms of execution time and memory consumption.

5.3 Rule Generation with Proposed Representa-

tion

The proposed itemset representation is applied to the datasets mentioned in the

above section. The generated frequent itemsets are then used for generating rules.

3https://archive.ics.uci.edu/ml/datasets/A+study+of+Asian+Religious+and+Biblical+Texts
4https://archive.ics.uci.edu/ml/datasets/Corel+Image+Features/

68



5.4. Discussion and Conclusion

From the results 5-1 to 5-24, it is observed that NBG’s Algorithm takes less time

and memory irrespective of the dataset size and support count. The reason is

that it uses the already existing frequent itemset present in the memory and does

not produce the subsets of the frequent itemset. The NBG’s algorithm is a better

competitor as compared to Agarwal’s algorithm, Srikant’s 1st, and Srikant’s 2nd

algorithm since it can tackle the issues faced by the other three algorithms and

generate all the rules with even less time. The number of generated rules for each

dataset using NBG’s algorithm are shown in Table 5.1. For example, the rules

generated from the Hunington’s dataset are as follows:-

� Repeated CAG Chain → Hunington’s disease

� Patient having mental disease → Hunington’s disease

It is evident from these rules that a patient having repeated CAG Chain is prone to

Hunington’s disease. Although, mental disease is not mostly neglected by medical

expert. However, the rule shows that mental illness is also one of the symptoms

of Hunington’s disease. Few examples of rules generated from Religious dataset

are as follows:-

� BookOfProverb Ch15 → fools, joy, foolishness

� fools → joy, foolishness

From the above rules, it is concluded that from the Book of Proverbs, that a fool

will only rejoice in foolishness.

5.4 Discussion and Conclusion

The performance of the proposed itemset and array representation is observed

in different datasets with distinct sizes and features. It has been observed that

the execution time and memory consumption using the proposed itemset repre-

sentation for Apriori performs better than the itemset represented using array

representation.

From Table 5.1, the rules are extracted using NBG’s Algorithm that incorporates

the proposed itemset representation outshines that of the rules generated from

the frequent itemset that uses array representation. Thus, the efficiency of the

rule generation algorithms increases when the itemsets are represented using the

proposed itemset representation.
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Table 5.1: Number of generated rules represented by Array and Proposed itemset
representation using NBG’s Algorithm

Sl.No Dataset Support Confidence Number of generated rules
using NBG’s Algorithm
Proposed Array
Representation Representation

1. Huntington’s

1%

100% 137 137
98% 130 130
95% 130 130
90% 127 127

2.5%

100% 80 80
98% 79 79
95% 79 79
90% 78 78

5%

100% 16 16
98% 16 16
95% 16 16
90% 16 16

2. Corel

1%

100% 312 312
98% 311 311
95% 310 310
90% 310 310

2.5%
100% 110 110
98% 110 110
95% 109 109
90% 106 106

5%

100% 43 43
98% 43 43
95% 42 42
90% 42 42

3 Religious

1% 100% 55 55
98% 55 55
95% 55 55
90% 55 55

2.5%

100 15 15
98% 14 14
95% 13 13
90% 13 13

5%

100% 8 8
98% 8 8
95% 7 7
90% 7 7

70



5.4. Discussion and Conclusion

4 Chess

1%

100% 1556 1556
98% 1555 1555
95% 1555 1555
90% 1555 1555

2.5%

100% 801 801
98% 801 801
95% 800 800
90% 800 800

5%

100% 90 90
98% 88 88
95% 88 88
90% 87 87
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