Om Namah Shivaay

DEDICATION

For *Maa*, the brightest star in my sky. For *Papa*, because of whom I am me today.

For my *Pranvie*, who has come as my life's greatest blessing.

"Trifles make perfection, and perfection is no trifle" – Michael Angelo

DECLARATION BY THE CANDIDATE

I do hereby declare that the thesis titled_"Road Load Model Based Energy and Range Estimation for Eco-routing Navigation of Electric Vehicles", submitted to the Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, is a record of original research work carried out by me. All sources of assistance for my Ph.D. work have been duly acknowledged. I also declare that neither this work as a whole nor a part of it has been submitted to any other University or Institute for the award of any degree or diploma.

Kritanjali Das

(Kritanjali Das)

Regn. No. TZ203795 Enrol. No. ELP16005

Date: 30 · 8 · 2023 Place: Tezpur

TEZPUR UNIVERSITY

Department of Electronics and Communication Engineering Napaam, Tezpur, Assam, India-784028

Dr. Santanu Sharma Professor

Ph.:+91-3712-275257 Fax:+91-3712-267006 Email : sss@tezu.ernet.in

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis titled "**Road Load Model Based Energy and Range Estimation for Eco-routing Navigation of Electric Vehicles**", submitted to the School of Engineering, Tezpur University in part fulfillment for the award of degree of Doctor of Philosophy in Electronics and Communication Engineering is a research work carried out by **Ms.Kritanjali Das** under my supervision and guidance.

All help received by her from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for the award of any other degree or diploma to the best of my knowledge.

Date: 30 · 8 , 2023 Place: Tezpur

Signature of supervisor

DECLARATION BY THE CANDIDATE

I do hereby declare that the thesis titled<u>"Road Load Model Based Energy and</u> Range Estimation for Eco-routing Navigation of Electric Vehicles", submitted to the Department of Electronics and Communication Engineering, Tezpur University, Tezpur, Assam, is a record of original research work carried out by me. All sources of assistance for my Ph.D. work have been duly acknowledged. I also declare that neither this work as a whole nor a part of it has been submitted to any other University or Institute for the award of any degree or diploma.

(Kritanjali Das)

Regn. No. TZ203795 Enrol. No. ELP16005

Date: Place: Tezpur

TEZPUR UNIVERSITY

Department of Electronics and Communication Engineering Napaam, Tezpur, Assam, India-784028

Dr. Santanu Sharma Professor Ph.:+91-3712-275257 Fax:+91-3712-267006 Email : sss@tezu.ernet.in

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis titled "**Road Load Model Based Energy and Range Estimation for Eco-routing Navigation of Electric Vehicles**", submitted to the School of Engineering, Tezpur University in part fulfillment for the award of degree of Doctor of Philosophy in Electronics and Communication Engineering is a research work carried out by **Ms.Kritanjali Das** under my supervision and guidance.

All help received by her from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for the award of any other degree or diploma to the best of my knowledge.

Date: Place: Tezpur

Signature of supervisor

ACKNOWLEDGEMENT

This dissertation is the result of daily efforts to get better, incremental understanding of electronics with every passing day, supported by the Almighty and some very important individuals.

First, I would like to take this opportunity to express my heartfelt gratitude and indebtedness to my supervisor, **Dr. Santanu Sharma**, Professor and Head, Department of Electronics and Communication Engineering, Tezpur University, for his valuable guidance, intellectual research input, encouragement and expertise during the entire course of my research. His dynamism, vision and sincerity have been so inspirational in making me a better person, both at academic and personal levels. I really feel privileged to work and study under his guidance. This journey would not have reached its destination without his constant support and motivation. Additionally, he currently holds the position of the Head of the Department and I express my gratitude for his assistance in all administrative matters throughout this period.

I am sincerely grateful to my Doctoral Committee, **Prof. Jiten Ch. Dutta**, Department of ECE and **Prof. Satyajib Bhattacharyya**, Department of ECE for generously enlightening me with their profound knowledge, valuable advice and suggestions all throughout my research journey.

This endeavour would not have been possible without the generous support of the **Visvesvarya Ph.D. Scheme for Electronics and IT**, Ministry of Electronics and Information Technology, Government of India, which has financed my research work. A special note of thanks goes to the nodal officer, **Prof. Jiten Ch. Dutta**, for his support and help in this regard.

I also sincerely thank all the faculty members, technical staff, as well as non-teaching staff of the Department for their guidance and help at various stages during this period. A special note of thanks to **Mr.Bipul Das**, Machine Operator, Department of ECE, and the technical staff, Department of Mechanical Engineering, for their constant help during my research period.

I would want to express my gratitude to my senior colleagues and peers for their invaluable assistance, direction, and emotional encouragement. I am sincerely grateful to my laboratory mates, **Chinmayee Hazarika**, **Pranjal Barman**, **Sujan Neroula**, **Anjana Saikia**, **Anita Gupta**, **Subhankar Chakraborty**, and **Pronita Boro** for their selfless assistance and camaraderie during times when their support was indispensable to me. This is a family which shall always remain dear to me.

I can never forget the enduring love and support of people who are now more family than friends. I express my profound gratitude to **Trishna Barman**, **Hilly Gohain Baruah and Prathana Saikia** for their unwavering affection and support during my journey, more so during the tough phases.

Finally, it is imperative to acknowledge my family, especially my parents, spouse, and child. I am eternally grateful and indebted to my father, **Dr.Bhabesh Kumar Das**, and my sister, **Kasturi Das**, for being my support system all throughout my life. No amount of words will ever be enough to express my love and gratitude for them. I am also thankful to my in-laws for understanding and supporting me. Their constant encouragement and belief in me have kept my spirits and motivation high during this endeavour. During the course of my doctoral journey, I have also experienced two other significant milestones in my personal life. I feel so fortunate to have my husband, **Mr. Manash Jyoti Baishya**, who has stood by me like a rock through thick and thin. The best part of this journey, other than attaining the degree itself, has to be my daughter, **Praharshita Baishya**, who has come as a blessing to change my life forever.

I may have missed out on names, but I am sincerely thankful to all for the experiences that were never expected and to all the friends and family I found along the way. Above all, I am indebted to The Almighty for always watching over me and bestowing His blessings on me.

(Kritanjali Das) Place: Tezpur, Assam

Figures

Fig.1. 1 A schematic illustrating the difference between (a) an electric vehicle a	und (b)
internal combustion engine (ICE) vehicle	5
Fig. 2.1 Forces acting on a vehicle in motion	
Fig. 2.2 Aerodynamic drag forces acting on a vehicle in motion	
Fig. 2.3 Rolling resistance force on tyres on a hard surface	
Fig. 2.4 Illustration of road grade when a vehicle is traversing uphill	
Fig. 2.5 Schematic of a battery	
Fig. 2.6 Various components of force acting on a vehicle	
Fig.3.1 Forces and moments acting on a vehicle in motion	60
Fig.3.2 The tyre co-ordinate system	62
Fig.3.3 A front-wheel-steering vehicle and steer angles of the inner and outer w	heels.
	64
Fig.3.4 Top-view of the chassis of the test EV prototype	67
Fig.3.5 Front-view of the chassis of	67
Fig.3.6 View of the front suspension	67
Fig.3.7 Connection of the motors to the	67
Fig.3.8 The test EV prototype after its completion	68
Fig.3.9 Block diagram of the motor contol circuit	69
Fig.3.10 Circuitry involved in the test EV	70
Fig.3.11 Wheatstone Bridge Configuration of a load cell	71
Fig.3.12(a) Illustration of an incremental rotary encoder [12] and (b) Circuit dia	agram
of the encoder	73
Fig.3.13 A Hall-effect Current Sensor Module[15]	74
Fig.3.14 Placement of sensors in the vehicle	75
Fig.3.15 Connection of sensors to the respective microcontrollers for data acqu	isition
	76
Fig.3.16 Circuit diagram of DC Shunt motor	79
Fig.3.17 Torque-Speed curve of DC shunt motor	80
Fig.3.18 Circuit diagram for PMDC motor	
Fig.3.19 Torque-speed characteristics of a PMDC motor (Source: [9], p.145)	
Fig.3.20 Block diagram of the designed system	83

Fig.3.21 Mechanical design of the set-up.	83
Fig.3.22 Geometry for the determination of position of maximum torque	85
Fig.3.23 Basic configuration of Motor Driving Circuit	86
Fig.3.24 Motor Driving Circuit of the System Set-up`	87
Fig.3.25 Real-time data extraction of speed with time	90
Fig.3.26 Real-time data extraction of torque with time	90
Fig.3.27 Real-time data extraction of motor current as a function of time	90
Fig.3.28 Real-time data extraction of power through the motor as a function of time	e
	90
Fig.3.29 Variation of motor speed with respect to Input Voltage at no load	91
Fig.3.30 Variation of motor speed with respect to Input Voltage at 1.4 Nm load	91
Fig.3.31 Variation of motor speed with respect to Input Voltage at 6 Nm load	92
Fig.3.32 Real time Speed-Torque Graph at 50% Duty Cycle	92
Fig.3.33 Real time Speed-Torque Graph at 100% Duty Cycle	92
Fig.3.34 Real time graph of input power, output power and efficiency with time	92
Fig.3.35 Block diagram of the proposed system	96
Fig.3.36 The experimental set-up used for estimation of DC motor characteristics	96
Fig.3.37 Illustration of circuitry used in the proposed set-up	98
Fig.3.38 The torque versus armature current characteristic of the PMDC motor1	00
Fig.3.39 The speed versus current characteristic of the PMDC motor	00
Fig.3.40 The torque versus speed characteristic of the PMDC motor	01
Fig.3.41 The efficiency of the motor at various voltages along its line of operation 1	01
Fig.4.1 The tractive force produced under the tyres of an electric vehicle1	11
Fig.4.2 The trackwidth and wheelbase of an electric vehicle	12
Fig.4.3 Forces acting on a car parked on a smooth levelled road	12
Fig.4.4 Vehicle accelerating on a smooth levelled road1	14
Fig.4.5 (a) An EV travelling through a crest an (b) An EV travelling through a dip 1	16
Fig.4.6 Illustration of the road model1	22
Fig.4.7 Illustration of the different angles on which the vehicle energy demand	
depends	22
Fig.4.8 Forces experienced by the vehicle during acceleration over an inclined road	
	23
Fig.4.9 Direction of different force components acting on a vehicle	25
Fig.4.10 Bird eye view of the selected route taken from Google maps[24]1	27

Fig.4.11 Elevation data (from sea level) obtained from DEM sources
Fig.4.12 Variation of road grade with respect to range of an EV128
Fig.4.13 Variation of road grade angle along a specified path (test route)129
Fig.4.14 Force acting under one of the rear wheels at specified instances along a trip
Fig.4.15 Normal force acting under one of the front wheels at specified instances
along a trip
Fig.4.16 Comparison of force acting under the front as well as rear wheel
Fig.4.17 The power required by the vehicle during the test trip131
Fig.4.18 Force under the wheels when different driving cycles are used131
Fig.4.19 Power requirement when different driving cycles are used
Fig.5. 1 The chemical structure of a lead acid battery cell
Fig.5.2 A schematic of the NiMH battery cell143
Fig.5.3 General working of a zinc air battery144
Fig.5.4 Schematic of a lithium ion battery
Fig.5.5 Types of battery modelling approaches151
Fig.5.6 Randle's EECM to model battery impedance response
Fig.5.7 Simple Battery Model
Fig.5.8 Thevenin Battery Model
Fig.5.9 A DP Battery Model
Fig.5.10 Equivalent circuit model to model diffusion voltage
Fig.5.11 A simple electrical circuit battery model
Fig.5.12 Change in OCV with respect to SoC in one cell of a lead acid battery169
Fig.5.13 Equivalent circuit model of one cell of a lead acid battery[59]170
Fig.5.14 Simulink model of the basic electrical circuit battery model171
Fig.5.15 The open circuit voltage change in a dicharge cycle of a lead acid battery 172
Fig.5.16 The open circuit voltage versus State of Charge in a lead acid battery172
Fig.5.17 The lead acid battery model as implemented in MATLAB173
Fig.5.18 The battery undergoing 5A charge and discharge cycles
Fig.5.19 The terminal voltage of the battery173
Fig.5.20 The state of charge of the battery
Fig.5.21 Two motors connected along their shafts to form a motor-generator couple
Fig.5.22 The experimental set-up used to discharge the battery

Fig.5.23 The experimental set-up for charging	.177
Fig.5.24 Circuitry and hardware of the proposed system	.179
Fig.5.25 Curve showing a discharge cycle at 4A	. 181
Fig.5.26 Curve showing a discharge cycle at 8A	. 181
Fig.5.27 Curve showing a discharge cycle at 10A	. 181
Fig.5.28 Discharge cycles at various current rates	.183
Fig.5.29 Curve showing the charge profile for a single cycle of operation	.183
Fig.5.30 Curve depicting the coulombic efficiency at different current rates	.184
Fig.5.31 The State of Charge of the test battery over one cycle of discharge	.184
Fig.6.1 Power consumption of EV traversing at different average speeds	. 198
Fig.6.2 The force at the wheels due to EV weight at various instants during a trip.	.200
Fig.6.3 Power consumption with varying vehicle mass	.200
Fig.6.4 Power consumption of the test EV with varying drag co-efficients	.202
Fig.6.5 Speed profile comparison of one round of each driving cycle	.204
Fig.6.6 Power consumption using different driving cycles	.204
Fig.6.7 Energy consumption of EV in absence of roadgrade	.206
Fig.6.8 Power consumption in presence of roadgrade	.206
Fig.6.9 Block diagram representing working of the overall proposed system	.208
Fig.6.10 The attachment of encoders on the wheel axle of the test prototype	.209
Fig.6.11 The maximum attainable speed of the test EV	.210
Fig.6.12 A rear wheel driven EV with its centre of rotation and geometrical centre	e212
Fig.6.13 Load sensor attached to a spring in the swing arm of the EV	.213
Fig.6.14 Determination of actual load by curve fitting method	.214
Fig.6.15 An accelerometer attached to one of the wheels	.215
Fig.6.16 The external sensor for measurement of tyre pressure	.216
Fig.6.17 Tyre deflection and rolling resitance on a hard surface	.217
Fig.6.18 Contact patch determination by geometrical approach	.219
Fig.6.19 Contact patch physically determined by ink method (32psi, 60kg)	.220
Fig.6.20 The attachment of current sensors on the test EV	.221
Fig.6.21 The Delhi bus driving cycle	.222
Fig.6.22 The driving cycle scaled down to fit Test EV statistics	.222
Fig.6.23 The velocity time graph of the test EV during a test run	.227
Fig.6.24 Curve showing distance travelled at a specific vehicle speed	.227
Fig.6.25 Graph showing remaining range when the current consumption increases	227

Fig.6.26 Block diagram of a generalised neural network model	230
Fig.6.27 Illustration of the sigmoid activation function	231
Fig.6.28 The neural network model of the system	232
Fig.6.29 The modelled neural network using neural network toolbox in MATLA	AB 232
Fig.6.30 Speed profile of test EV using different driving cycles	235
Fig.6.31 Contact patch determination using the empirical method	236
Fig.6.32 Comparison of contact patch as a function of tyre pressure and weight	236
Fig.6.33 Power consumption at various tyre pressures	237
Fig.6.34 Rolling resistance coefficient as a function of tyre pressure	237
Fig.6.35 Chosen route for road test of EV prototype [38]	239
Fig.6.36 The driving cycle pattern chosen for the test EV	239
Fig.6.37 The current consumption profile during a trip	239
Fig.6.38 The voltage across the motors of the EV during the trip	240
Fig.6.39 Power consumption of the test EV during a trip	240
Fig.6.40 Roadgrade profile of the test patch	240
Fig.6.41 Power consumption of the test EV in presence of roadgrade	241
Fig.6.42 Remaining range estimation at every instant along the trip	241
Fig.6.43Comparison of instantaeous range estimation and averaged range	241
Fig.6.44 Illustration of two routes of same length from source A to destination H	3243
Fig.6.45 Driving cycle pattern of the test EV on both routes	244
Fig.6.46 The energy consumption profile of the test EV along both routes	244
Fig.6.47 Illustration of two routes of different length from A to B	244
Fig.6.48 Comparison of the road grade profile of both the routes	245
Fig.6.49 The speed profile followed in both routes during the trips	245
Fig.6.50 The power consumption profile of the test EV along both routes	245
Fig.6.51 The energy consumption of the test EV on both routes	245
Fig.6.52 Portrayal of the two routes with and without roadgrade	247
Fig.6.53 The power profile of the test EV along both routes	248
Fig.6.54 Energy consumption profile of both routes available for the test EV	248
Fig.6.55 Power consumption in presence and in absence of crosswinds	249
Fig.6.56 Performance curve of the NN model	251
Fig.6.57 Regression curve of the NN model	251
Fig.6.58 Training state of the NN model	252
Fig.6.59 Comparison of trained data and road-test data using the NN model	252

Tables

Table 2.1 Summary of literature on various fuel consumption models as well as
techniques
Table 2. 2 Summary of various battery models used in vehicles
Table 3.1 Features of the EV prototype (dynamic test bed) 67
Table 3. 2 Technical specifications of motor controller 69
Table 3. 3 Technical specifications of rotary encoder [12]73
Table 3. 4 Technical specifications of hall effect current sensor[14]
Table 3.5 List of major components in the test set-up 88
Table 3. 6 Components used in the experimental set-up 96
Table 3. 7 Technical specifications of components used in the experimental set-up98
Table 5.1 Nominal battery parameters for lead acid batteries
Table 5.2 Nominal battery parameters for NiMH batteries 143
Table 5.3 Nominal battery parameters for zinc air batteries
Table 5.4 Nominal battery parameters for lithium ion batteries 145
Table 5.5 Comparison of features of the different battery models 165
Table 5.6 Circuit components used in the experimental set-up as in Fig.5.22 177
Table 5.7 Technical specifications of circuitry used in experiment
Table 6.1 The calculated acceleration at various regions of test EV from experimental
data211
Table 6. 2 Parameters for estimation of range 226

Abbreviations

AEV	All Electric Vehicle
BEV	Battery Electric Vehicle
BJT	Bipolar Junction Transistor
CAGR	Compound Annual Growth Rate
CE	Coulombic Efficiency
CMEM	Comprehensive Modal Emission Model
CO ₂	Carbon dioxide
CSP	Constrained Shortest Path
DBDC	Delhi Bus Driving Cycle
DC	Direct Current
DEM	Digital Elevation Mapping
DPM	Double Polarisation Model
ECO-ITS	Eco-friendly Intelligent Transportation System
EECM	Equivalent Electrical Circuit Model
EMF	Electro Magnetic Force
EREV	Extended Range Electric Vehicle
ESR	Equivalent Series Resistance
ESS	Energy Storage Systems
EUDC	European Driving Cycle
EV	Electric Vehicle
EVRP	Electric Vehicle Routing Problem
FAME	Faster Adoption and Manufacturing of
	(Hybrid and) Electric Vehicles
FIFO	First In First Out
FTP	Federal Test Procedure
GNSS	Global Navigation Satellite System
GPS	Global Positioning System
HEV	Hybrid Electric Vehicle
ICE	Internal Combustion Engine
ICEV	Internal Combustion Engine Vehicles
ICT	Information and Communications Technology
IMC	Intelligent Motor Controller
IMU	Inertial Measurement Unit
Li-ion	Lithium ion
MEMS	Micro Electromechanical System
MOSFET	Metal Oxide Semiconductor Field Effect
	Transistor
NEDC	New European Driving Cycle
NEMMP	National Electric Mobility Mission Plan
NEV	Neighbourhood Electric Vehicle
NiCd	Nickel Cadmium

NiOOH	Nickel Oxide Hydroxide
NiMH	Nickel Metal Hydride
NN	Neural Network
NO _x	Oxides of Nitrogen
OCV	Open Circuit Voltage
ODE	Ordinary Differential Equation
ORTNS	Optimal Real Time Navigation System
OSM	Open Street Map
P2D	Pseudo 2 Dimensional
PHEV	Plug-in Hybrid Electric Vehicle
PMDC	Permanent Magnet Direct Current
PPR	Pulses Per Revolution
PWM	Pulse Width Modulation
RC	Resistor-Capacitor
RDR	Remaining Driving Range
RDS	On-state Resistance
RPM	Revolutions Per Minute
SLI	Starting,Lighting,Ignition
SoC	State of Charge
SPM	Single Particle Model
UKF	Unscented Kalman Filter
USDC	United States Driving Cycle

List of symbols

$ ho_{air}$	Density of air (kg/m ³)
F _{drag}	Aerodynamic drag force
C _{drag}	Co-efficient of drag
A _{frontal}	Frontal area of EV
$\mathbf{f}_{\mathbf{k}}$	Fuel consumption
Vk	Average speed of traffic
s _k	Road elevation
β_{0-5}	Co-efficient of fuel consumption
Er	Losses from drag and rolling friction
Ep	Potential energy
Froll	Rolling resistance force
C _{rr}	Co-efficient of rolling resistance
Ι	Load current
Т	Time
С	Capacity of battery
η	Peukert's constant
ω	Angular speed
Pc	Motor power loss in idle mode
Μ	Moment of force
Fi	Force exerted at location i
R _i	Location
W	Trackwidth
1	Wheelbase
R	Radius of tyre
Cotδ	Cot average of inner and outer steer angles
V	Voltage
Ra	Armature resistance
Ν	Motor speed
E _b	Back emf of motor
Ta	Armature torque

Kt	Motor torque constant
Ia	Armature current
η_{motor}	Motor efficiency
g	Acceleration due to gravity
m	Vehicle mass
E[k+1]	Additional SoC
E _m	Open circuit voltage
E _{m0}	Open circuit voltage at full charge
R _D (SoC)	Internal resistance during discharge
R _C (SoC)	Internal resistance during charge
E _p	Voltage across capacitance
C _p	Equivalent polarisation capacitance
R _p	Non-linear resistance
Z_{w}	Warburg impedence
A_w	Warburg co-efficient
f	Frequency
ω_L	Speed of rear left wheel
ω_R	Speed of rear right wheel
ω_{avg}	Average speed of EV
СР	Contact patch
Х	Distance between plates
Δd	Distance between the thick and the thin plate
μ	Co-efficient of rolling resistance
θ	Angle of road gradient